首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hu S  Deng L  Wang H  Zhuang Y  Chu J  Zhang S  Li Z  Guo M 《Cytotechnology》2011,63(3):247-258
The mouse-human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 is a promising candidate for the diagnosis of hepatocellular carcinoma (HCC). In this study, 3 processes were successfully developed to produce C12 by cultivation of recombinant Chinese hamster ovary (CHO-DG44) cells in serum-free medium. The effect of inoculum density was evaluated in batch cultures of shaker flasks to obtain the optimal inoculum density of 5 × 105 cells/mL. Then, the basic metabolic characteristics of CHO-C12 cells were studied in stirred bioreactor batch cultures. The results showed that the limiting concentrations of glucose and glutamine were 6 and 1 mM, respectively. The culture process consumed significant amounts of aspartate, glutamate, asparagine, serine, isoleucine, leucine, and lysine. Aspartate, glutamate, asparagine, and serine were particularly exhausted in the early growth stage, thus limiting cell growth and antibody synthesis. Based on these findings, fed-batch and perfusion processes in the bioreactor were successfully developed with a balanced amino acid feed strategy. Fed-batch and especially perfusion culture effectively maintained high cell viability to prolong the culture process. Furthermore, perfusion cultures maximized the efficiency of nutrient utilization; the mean yield coefficient of antibody to consumed glucose was 44.72 mg/g and the mean yield coefficient of glutamine to antibody was 721.40 mg/g. Finally, in small-scale bioreactor culture, the highest total amount of C12 antibody (1,854 mg) was realized in perfusion cultures. Therefore, perfusion culture appears to be the optimal process for small-scale production of C12 antibody by rCHO-C12 cells.  相似文献   

2.
Increasing capacity utilization and lowering manufacturing costs are critical for pharmaceutical companies to improve their competitiveness in a challenging environment. Development of next generation cell lines, improved media formulations, application of mature technologies and innovative operational strategies have been deployed to improve yields and capacity utilization. This article describes a large‐scale perfusion strategy for the N‐1 seed train bioreactor that was successfully applied to achieve higher inoculation cell densities in the production culture. The N‐1 perfusion at 3,000‐L scale, utilizing a inclined settler, achieved cell densities of up to 158 × 105 cell mL?1 at perfusion rates of 2950 L day?1 and a retention efficiency of >85%. This approach increased inoculation cell densities and decreased cultivation times by ~20% in a CHO‐based, fed‐batch antibody manufacturing process while providing comparable culture performance, productivity, and product quality. The strategy therefore yielded significant increase in capacity utilization and concomitant cost improvement in a large scale cGMP facility. Details of the strategy, the cell retention device, and the cell culture performance are described in this article. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

3.
The hybridoma cell line, HB-8696, produces a monoclonal antibody, 520C9 (mouse IgG1) that recognizes the breast cancer oncoprotein, c-erbB2. The effect of perfusion rate (volume of fresh feed/working volume of reactor/day) on cell growth and mAb production was investigated but perfusion at a constant rate and at an arbitrarily increased rate could not maintain exponential cell growth or a higher specific mAb production rate. An optimum step-up/step-down perfusion strategy is therefore proposed for maintaining a steady state production phase at high cell density for ten days. The optimum step-up perfusion could achieve fast cell growth by avoiding any nutrient limited condition and the following optimum step-down perfusion could potentially maintain high live cell density and reduced product dilution as well. The maximum viable cell achieved under optimum perfusion strategy was 2.3 × 107 cells/ml which was 19-fold higher than in optimum batch culture. The mAb yield and volumetric productivity were significantly improved to 52 and 50 mg/l day compared to 25 and 3.8 mg/l day in optimum batch, respectively, and could be maintained for up to ten days.  相似文献   

