首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media.  相似文献   

2.
The influence of growth temperature, media composition and cell age on the chemical composition of Bacillus stearothermophilus strain AN 002 has been determined. The total cellular protein decreased and the free amino acid content increased with growth temperature, in both exponential and stationary growth phase. The protein and free amino acid contents of cells were higher in the stationary phase than in the exponential phase, irrespective of growth temperature and media composition. The RNA content was only reduced in cells grown at 55° C. No significant variations were observed in the DNA and carbohydrate contents with respect to growth temperature and cell age. The total lipid and fatty acid compositions on the other hand varied as a function of growth temperature, cell age and media composition. Differences in the relative concentrations of even, odd and branched chain fatty acids were noticed. Novariation was observed in the antiiso and unsaturated fatty acids with respect to growth temperature. The unique variations in the fatty acid composition and total lipids at the growth temperature of 50° C and their variations in the stationary growth phase seem to be characteristic for B. stearothermophilus AN 002.  相似文献   

3.
1. The effect of ultraviolet (UV) radiation (280–400 nm) on fatty acid composition and elemental ratios of carbon (C), nitrogen (N) and phosphorus (P) of a unialgal culture of the chlorophyte Selenastrum capricornutum was investigated. Algae were cultured in the presence or absence of UV radiation and were subsequently fed to Daphnia magna to assess potential effects of UV on zooplankton fatty acid composition, growth and reproduction. 2. Algal growth rate was substantially reduced by UV radiation, probably because of a severe inhibition of photosynthetic efficiency (measured as optimal quantum yield). 3. Algae exposed to UV radiation had a significantly reduced content of 18 : 1 n‐9, while C18 polyunsaturated fatty acids (PUFAs) were higher under UV radiation. These observations point at an increased demand for and synthesis of PUFAs under UV stress. 4. The C : P and N : P ratios showed a remarkable decrease in UV‐exposed cells primarily owing to an increased uptake of P. The nutritional quality in terms of both fatty acid composition and stoichiometry was therefore higher in the UV treatment relative to the control. 5. Despite the UV‐induced changes in nutritional quality of S. capricornutum, no significant effects on D. magna growth or reproduction were detected. The fatty acid composition of Daphnia fed on UV irradiated algae showed a significantly lower content of 18 : 1 n‐9, but no changes in the essential PUFAs.  相似文献   

4.
Chlamydomonas reinhardtii (Ehrenberg) cells exhibited cell death process akin to that of apoptosis when exposed to ultraviolet (UV)‐C irradiation (1–100 J/m2). We observed typical hallmarks of apoptosis including cell shrinkage, associated nuclear morphological changes, flipping of phosphatidylserine, and DNA fragmentation detected by the terminal deoxynucleotidyl transferase‐mediated dUTP nick end‐labeling assay and oligonucleosomal DNA laddering assay. Interestingly, fluorescence imaging of DNA changes in UV‐C exposed cells, following PicoGreen staining, revealed that extra‐nuclear DNA disintegrates before that of nuclear changes, where the latter extensively diffuses out of the nuclear compartment, spreading into the whole cell and reaching the periphery of dying cells. Antibodies against a mammalian caspase‐3 shared epitopes with a protein of 28 kDa; whose pattern of expression correlated with the onset of cell death. Moreover, growth experiments indicate that spent medium recovered from UV‐C exposed cells exhibit a protective effect against cell killing of fresh cultures of C. reinhardtii cells by UV irradiation. The protective effect of UV‐spent medium is not a general growth promotional response on normal cells, but rather, is specific to UV‐exposed cells. We propose a model that C. reinhardtii cells exposed to UV elicit apoptotic‐like changes, which in turn lead to an adaptive response in neighboring cells against fresh rounds of UV exposure, thereby promoting survival of the cell population.  相似文献   

