首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In lakes, the non-living particulate and the colloidal organic component are usually much greater in mass than the living component. Electron microscopy reveals that electron-opaque, non-rigid fibrils of approximately 3 to 10 nm diameter are found abundantly on the surfaces of common lake algae and microbes, free in the water column and free on the surface of the lake bottom. Filtration experiments and some microscopical evidence indicate that these fibrils are readily lost by cells without concomitant cell damage. Individual fibrils may form complex meshlike aggregates which can break apart and reassociate. Meshlike aggregates also appear to adhere to cells and large suspended particles. The behaviour and contact relations of the fibrils and their aggregates suggest a role in contact cation exchange. This suggested role is bolstered by a composition of 20 to 30 percent uronic acid residues for washed samples from lake water. Water from axenic algal cultures and from lakes can be processed by a combination of filtration and centrifugation techniques to yield quantities of purified fibril preparations permitting chemical analyses. Initial analyses show some of their physical characteristics to be appropriate to the principal component of an hypothetical, organic, carrier system for the redistribution of bound but biologically available cations in lakes.  相似文献   

2.
It has been reported that the growth of Ralstonia solanacearum is suppressed at the rhizoplane of tomato plants and that tomato bacterial wilt is suppressed in plants grown in a soil (Mutsumi) in Japan. To evaluate the biological factors contributing to the suppressiveness of the soil in three treated Mutsumi soils (chloroform fumigated soil; autoclaved soil mixed with intact Mutsumi soil; and autoclaved soil mixed with intact, wilt-conducive Yamadai soil) infested with R. solanacearum, we bioassayed soil samples for tomato bacterial wilt. Chloroform fumigation increased the extent of wilt disease. More of the tomato plant samples wilted when mixed with Yamadai soil than when mixed with Mutsumi soil. Consequently, the results indicate that the naturally existing population of microorganisms in Mutsumi soil was significantly able to reduce the severity of bacterial wilt of tomato plants. To characterize the types of bacteria present at the rhizoplane, we isolated rhizoplane bacteria and classified them into 22 groups by comparing their 16S restriction fragment length polymorphism patterns. In Yamadai soil a single group of bacteria was extremely predominant (73.1%), whereas in Mutsumi soil the distribution of the bacterial groups was much more even. The 16S rDNA sequence analysis of strains of dominant groups suggested that gram-negative bacteria close to the beta-proteobacteria were most common at the rhizoplane of the tomato plants. During in vitro assays, rhizoplane bacteria in Mutsumi soil grew more vigorously on pectin, one of the main root exudates of tomato, compared with those in Yamadai soil. Our results imply that it is difficult for the pathogen to dominate in a diversified rhizobacterial community that thrives on pectin.  相似文献   

3.
Inhibition of cell-wall autolysis and pectin degradation by cations.   总被引:1,自引:0,他引:1  
Modification of cell wall components such as cellulose, hemicellulose and pectin plays an important role in cell expansion. Cell expansion is known to be diminished by cations but it is unknown if this results from cations reacting with pectin or other cell wall components. Autolysis of cell wall material purified from bean root (Phaseolus vulgaris L.) occurred optimally at pH 5.0 and released mainly neutral sugars but very little uronic acid. Autolytic release of neutral sugars and uronic acid was decreased when cell wall material was loaded with Ca, Cu, Sr, Zn, Al or La cations. Results were also extended to a metal-pectate model system, which behaved similarly to cell walls and these cations also inhibited the enzymatic degradation by added polygalacturonase (EC 3.2.1.15). The extent of sugar release from cation-loaded cell wall material and pectate gels was related to the degree of cation saturation of the substrate, but not to the type of cation. The binding strength of the cations was assessed by their influence on the buffer capacity of the cell wall and pectate. The strongly bound cations (Cu, Al or La) resulted in higher cation saturation of the substrate and decreased enzymatic degradability than the weakly held cations (Ca, Sr and Zn). The results indicate that the junction zones between pectin molecules can peel open with weakly held cations, allowing polygalacturonase to cleave the hairy region of pectin, while strongly bound cations or high concentrations of cations force the junction zone closed, minimising enzymatic attack on the pectin backbone.  相似文献   