4.
Perfusion medium was successfully developed based on our fed‐batch platform basal and feed media. A systematic development approach was undertaken by first optimizing the ratios of fed‐batch basal and feed media followed by targeted removal of unnecessary and redundant components. With this reduction in components, the medium could then be further concentrated by 2× to increase medium depth. The medium osmolality was also optimized where we found ~360 mOsm/kg was desirable resulting in a residual culture osmolality of ~300 mOsm/kg for our cell lines. Further building on this, the amino acids Q, E, N, and D were rebalanced to reduce lactate and ammonium levels, and increase the cell‐specific productivity without compromising on cell viability while leaving viable cell density largely unaffected. Further modifications were also made by increasing certain important vitamin and lipid concentrations, while eliminating other unnecessary vitamins. Overall, an effective perfusion medium was developed with all components remaining in the formulation understood to be important and their concentrations increased to improve medium depth. The critical cell‐specific perfusion rate using this medium was then established for a cell line of interest to be 0.075 nL/cell‐day yielding 1.2 g/L‐day at steady state. This perfusion process was then successfully scaled up to a 100 L single‐use bioreactor with an ATF6 demonstrating similar performance as a 2 L bioreactor with an ATF2. Large volume handling challenges in our fed‐batch facility were overcome by developing a liquid medium version of the powder medium product contained in custom totes for plug‐and‐play use with the bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:891–901, 2017  相似文献   

5.
In this study, a hydrocyclone (HC) especially designed for mammalian cell separation was applied for the separation of Chinese hamster ovary cells. The effect of key features on the separation efficiency, such as type of pumphead in the peristaltic feed pump, use of an auxiliary pump to control the perfusate flow rate, and tubing size in the recirculation loop were evaluated in batch separation tests. Based on these preliminary batch tests, the HC was then integrated to 50-L disposable bioreactor bags. Three perfusion runs were performed, including one where perfusion was started from a low-viability late fed-batch culture, and viability was restored. The successive runs allowed optimization of the HC-bag configuration, and cultivations with 20–25 days duration at cell concentrations up to 50 × 106 cells/ml were performed. Separation efficiencies up to 96% were achieved at pressure drops up to 2.5 bar, with no issues of product retention. To our knowledge, this is the first report in literature of high cell densities obtained with a HC integrated to a disposable perfusion bioreactor.  相似文献   

6.
Modified Vaccinia Ankara (MVA) virus is a promising vector for vaccination against various challenging pathogens or the treatment of some types of cancers, requiring a high amount of virions per dose for vaccination and gene therapy. Upstream process intensification combining perfusion technologies, the avian suspension cell line AGE1.CR.pIX and the virus strain MVA-CR19 is an option to obtain very high MVA yields. Here the authors compare different options for cell retention in perfusion mode using conventional stirred-tank bioreactors. Furthermore, the authors study hollow-fiber bioreactors and an orbital-shaken bioreactor in perfusion mode, both available for single-use. Productivity for the virus strain MVA-CR19 is compared to results from batch and continuous production reported in literature. The results demonstrate that cell retention devices are only required to maximize cell concentration but not for continuous harvesting. Using a stirred-tank bioreactor, a perfusion strategy with working volume expansion after virus infection results in the highest yields. Overall, infectious MVA virus titers of 2.1–16.5 × 109 virions/mL are achieved in these intensified processes. Taken together, the study shows a novel perspective on high-yield MVA virus production in conventional bioreactor systems linked to various cell retention devices and addresses options for process intensification including fully single-use perfusion platforms.  相似文献   

7.
The addition of ethanol extracts ofCentella asiatica showed a remarkable enhancement of fibroblast cells attachment to Cytodex beads in serum-free (SF) medium. It also improves tPA production in both batch and perfusion cultivations. The optimal concentration for SF medium was determined as 2 ppm of the extracts when using Cytodex III. In batch cultivation a high specific tPA production rate was obtained, compared to that from 5% FBS containing medium. However, a fast specific growth rate was observed in 5% FBS medium. In perfusion cultivation a reasonably good cell density and tPA production was achieved at a perfusion rate of 2.4×106 (viable cell/ml) and 0.65 (g/ml), respectively at 22 ml/min.  相似文献   

8.
We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50/mL), more than 4–100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15–30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.  相似文献   