5.
Single‐use bioprocessing bags and bioreactors gained significant importance in the industry as they offer a number of advantages over traditional stainless steel solutions. However, there is continued concern that the plastic materials might release potentially toxic substances negatively impacting cell growth and product titers, or even compromise drug safety when using single‐use bags for intermediate or drug substance storage. In this study, we have focused on the in vitro detection of potentially cytotoxic leachables originating from the recently developed new polyethylene (PE) multilayer film called S80. This new film was developed to guarantee biocompatibility for multiple bioprocess applications, for example, storage of process fluids, mixing, and cell culture bioreactors. For this purpose, we examined a protein‐free cell culture medium that had been used to extract leachables from freshly gamma‐irradiated sample bags in a standardized cell culture assay. We investigated sample bags from films generated to establish the operating ranges of the film extrusion process. Further, we studied sample bags of different age after gamma‐irradiation and finally, we performed extended media extraction trials at cold room conditions using sample bags. In contrast to a nonoptimized film formulation, our data demonstrate no cytotoxic effect of the S80 polymer film formulation under any of the investigated conditions. The S80 film formulation is based on an optimized PE polymer composition and additive package. Full traceability alongside specifications and controls of all critical raw materials, and process controls of the manufacturing process, that is, film extrusion and gamma‐irradiation, have been established to ensure lot‐to‐lot consistency. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:1171–1176, 2014  相似文献   

6.
A. Fara  L. Boni 《Plant biosystems》2013,147(6):931-939
Abstract

The chemical composition of Gymnodinium sp. was studied in cells grown in batch cultures with sediment elutriate, enriched or unenriched with F/2 as the culture medium. The cellular protein, chlorophyll a, nitrogen, carbon and phosphorus content were determined in conjunction with cell density. For the enriched media, a high density of biomass was always measured; differences in cellular composition between control and elutriate cells were not observed and the atomic C:N:P ratios were typical of unstarved phytoplankton. Unenriched media produced different effects on the algal growth, which also affected the biochemical composition of the cells. Relative to the control, some elutriates reduced the algal growth, affected the chemical composition of the cells which showed very high levels of carbon, nitrogen and protein, and resulted in an aberrant morphology. The stimulating growth elutriate affected the chemical composition of the cell in another manner: the greatest effect was a decrease of carbon content, whereas the other compounds remained similar to the control; aberrant forms were not observed.  相似文献   

7.
The sterile insect technique (SIT) is based on population and behavioral ecology and is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of the released sterile males to mate with and inseminate wild females. The use of gamma‐radiation to induce sterility is, however, associated with negative impacts not only on reproductive cells but also on somatic cells. Consequently, irradiation for sterilization diminishes mating performance over time. In this study, we evaluated the balance between the irradiation dose and both fertility and mating propensity in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 22 days following irradiation. The mating propensity of males irradiated with a 150‐Gy dose, as currently used to induce complete sterility of E. postfasciatus in the SIT program in Okinawa Prefecture, was equal to that of non‐irradiated weevils for up to 6 days, and the mating propensity of males irradiated with a dose of 125 Gy was equal to that of non‐irradiated weevils for twice this period (12 days). The fertilization ability of weevils irradiated with a dose of 125 Gy was reduced by 4.6% in males and 0.6% in females, compared to the potential fertilization ability. We also discuss the possibility of the application of partially sterilized insects in eradication programs.  相似文献   