4.
Ikeda  K.  Toyota  K.  Kimura  M. 《Plant and Soil》1997,189(1):91-96
Effects of soil compaction on the microbial populations of melon and maize rhizoplane were investigated in quantity and quality. The numbers of culturable bacteria and fluorescent pseudomonads on the rhizoplane were higher when plants were grown in more compacted soil and the relative increase was larger in fluorescent pseudomonads. Total bacterial counts, however, did not appear to be affected by soil compaction, resulting in the increase in the culturable bacteria among total counts in more compacted soil. The determination of extracellular enzymatic properties (pectinase, -glucosidase, -glucosidase and -galactosidase) of each 100 isolates from bulk soil and root samples suggested that the microbial populations on the rhizoplane, especially when plants were grown in highly, compacted soil, were composed of high ratios of bacteria with abilities to utilize root exudates efficiently. The microbial community structure estimated from the colony forming curves of bulk soil and root samples suggested that the microbial populations on the rhizoplane, especially when plants were grown in compacted soil, were likely to be composed of more r-strategists which were defined as those who formed colonies within 2 days.  相似文献   

5.
It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al3+, Ca2+ or Na+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation.  相似文献   

6.
The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four different rhizocompartments of two switchgrass ecotypes (Alamo and Kanlow) grown under drought or well-watered conditions via 16S ribosomal RNA amplicon sequencing. These four rhizocompartments, the bulk soil, rhizosheath soil, rhizoplane, and root endosphere, harbored both distinct and overlapping microbial communities. The root compartments (rhizoplane and root endosphere) displayed low-complexity communities dominated by Proteobacteria and Firmicutes. Compared to bulk soil, Cyanobacteria and Bacteroidetes were selectively enriched, while Proteobacteria and Firmicutes were selectively depleted, in rhizosheath soil. Taxa from Proteobacteria or Firmicutes were specifically selected in Alamo or Kanlow rhizosheath soil. Following drought stress, Citrobacter and Acinetobacter were further enriched in rhizosheath soil, suggesting that rhizosheath microbiome assembly is driven by drought stress. Additionally, the ecotype-specific recruitment of rhizosheath microbiome reveals their differences in drought stress responses. Collectively, these results shed light on rhizosheath microbiome recruitment in switchgrass and lay the foundation for the improvement of drought tolerance in switchgrass by regulating the rhizosheath microbiome.  相似文献   

7.
Plants can induce significant changes in the rhizosphere through the uptake of water and ions, the exudation of organic compounds and the activities of micro-organisms. The aim of the present study was to assess the influence of tree roots on the chemistry (pH, exchangeable cations, total organic carbon) of both the solid phase of the soil and the soil solutions, extracted by centrifugation, under a mature Douglas fir stand over two distinct seasons (March and September, 1999). The chemical characteristics of either the solid soil phase or the soil solutions of the rhizosphere were found to be different from those of the bulk soil. The cation exchange capacity, base saturation and organic C were all greater in the rhizosphere than in the bulk soil, as a possible result of rhizodeposition, incorporation of decaying root material and micro-organism activity. The concentration of all elements increased in the rhizosphere solutions as compared to the bulk soil solutions, except for P. The pH was lower in the rhizosphere than in the bulk soil for both the solid soil phase and the soil solutions. Despite the greater overall Al concentration of the rhizosphere solutions, as compared to the bulk soil solutions, we suggest that in both, Al toxicity was efficiently restricted by both high Ca + Mg contents and Al complexation with various ligands.  相似文献   

8.
No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots ( Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only -lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more that 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 109 to 106 colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.  相似文献   

9.
西北黄土高原柠条种植区土壤微生物多样性分析   总被引:11,自引:0,他引:11  
柠条锦鸡儿(Caragana korshinskii)是我国黄土高原区重要的饲用豆科灌木植物。为揭示土壤微生物与柠条种植之间的关系,采用未培养技术提取样品宏基因组DNA,分别构建柠条根表、根际和自然土16SrDNA文库,分析各文库微生物群落的变化。结果显示,随距离柠条根部渐远,微生物数量呈现递减趋势。聚类分析发现,变形杆菌纲是根表土壤区系中的优势微生物种群(70.3%),尤其存在大量α-Proteobacteria类的能诱使植物形成根瘤的根瘤菌和对植物有促生作用的γ-Proteobacteria类微生物;而在根际和自然土中,酸杆菌属(Acidobacteria)和古菌(Archaea)数量较多。柠条根际的多样性指数最高,而根表和自然土微生物类群具有较高的优势度,表现出从根表、根际植物相关微生物到自然土单一简单微生物类群的过渡。说明植物根系和土壤环境与微生物类群具有相互选择性。  相似文献   