9.
Media preparation for perfusion cell culture processes contributes significantly to operational costs and the footprint of continuous operations for therapeutic protein manufacturing. In this study, definitions are given for the use of a perfusion equivalent nutrient feed stream which, when used in combination with basal perfusion medium, supplements the culture with targeted compounds and increases the medium depth. Definitions to compare medium and feed depth are given in this article. Using a concentrated nutrient feed, a 1.8-fold medium consumption (MC) decrease and a 1.67-fold increase in volumetric productivity (PR) were achieved compared to the initial condition. Later, this strategy was used to push cell densities above 100 × 106 cells/ml while using a perfusion rate below 2 RV/day. In this example, MC was also decreased 1.8-fold compared to the initial condition, but due to the higher cell density, PR was increased 3.1-fold and to an average PR value of 1.36 g L−1 day−1 during a short stable phase, and versus 0.46 g L−1 day−1 in the initial condition. Overall, the performance improvements were aligned with the given definitions. This multiple feeding strategy can be applied to gain some flexibility during process development and also in a manufacturing set-up to enable better control on nutrient addition.  相似文献   

10.
Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof‐of‐concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high‐seed fed‐batch production cultures. First, we optimized the perfusion N‐1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N‐1 duration, reaching >40 × 106 vc/mL at the end of the perfusion N‐1 stage. The cultures were subsequently split into high‐seed (10 × 106 vc/mL) fed‐batch production cultures. This strategy significantly shortened the culture duration. The high‐seed fed‐batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low‐seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N‐1 and high‐seed fed‐batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low‐seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:616–625, 2014  相似文献   

11.
A perfusion system for production of monoclonal antibodies was developed using an externally-mounted, hollow-fibre cartridge. The experimental apparatus was operated for 420 h and demonstrated increased steady-state viable cell concentration with increase in perfusion rate. Antibody titres were up to three times those measured for batch cultures and specific antibody productivity was doubled.The procedure was successfully scaled to a 10 dm3 system which produced antibody under conditions of Good Manufacturing Practice (GMP). A calculation of productivity between the scaled perfusion system and 260 dm3 batch cultures resulted in comparable antibody production, whereas the perfusion allowed a halving in medium utilisation. Reactivity assays conducted on the purified antibody from both batch and perfusion cultures showed no evidence of proteolysis or altered antibody activity in the final perfusion product. This study provides additional support for the use of homogeneous perfusion cultures in production of monoclonal antibodies under GMP conditions.  相似文献   

12.
A novel wave bioreactor-perfusion culture system was developed for highly efficient production of monoclonal antibody IgG2a (mAb) by hybridoma cells. The system consists of a wave bioreactor, a floating membrane cell-retention filter, and a weight-based perfusion controller. A polyethylene membrane filter with a pore size of 7 microm was floating on the surface of the culture broth for cell retention, eliminating the need for traditional pump around flow loops and external cell separators. A weight-based perfusion controller was designed to balance the medium renewal rate and the harvest rate during perfusion culture. BD Cell mAb Medium (BD Biosciences, CA) was identified to be the optimal basal medium for mAb production during batch culture. A control strategy for perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was identified as a key factor affecting cell growth and mAb accumulation during perfusion culture, and the optimal control strategy was increasing perfusion rate by 0.15 vvd per day. Average specific mAb production rate was linearly corrected with increasing perfusion rate within the range of investigation. The maximum viable cell density reached 22.3 x 105 and 200.5 x 105 cells/mL in the batch and perfusion culture, respectively, while the corresponding maximum mAb concentration reached 182.4 and 463.6 mg/L and the corresponding maximum total mAb amount was 182.4 and 1406.5 mg, respectively. Not only the yield of viable cell per liter of medium (32.9 x 105 cells/mL per liter medium) and the mAb yield per liter of medium (230.6 mg/L medium) but also the mAb volumetric productivity (33.1 mg/L.day) in perfusion culture were much higher than those (i.e., 22.3 x 105 cells/mL per liter medium, 182.4 mg/L medium, and 20.3 mg/L.day) in batch culture. Relatively fast cell growth and the perfusion culture approach warrant that high biomass and mAb productivity may be obtained in such a novel perfusion culture system (1 L working volume), which offers an alternative approach for producing gram quantity of proteins from industrial cell lines in a liter-size cell culture. The fundamental information obtained in this study may be useful for perfusion culture of hybridoma cells on a large scale.  相似文献   