8.
Enhanced solar ultraviolet‐B (UV‐B) irradiation resulted from the stratospheric ozone depletion has adverse impacts on the primary productivity of marine algae. The effects of UV‐B enhancement on marine algae include reduction in photosynthesis and biomass, alteration in species competition, impaired chloroplast function, and damage to DNA. Harmful algal blooms (HAB) are an ubiquitous natural phenomenon caused by the excessive growth of phytoplankton. Many studies have examined the influence of supplemental UV‐B irradiation on different algae, but the effects of UV‐B irradiation on the interspecific growth interaction of HAB species has received little attention. In this study, Heterosigma akashiwo and Prorocentrum donghaiense were chosen to investigate the effect of UV‐B irradiation on the growth interaction between two HAB species by a co‐culture method. In a mixed culture experiment, H. akashiwo inhibited the growth of P. donghaiense in an inoculum dependent manner. In the absence of UV‐B irradiation, H. akashiwo dominated the competition with P. donghaiense under different inoculation proportions. Surprisingly, supplemental UV‐B irradiation alters the growth interaction between the two HAB species. P. donghaiense dominated the competition at the inoculation proportion of H: P = 1: 4. Supplemental UV‐B irradiation also weakens the competition dominance of H. akashiwo at the inoculation proportion of H: P = 1: 1 or H: P = 4: 1. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A 90 min inhibition of protein synthesis induced by starvation for amino acids (AA-) or by treatment with chloramphenicol (CAP) prior to UV irradiation (2.5 J m-2) increased the resistance of the strainEscherichia coli K12 SR19 to UV radiation more than ten-fold. Under these conditions, cultures in which protein synthesis was inhibited before the UV irradiation rejoin short regions of DNA synthesized after the irradiation to a normal-size molecule, whereas an exponentially growing culture does not rejoin DNA synthesized after UV irradiation to a molecule of a normal size. In the exponentially growing culture both the parental and the newly synthesized DNA are unstable after the irradiation. In cultures with inhibited protein synthesis only the parental DNA is somewhat unstable. InEscherichia coli K12 SR19 where protein synthesis was inhibited before the irradiation, a correlation between the survival of cells, the ability to rejoin short regions of DNA synthesized after UV irradiation and a higher stability of both parental and newly synthesized DNAs could be demonstrated.  相似文献   

10.
Regulation of Bio‐systems in a clean, simple, and efficient way is important for the design of smart bio‐interfaces and bioelectronic devices. Light as a non‐invasive mean to control the activity of a protein enables spatial and temporal control far superior to other chemical and physical methods. The ability to regulate the activity of a catalytic enzyme in a biofuel‐cell reduces the waste of resources and energy and turns the fuel‐cell into a smart and more efficient device for power generation. Here we present a microbial‐fuel‐cell based on a surface displayed, photo‐switchable alcohol dehydrogenase. The enzyme was modified near the active site using non‐canonical amino acids and a small photo‐reactive molecule, which enables reversible control of enzymatic activity. Depending on the modification site, the enzyme exhibits reversible behavior upon irradiation with UV and visible light, in both biochemical, and electrochemical assays. The change observed in power output of a microbial fuel cell utilizing the modified enzyme was almost five‐fold, between inactive and active states.  相似文献   

11.
We investigated the cell‐killing efficacy of UV light on cancer cells expressing GFP in the nucleus and RFP in the cytoplasm (dual‐color cells). After exposure to various doses of UVA, UVB, or UVC, apoptotic and viable cells were quantitated under fluorescence microscopy using dual‐color 143B human osteosarcoma cells, HT‐1080 human fibrosarcoma cells, Lewis lung carcinoma (LLC), and XPA‐1 human pancreatic cancer cells in vitro. UV‐induced cancer cell death was wave‐length and dose dependent, as well as cell‐line dependent. After UVA exposure, most cells were viable even when the UV dose was increased up to 200 J/m2. With UVB irradiation, cell death was observed with irradiation at 50 J/m2. For UVC, as little as 25 J/m2 UVC irradiation killed approximately 70% of the 143B dual‐color cells. This dose of UVB or UVA had almost no effect on the cancer cells. UV‐induced cancer cell death varied among the cell lines. Cell death began about 4 h after irradiation and continued until 10 h after irradiation. UVC exposure also suppressed cancer cell growth in nude mice in a model of minimal residual cancer (MRC). No apparent side effects of UVC exposure were observed. This study opens up the possibility of UVC treatment for MRC after surgical resection. J. Cell. Biochem. 110: 1439–1446, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
A current trend in the production of biopharmaceuticals is the replacement of fixed stainless steel fluid‐handling units with disposable plastic bags. Such single‐use systems (SUS) offer numerous advantages, but also introduce a new set of materials into the production process and consequently expose biomanufacturers to a new set of risks related to those materials, not to mention reliance on an entirely new supply chain. In the course of developing and conducting a cell‐growth‐based test for suitability of disposable plastic components destined for use in cell culture operations, we discovered that the cytotoxic compound bis(2,4‐di‐tert‐butylphenyl)phosphate (bDtBPP) leaches out of certain bags and into cell culture media in concentrations that are deleterious to cell growth. Specifically, media held in certain bags for several days at 37°C was found to contain bDtBPP, and use of those held‐media samples in cell growth experiments provides data that overlap neatly with cell growth experiments using media spiked directly with bDtBPP, proving that bDtBPP leaching is responsible for the reduced growth attributable to those SUS bags. Overall, this issue represents a risk to the production of biopharmaceuticals in SUS, a risk that must be managed by diligent collaboration among companies along the entire supply chain for SUS components. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:332–337, 2014  相似文献   