10.
Aluminium (Al) tolerance in plants may be conferred by reduced binding of Al in the cell wall through low root cation exchange capacity (CEC) or by organic acid exudation. Root CEC is related to the degree of esterification (DE) of pectin in the cell wall, and pectin hydrolysis plays a role in cell expansion. Therefore, it was hypothesised that Al-tolerant plants with a low root CEC maintain pectin hydrolysis in the presence of Al, allowing cell expansion to continue. Irrespective of the DE, binding of Al to pectin reduced the enzymatic hydrolysis of Al-pectin gels by polygalacturonase (E.C. 3.2.1.15). Pectin gels with calcium (Ca) were slightly hydrolysed by polygalacturonase. It was concluded, therefore, that Al tolerance conferred by low root CEC is not mediated by the ability to maintain pectin hydrolysis. Citrate and malate, but not acetate, effectively dissolved Al-pectate gel and led to hydrolysis of the dissolved pectin by polygalacturonase. The organic acids did not dissolve Ca-pectate, nor did they increase pectin hydrolysis by polygalacturonase. It was concluded that exudation of some organic acids can remove Al bound to pectin and this could alleviate toxicity, constituting a tolerance mechanism.  相似文献   

11.
The microbial complexes of soil, the rhizosphere, and the rhizoplane of the apogeotropic (coralloid) roots of cycad plants were comparatively studied. The aseptically prepared homogenates of the surface-sterilized coralloid roots did not contain bacterial microsymbiont, indicating that it was absent in the root tissues. At the same time, associated bacteria belonging to different taxonomic groups were detected in increasing amounts in the cycad rhizoplane, rhizosphere, and the surrounding soil. The bacterial communities found in the cycad rhizoplane and the surrounding soil were dominated by bacteria from the genus Bacillus. The saprotrophic bacteria and fungi colonizing the cycad rhizosphere and rhizoplane were dominated by microorganisms capable of degrading the plant cell walls. The local degradation of the cell wall was actually observed on the micrographs of the thin sections of cycad roots in the form of channels, through which symbiotic cyanobacterial filaments can penetrate into the cortical parenchyma.  相似文献   

12.
The aim of this study was to investigate the possibility of using pectinate micro/nanoparticles as gene delivery systems. Pectinate micro/nanoparticles were produced by ionotropic gelation. Various factors were studied for their effects on the preparation of pectinate micro/nanoparticles: the pH of the pectin solution, the ratio of pectin to the cation, the concentration of pectin and the cation, and the type of cation (calcium ions, magnesium ions and manganese ions). After the preparation, the size and charge of the pectin micro/nanoparticles and their DNA incorporation efficiency were evaluated. The results showed that the particle sizes decreased with the decreased concentrations of pectin and cation. The type of cations affected the particle size. Sizes of calcium pectinate particles were larger than those of magnesium pectinate and manganese pectinate particles. The DNA loading efficiency showed that Ca-pectinate nanoparticles could entrap DNA up to 0.05 mg when the weight ratio of pectin:CaCl2:DNA was 0.2:1:0.05. However, Mg-pectinate could entrap only 0.01 mg DNA when the weight ratio of pectin:MgCl2:DNA was 1:100:0.01 The transfection efficiency of both Ca-pectinate and Mg-pectinate nanoparticles yielded relatively low levels of green fluorescent protein expression and low cytotoxicity in Huh7 cells. Given the negligible cytotoxic effects, these pectinate micro/nanoparticles can be considered as potential candidates for use as safe gene delivery carriers.  相似文献   

13.
The microbial complexes of soil, the rhizosphere, and the rhizoplane of the apogeotropic (coralloid) roots of cycad plants were comparatively studied. The aseptically prepared homogenates of the surface-sterilized coralloid roots did not contain bacterial microsymbiont, indicating that in the root tissues the symbiosis is a two-component one (plant–cyanobacteria). At the same time, associated bacteria belonging to different taxonomic groups were detected in increasing amounts in the cycad rhizoplane, rhizosphere, and the surrounding soil. The bacterial communities found in the cycad rhizoplane and the surrounding soil were dominated by bacteria from the genus Bacillus. The saprotrophic bacteria and fungi colonizing the cycad rhizosphere and rhizoplane were dominated by microorganisms capable of degrading the plant cell walls. The local degradation of the cell wall was actually observed on the micrographs of the thin sections of cycad roots in the form of channels through which symbiotic cyanobacterial filaments can penetrate into the cortical parenchyma.  相似文献   