13.
The concept of the feeding strategy was to minimise the formation of inhibiting metabolites and to increase the yield of monoclonal antibodies in fed-batch cultures of hybridoma cells by a balanced supply of substrates. A process control system based on fieldbus technology was used for monitoring and control. External program routines were implemented to control dissolved oxygen (DO) and to calculate the oxygen uptake rate (OUR) and cumulative oxygen consumption (COC) simultaneously. A concentrated feed solution was supplied according to the off-line estimated stoichiometric ratio between oxygen and glucose consumption (GC). Feeding was initiated automatically when the OUR decreased due to substrate limitation. The antibody concentration increased three-fold compared to the conventional batch culture by applying this strategy. But it was not possible to avoid inhibition by ammonia during the fed-batch phase. This was accomplished by the use of a dialysis membrane. Dialysis fed-batch cultures were performed in a membrane dialysis reactor with a `nutrient-split' feeding strategy, where concentrated medium is fed to the cells and toxic metabolites are removed into a buffer solution. This resulted in a ten-fold increase of the antibody concentration compared to the batch. Amino acid concentrations were analysed to identify limiting conditions during the cultivation and to analyse the performance of the nutrient supply in the fed-batch and dialysis fed-batch.  相似文献   

14.
A mixed microbial culture capable of growing aerobically on tetrahydrofuran (THF) as a sole carbon and energy source was used as the inoculum in a 10 l working volume membrane bioreactor. Following start-up, the reactor was operated in batch mode for 24 h and then switched to continuous feed with 100% biomass recycle. On average, greater than 96% of THF fed to the reactor was removed during the 8-month study. THF loading rates ranged from 0.62 to 9.07 g l–1 day–1 with a hydraulic retention time of 24 h. THF concentrations as high as 800 mg/l were tolerated by the culture. Biomass production averaged 0.28 kg total suspended solids/kg chemical oxygen demand removed, i.e., comparable to a conventional wastewater treatment process. Periodic batch wasting resulted in a solids retention time of 7–14 days. Reactor biomass typically ranged from 4 to 10 g/l volatile suspended solids and the effluent contained no solids. Pure THF-degrading cultures were isolated from the mixed culture based on morphological characteristics, Gram-staining and THF degradation. Based on 16S rDNA analysis the isolates were identified as Pseudonocardia sp. M1 and Rhodococcus ruber M2.  相似文献   

15.
Infection with Vibrio cholerae is a significant problem in many developing countries. Cultivation of V. cholerae is used in production of cholera toxin B subunit, which is a component in a cholera vaccine. Fed-batch cultivations with V. cholerae in defined media have been conducted and reproducible results were obtained. A probing feeding strategy developed by Akesson for Escherichia coli cultivations has been tested. The strategy is working as well for V. cholerae as for E. coli in minimizing the amount of acetic acid formed and avoiding anaerobic conditions. At 2 h after the feed start most of the acetic acid accumulated during the batch phase is consumed. The resulting feed rate tends to be the highest possible with respect to the constraints from cell metabolism and mass transfer, thus maximizing productivity in terms of biomass. A cell dry weight of 20-23 g/l is obtained after 12 h of feeding.  相似文献   

16.
The hydrolase (Thermobifida fusca hydrolase; TfH) from T. fusca was produced in Escherichia coli as fusion protein using the OmpA leader sequence and a His6 tag. Productivity could be raised more than 100-fold. Both batch and fed-batch cultivations yield comparable cell specific productivities whereas volumetric productivities differ largely. In the fed-batch cultivations final rTfH concentrations of 0.5 g L−1 could be achieved. In batch cultivations the generated rTfH is translocated to the periplasm wherefrom it is completely released into the extracellular medium. In fed-batch runs most of the produced rTfH remains as soluble protein in the cytoplasm and only a fraction of about 35% is translocated to the periplasm. Migration of periplasmic proteins in the medium is obviously coupled with growth rate and this final transport step possibly plays an important role in product localization and efficacy of the Sec translocation process.  相似文献   