13.
14.
Secreted proteins play a pivotal role in cellular functions. To better understand malignant behavior, we adapted stable isotopic labeling with amino acids in cell culture technology to identify and quantify proteins differentially released into the extracellular media by a pair of normal and malignant breast‐cancer cell lines. Approximately 380 non‐redundant proteins were quantified in serum‐free media. Of the assigned proteins, 62% are classified secreted in protein databases and an additional 25% are designated secreted in the literature. A number of growth factors were found differentially regulated. Tumor necrosis factor, pigment epithelial‐differentiating factor and stem‐cell growth factor precursor showed decreased expression in breast‐cancer cell line, whereas Inhibin beta and macrophage migration inhibitory factor show increased expression. Interestingly, protease inhibitors, including plasma protease (C1) inhibitor, PZP precursor, and SerpinE2 were significantly down‐regulated in cancer cell line as were angiostatic factors from extracellular matrix (ECM) such as endorepillin. Further, the C‐terminal fragment of type XVIII collagen, endostatin, a potent angiostatic factor, was down‐regulated as well whereas extracellular collagens and osteoblast‐specific factor 2 (OSF‐2), were up‐regulated. Differential expression and secretion of SerpinE2 and OSF‐2 were confirmed using Western blotting. These results corroborate models of invasive tumors sustained by elaborate coordination of stromal cells via chemokines and growth factors, while protease inhibitors remodel the ECM to stimulate angiogenesis.  相似文献   

15.
N‐linked glycosylation is of key importance for the efficacy of many biotherapeutic proteins such as monoclonal antibodies (mAbs). Media components and cell culture conditions have been shown to significantly affect N‐linked glycosylation during the production of glycoproteins using mammalian cell fed‐batch cultures. These parameters inevitably change in modern industrial processes with concentrated feed additions and cell densities beyond 2 × 107 cells/mL. In order to control the time‐dependent changes of protein glycosylation, an automated microbioreactor system was used to investigate the effects of culture pH, ammonia, galactose, and manganese chloride supplementation on nucleotide sugars as well as mAb N‐linked glycosylation in a time‐dependent way. Two different strategies comprising of a single shift of culture conditions as well as multiple media supplementations along the culture duration were applied to obtain changing and constant glycosylation profiles. The different feeding approaches enabled constant glycosylation patterns throughout the entire culture duration at different levels. By modulating the time evolution of the mAb glycan pattern, not only the endpoint but also the ratios between different glycosylation structures could be modified. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1123–1134, 2016  相似文献   

16.
Chemically defined media have been widely used in the biopharmaceutical industry to enhance cell culture productivities and ensure process robustness. These media, which are quite complex, often contain a mixture of many components such as vitamins, amino acids, metals and other chemicals. Some of these components are known to be sensitive to various stress factors including photodegradation. Previous work has shown that small changes in impurity concentrations induced by these potential stresses can have a large impact on the cell culture process including growth and product quality attributes. Furthermore, it has been shown to be difficult to detect these modifications analytically due to the complexity of the cell culture media and the trace level of the degradant products. Here, we describe work performed to identify the specific chemical(s) in photodegraded medium that affect cell culture performance. First, we developed a model system capable of detecting changes in cell culture performance. Second, we used these data and applied an LC‐MS analytical technique to characterize the cell culture media and identify degradant products which affect cell culture performance. Riboflavin limitation and N‐formylkynurenine (NFK), a tryptophan oxidation catabolite, were identified as chemicals which results in a reduction in cell culture performance. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:74–82, 2016  相似文献   