14.
Mineralogy of the rhizosphere in forest soils of the eastern United States   总被引:1,自引:0,他引:1  
Chemical and mineralogical studies of forest soils from six sites in the northeastern and southeastern United States indicate that soil in the immediate vicinity of roots and fine root masses may show marked differences in physical characteristics, mineralogy and weathering compared to the bulk of the forest soil. Examination of rhizosphere and rhizoplane soils revealed that mineral grains within these zones are affected mechanically, chemically and mineralogically by the invading root bodies. In SEM/EDS analyses, phyllosilicate grains adjacent to roots commonly aligned with their long axis tangential to the root surface. Numerous mineral grains were also observed for which the edge abutting a root surface was significantly more fractured than the rest of the grain. Both the alignment and fracturing of mineral grains by growing roots may influence pedogenic processes within the rhizosphere by exposing more mineral surface to weathering in the root-zone microenvironment. Chemical interactions between roots and rhizosphere minerals included precipitation of amorphous aluminium oxides, opaline and amorphous silica, and calcium oxalate within the cells of mature roots and possible preferential dissolution of mineral grains adjacent to root bodies. Mineralogical analyses using X-ray diffraction (XRD) techniques indicated that kaolin minerals in some rhizosphere samples had a higher thermal stability than kaolin in the surrounding bulk forest soil. In addition, XRD analyses of clay minerals from one of the southeastern sites showed abundant muscovite in rhizoplane soil adhering to root surfaces whereas both muscovite and degraded mica were present in the immediately surrounding rhizosphere soil. This difference in mineral assemblages may be due to either K-enrichment in rhizoplane soil solutions or the preferential dissolution of biotite at the root-soil interface  相似文献   

15.
The bacterial flora associated with root systems of young and mature lodgepole pine was investigated by sampling forest-grown trees. Counts were performed and expressed on a surface-area basis to give a more realistic comparison of organism density or activity within the control soil, rhizosphere soil, and rhizoplane. On this basis, densities increased by an order of 10(4)- to 10(6)-fold from control soil to rhizoplane, with the degree of stimulation being inversely related to root radius.  相似文献   

16.
目的

利用高量测序方法探究生防细菌对丹参植株根际和根表土壤真菌群落多样性的影响。

方法

向丹参植株根部施入生防细菌DS-R5,培养45 d后采集根际和根表土壤样品提取总DNA,扩增样品基因组DNA的V4―V5区后进行双端测序,利用生物信息学解析生防细菌对丹参植株根际和根表土壤真菌群落多样性的影响。

结果

菌株DS-R5处理后增加了根际和根表土壤真菌群落的多样性和丰度;根际土壤共有物种种类大于根表土壤,说明菌株DS-R5处理后根际土壤处理与对照物种种类更接近,而对根表土壤中的微生物物种影响较大。真菌群落结构组成分析结果表明,不同土壤样品在门水平上共有优势真菌主要有子囊菌门、接合菌门、担子菌门和未分类;相比根表土壤对照样品,根表土壤处理样品中子囊菌门丰度下降了13.0%,接合菌门丰度升高了69.2%;根际土壤处理样品相比根际土壤对照样品,子囊菌门和接合菌门丰度分别升高了5.9%和8.9%,但二者差异无统计学意义。在属水平上,根表土壤样品经菌株DS-R5处理后提高了有益菌属的丰度,同时降低了有害菌属的丰度。

结论

丹参植株施入生防细菌后,改变了根际土壤和根表土壤中微生物群落结构和多样性,本研究结果可以为利用生防细菌防控丹参根腐病提供理论参考。

  相似文献   

17.
Chen Qian  Zucong Cai 《Plant and Soil》2007,300(1-2):197-205
A soil column method was used to determine the effect of nitrification on leaching of nitrate and ammonium from three acid subtropical soils after application of ammonium bicarbonate. Three soils, designated QF, GB and SU, derived from Quaternary red earth, granite and tertiary red sandstone, were collected from forest land, brush land and upland field, ranged in nitrification potential and cation exchange capacity. The results indicated that nitrate leaching increased with the soil nitrification potential. The soils with higher nitrification potential had a higher nitrate peak concentration and required a shorter time to reach it. In soils QF and GB with low cation exchange capacity, and a low content of exchangeable base cations, there were not sufficient base cations to accompany the nitrate leached with the result that ammonium and hydrogen ions were leached from the soil, and pH changes occurred in different layers of the soil column.  相似文献   