17.
A BHK 21 cell line expressing a recombinant antibody was grown in a fixed bed reactor (FBR) system using a porous support made of Siran glass beads. The contribution of five process variables (bead and inoculum sizes; circulation and dilution rates; glutamine concentration of the feed) to the productivity of the process (defined as production rate, effluent product concentration or yield of product on medium supplied) was investigated using a partial factorial experimental design. Individually, none of the variables tested had a significant affect upon productivity. The combination of smaller bead and inoculum sizes, higher circulation and dilution rates, plus higher feed glutamine concentration gave a markedly higher productivity than any other combination of variable levels tested. This combination of variable levels suggested that better results shold be obtained using a fluidised bed reactor system. However, comparison of the productivities of the two systems showed that the FBR gave the better results. This result can be explained in terms of the relationship of QsrAb to .Abbreviations C concentration - D dilution rate - FBR fixed bed bioreactor - FIBR fluidised bed bioreactor - Gln glutamine - Qs cell specific rate - Qv volumetric rate - rAb recombinant antibody - Xv viable cell density - specific growth rate  相似文献   

18.
A high density hybridoma perfusion culture was established by separating and recycling cells from the product stream to the reactor using a simple external sedimentation-based separator — an inclined modified Erlenmeyer flask. After 3 weeks, when the optimal perfusion rate of 1.0 day–1 had been reached, viable cell density stabilized at around 10×106 cells ml–1, a level five times that obtained by simple batch culture. The efficiency of the separator was enhanced by cell flocculation. Specific antibody productivity, which was initially 0.4 g 1×106 cells–1 h–1, decreased to half that value while cell density was increasing, but recovered to the initial level when the culture finally stabilized at a high cell density. During the final phase, when viable cell density and specific antibody production were high, there was a marked shift in metabolism. Consumption of the two most important substrates for energy generation, glucose and glutamine, caused their broth concentrations to decrease to 1.5 mM and 1 mM, respectively, from input medium concentrations of 25 mM and 10 mM, respectively. At the same time there was an increase in the specific production of glycine and aspartate, their broth concentrations reaching 1.5 mM and 0.02 mM, respectively. We suggest that this shift in metabolism results in enhanced production of ATP from glutamine. The specific glucose consumption and lactate production also indicate that there is a shift to more energy efficient metabolism. The mechanism whereby this leads to enhanced specific antibody production remains to be elucidated. Nevertheless, the combination of high cell density and enhanced productivity obtained with the present perfusion culture resulted in a high monoclonal antibody production –100 mg l–1 d–1.  相似文献   

19.
Pseudotype vectors are promising for gene transfer in many gene therapy approaches, however, low-vector concentration in batch cultures and high temperature-dependent decay do limit sufficiently large-scale production. To overcome these obstacles, the kinetic relations of cell growth and vector formation in different culture modes need to be understood. Effective optimisation of process modes is needed to achieve sufficient yields. Experimental and modelling studies were carried out in order to analyse the impact of different process modes such as perfusion, perfused fed-batch or repeated-batch on vector titer and productivity. Retroviral pseudotype vector, derived from the murine leukaemia virus carrying the HIV-1 envelop protein MLV (HIV-1) were produced using a 200 ml fixed bed reactor for high cell density cultivation on macroporous carriers. After starting the cultivation in batch mode, the reactor was either run in perfusion, perfused fed-batch or repeated-batch. A mathematical model of the bioreaction was developed on the basis of experimental data measured in culture dishes. The ability of the model to describe all different process modes of fixed-bed cultivation without additional fitting of the parameters was proven by three long-term cultivations for more than 400 h. The results of optimisation with the aid of the model, leads to the conclusion that perfusion with optimised harvest cycles and fed flows, result in a higher yield in comparison to batch or fed batch culture.  相似文献   

20.
New software sensors based on the Extended Kalman Filter technique have been developed for the monitoring of animal cell perfusion cultures. They use a kinetic model describing the growth, death and metabolism of hybridoma cells as a function of the medium composition. The model was initially validated on a batch culture and found to correctly predict the continuous perfusion culture kinetics, except for the production of ammonia and lactate. Using the measurement of a single component in the culture medium, in this case glucose, the Extended Kalman Filter provides an excellent evaluation of the time variation of the concentrations of living and dead cells, of glutamine and antibodies, during the whole perfusion culture for a retained cell density rising from 1 to 11×106 cells.ml–1 inside the reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号