17.
The sterile insect technique (SIT), based on the principles of population and behavioral ecology, is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females; however, the use of gamma radiation to induce sterility negatively affects both somatic cells as well as reproductive cells. Consequently, sterilization by irradiation drastically diminishes mating performance over time. It is well known that fractionated‐dose irradiation, in which a sterilizing dose is delivered via a series of smaller irradiations, reduces radiation damage. In the present study, we evaluated the effect of fractionated‐dose irradiation on fertility, longevity, and mating propensity in Cylas formicarius (Summers) (Coleoptera: Brentidae) for 16 days after irradiation. Fractionated‐dose irradiation with 200 Gy induced full sterility regardless of the number of radiation doses. Although the mating propensity of males sterilized by a single 200 Gy dose (the current standard of the Okinawa Prefecture SIT program) was equal to that of non‐irradiated weevils for the first 6 days, the mating propensity of males sterilized by a series of three doses was maintained for at least the first 12 days. These results demonstrated that fractionated‐dose irradiation can be highly advantageous in C. formicarius eradication programs.  相似文献   

18.
Aims: To determine inactivation profiles of three human norovirus (NoV) surrogate viruses and coliphage MS2 by ultraviolet (UV) irradiation and the protective effect of cell association on UV inactivation. Methods and Results: The inactivation rate for cell‐free virus or intracellular echovirus 12 was determined by exposure to 254‐nm UV light at fluence up to 100 mJ cm?2. The infectivity of murine norovirus (MNV), feline calicivirus (FCV) and echovirus 12 was determined by cell culture infectivity in susceptible host cell lines, and MS2 infectivity was plaque assayed on Escherichia coli host cells. The UV fluencies to achieve 4‐log10 inactivation were 25, 29, 30 and 70 (mJ cm?2) for cell‐free FCV, MNV, echovirus 12 and MS2, respectively. However, a UV fluence of 85 mJ cm?2 was needed to inactivate intracellular echovirus 12 by 4 log10. Conclusions: Murine norovirus and echoviruses 12 are more conservative surrogates than FCV to predict the UV inactivation response of human NoV. Intracellular echovirus 12 was 2·8‐fold more resistant to UV irradiation than cell‐free one. Significance and Impact of the Study: Variation in UV susceptibilities among NoV surrogate viruses and a likely protective effect of cell association on virus susceptibility to UV irradiation should be considered for effective control of human NoV in water.  相似文献   

19.
Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell‐based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non‐invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)‐free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin‐based Cultispher®S microcarriers and xeno‐free culture medium for the expansion of umbilical cord matrix (UCM)‐derived MSC. This system enabled the production of 2.4 (±1.1) x105 cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)‐fold increase in cell number. The established protocol was then implemented in a stirred‐tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier‐based stirred culture system, using xeno‐free culture medium that suits the intrinsic features of UCM‐derived MSC represents an important step towards a GMP compliant large‐scale production platform for these promising cell therapy candidates.  相似文献   

20.
Certain cells, such as 3T3 mouse embryo fibroblasts, are inhibited from dividing when they grow to a characteristic cell density on a surface in tissue culture. We asked whether the inhibition of cell division could be attributed to the inert chemical composition of neighboring cells, that is, whether the residues of lyophilized cells retained the ability to inhibit the division of normal cells. In addition, we wanted to know whether cells in which DNA synthesis was imparied by irradiation would retain the capacity to effectively inhibit normal cells. To answer these questions, confluent and non-confluent layers of 3T3 cells were prepared in tissue culture dishes and the cells were either lyophilized or irrariated in situ. Fresh 3T3 cells were then added to these prepared layers and their growth was followed using radioactive label. There was no growth of added cells on the confluent monolayers of either untreated or irradiated cells. Growth was unimpeded on the monolayers of lyophilized cells. When cells were added to non-confluent cultures of either normal or irradiated cells the added cells grew until they had covered the remaining surface of the culture dish and had come into contact with the pre-existing cells. In the discussion, consideration is given to the role of available surface over which the cells can spread as well as to the possible interactions between neighboring cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号