18.
High levels of aluminium in the soil solution of forest soils cause stress to forest trees. Within the soil profile, pH and aluminium concentration in the soil solution vary considerably with soil depth. pH strongly influences the speciation of A1 in solution, and is a factor when considering toxicity of A1 to roots. Norway spruce ( Picea abies [L.] Karst.) seedlings were grown for 7 weeks in nutrient solutions at pH 3.2, 4.0 or 5.0 containing 0, 100 or 400 µ M A1. At the end of this period, seedling growth, the cation exchange capacity of the roots and the amount of exchangeable Ca and Mg in roots were determined. A1 concentrations in whole roots, root segments, and in needles were measured. Using X‐ray microanalysis, the concentrations of Al, Ca, Mg and P were determined in cortical cell walls. We wanted to test the hypotheses that (1) the amount of Al bound to cation exchange sites can be used as a marker for Al toxicity and (2) the Mg concentration of needles is controlled by the amount of Mg bound to cation exchange sites. Low pH reduced the inhibition of Al on root growth and shoot length. Both low pH and Al lowered the concentration of Ca and Mg in needles. Al concentrations in the roots decreased as the pH decreased. In the roots, Al displaced Mg and Ca from binding sites at the root cortical cell walls. A comparison of the effects of Al at the different pH values on root growth and Mg concentration in the needles, suggests that, at pH 5.0, an Al fraction in the apoplast inhibits root growth, but does not affect Mg uptake. This fraction of Al is not available for transport to the shoots. In contrast, Mg uptake is strongly affected by Al at pH 3.2, although only very low levels of Al were detected in the roots. Thus, Al accumulation in the apoplast is a positive marker for Al effects on root growth, but not Mg uptake. The Mg concentration of needles is not controlled by the amount of Mg bound to cation exchange sites.  相似文献   

19.
ABSTRACT. The species richness and quantity of naked amebae were determined in the bulk soil and rhizoplane of the desert plant Escontria chiotilla in the Valley of Tehuacan, Mexico. Samples from bulk soil were taken at 10-cm and 30-cm depths in April, May and July, 1993, and from roots and soil at a 10-cm depth in June and July, 1994. Quantity of amebae obtained by Most Probable Number method increased in the rhizoplane by two orders of magnitude after rains. Likewise, the countable population of amebae doubled in numbers at both the 10- and 30-cm depths after rains. We isolated 163 strains from both root and soil environments, which were grouped into 40 bactivorous and/or generalist species belonging to 19 genera. Species richness showed no clear dominance of a particular genus in either bulk soil or root. Acanthamoeba (groups II and III, Pussard & Pons) and Vahlkampfia accounted for 12.5% and 15% of the total number of species, respectively. However, greater species richness was found in bulk soil than on root surfaces. We concluded that the diversity of naked amebae, taken as numbers of individuals (or as biomass) of each species and its evenness, is still needed to assess the ecological roles of Acanthamoeba and Vahlkampfia in the soil environment.  相似文献   

20.
North  Gretchen B.  Nobel  Park S. 《Plant and Soil》1997,191(2):249-258
Water movement between roots and soil can be limited by incomplete root–soil contact, such as that caused by air gaps due to root shrinkage, and can also be influenced by rhizosheaths, composed of soil particles bound together by root exudates and root hairs. The possible occurrence of air gaps between the roots and the soil and their consequences for the hydraulic conductivity of the root–soil pathway were therefore investigated for the cactus t Opuntia ficus-indica, which has two distinct root regions: a younger, distal region where rhizosheaths occur, and an older, proximal region where roots are bare. Resin-embedded sections of roots in soil were examined microscopically to determine root–soil contact for container-grown plants kept moist for 21 days, kept moist and vibrated to eliminate air gaps, droughted for 21 days, or droughted and vibrated. During drought, roots shrank radially by 30% and root–soil contact in the bare root region of nonvibrated containers was reduced from 81% to 31%. For the sheathed region, the hydraulic conductivity of the rhizosheath was the least limiting factor and the root hydraulic conductivity was the most limiting; for the bare root region, the hydraulic conductivity of the soil was the least limiting factor and the hydraulic conductivity of the root–soil air gap was the most limiting. The rhizosheath, by virtually eliminating root–soil air gaps, facilitated water uptake in moist soil. In the bare root region, the extremely low hydraulic conductivity of the root–soil air gap during drought helped limit water loss from roots to a drier soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号