首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Net blotch, caused by Pyrenophora teres, is one of the most economically important diseases of barley worldwide. Here, we used a barley doubled-haploid population derived from the lines SM89010 and Q21861 to identify major quantitative trait loci (QTLs) associated with seedling resistance to P. teres f. teres (net-type net blotch (NTNB)) and P. teres f. maculata (spot-type net blotch (STNB)). A map consisting of simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers was used to identify chromosome locations of resistance loci. Major QTLs for NTNB and STNB resistance were located on chromosomes 6H and 4H, respectively. The 6H locus (NTNB) accounted for as much as 89% of the disease variation, whereas the 4H locus (STNB resistance) accounted for 64%. The markers closely linked to the resistance gene loci will be useful for marker-assisted selection.  相似文献   

2.
Pyrenophora teres, causal agent of net blotch of barley, exists in two forms, designated P. teres f. teres and P. teres f. maculata, which induce net form net blotch (NFNB) and spot form net blotch (SFNB), respectively. Significantly more work has been performed on the net form than on the spot form although recent activity in spot form research has increased because of epidemics of SFNB in barley-producing regions. Genetic studies have demonstrated that NFNB resistance in barley is present in both dominant and recessive forms, and that resistance/susceptibility to both forms can be conferred by major genes, although minor quantitative trait loci have also been identified. Early work on the virulence of the pathogen showed toxin effector production to be important in disease induction by both forms of pathogen. Since then, several laboratories have investigated effectors of virulence and avirulence, and both forms are complex in their interaction with the host. Here, we assemble recent information from the literature that describes both forms of this important pathogen and includes reports describing the host-pathogen interaction with barley. We also include preliminary findings from a genome sequence survey. TAXONOMY: Pyrenophora teres Drechs. Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Dothideomycete; Order Pleosporales; Family Pleosporaceae; Genus Pyrenophora, form teres and form maculata. IDENTIFICATION: To date, no clear morphological or life cycle differences between the two forms of P. teres have been identified, and therefore they are described collectively. Towards the end of the growing season, the fungus produces dark, globosely shaped pseudothecia, about 1-2mm in diameter, on barley. Ascospores measuring 18-28μm × 43-61μm are light brown and ellipsoidal and often have three to four transverse septa and one or two longitudinal septa in the median cells. Conidiophores usually arise singly or in groups of two or three and are lightly swollen at the base. Conidia measuring 30-174μm × 15-23μm are smoothly cylindrical and straight, round at both ends, subhyaline to yellowish brown, often with four to six pseudosepta. Morphologically, P. teres f. teres and P. teres f. maculata are indistinguishable. HOST RANGE: Comprehensive work on the host range of P. teres f. teres has been performed; however, little information on the host range of P. teres f. maculata is available. Hordeum vulgare and H. vulgare ssp. spontaneum are considered to be the primary hosts for P. teres. However, natural infection by P. teres has been observed in other wild Hordeum species and related species from the genera Bromus, Avena and Triticum, including H. marinum, H. murinum, H. brachyantherum, H. distichon, H. hystrix, B. diandrus, A. fatua, A. sativa and T. aestivum (Shipton et al., 1973, Rev. Plant Pathol. 52:269-290). In artificial inoculation experiments under field conditions, P. teres f. teres has been shown to infect a wide range of gramineous species in the genera Agropyron, Brachypodium, Elymus, Cynodon, Deschampsia, Hordelymus and Stipa (Brown et al., 1993, Plant Dis. 77:942-947). Additionally, 43 gramineous species were used in a growth chamber study and at least one of the P. teres f. teres isolates used was able to infect 28 of the 43 species tested. However, of these 28 species, 14 exhibited weak type 1 or 2 reactions on the NFNB 1-10 scale (Tekauz, 1985). These reaction types are small pin-point lesions and could possibly be interpreted as nonhost reactions. In addition, the P. teres f. teres host range was investigated under field conditions by artificially inoculating 95 gramineous species with naturally infected barley straw. Pyrenophora teres f. teres was re-isolated from 65 of the species when infected leaves of adult plants were incubated on nutrient agar plates; however, other than Hordeum species, only two of the 65 host species exhibited moderately susceptible or susceptible field reaction types, with most species showing small dark necrotic lesions indicative of a highly resistant response to P. teres f. teres. Although these wild species have the potential to be alternative hosts, the high level of resistance identified for most of the species makes their role as a source of primary inoculum questionable. DISEASE SYMPTOMS: Two types of symptom are caused by P. teres. These are net-type lesions caused by P. teres f. teres and spot-type lesions caused by P. teres f. maculata. The net-like symptom, for which the disease was originally named, has characteristic narrow, dark-brown, longitudinal and transverse striations on infected leaves. The spot form symptom consists of dark-brown, circular to elliptical lesions surrounded by a chlorotic or necrotic halo of varying width.  相似文献   

3.
Leaf stripe caused by the fungus Pyrenophora graminea represents a serious threat to grain yield in organically grown barley and in conventional Nordic and Mediterranean districts, for which resistant cultivars are necessary. A medium-density, molecular marker map derived from a 'Steptoe' (partially resistant) x 'Morex' (susceptible) spring barley cross and its derived doubled-haploid mapping population inoculated with the fungus made it possible to identify QTLs of resistance to leaf stripe. In order to investigate isolate-specificity of partial resistance, the 'Steptoe' x 'Morex' segregating population was inoculated with two highly virulent P. graminea isolates, Dg2 and Dg5. The present study demonstrates that partial resistance to leaf stripe of cv 'Steptoe' is governed in part by shared loci and in part by isolate-specific ones. One QTL is common to the resistance for the two isolates, on the long arm of chromosome 2 (2H), two QTLs are linked on chromosome 3 (3H), and the remaining two are isolate-specific, respectively for isolate Dg2 on chromosome 2 (2H) and for isolate Dg5 on chromosome 7 (5H). The QTL in common is that with the major effect on the resistance for each isolate, explaining 18.3% and 30.9% R(2) respectively for Dg2 and Dg5. The isolate-specific QTLs mapped in the 'Steptoe' x 'Morex' barley reference map support the assumption of Parlevliet and Zadoks (1977) that partial resistance may be due to minor gene-for-minor-gene interactions. Map comparisons of the QTLs with the known qualitative resistance genes to leaf stripe, Rdg1 (2H) and Rdg2 (7H), as well as with other QTLs of partial resistance in barley, show that the QTL for resistance to both isolates mapped on the long arm of chromosome 2 (2H) does not coincide with the qualitative Rdg1 gene but is linked to it at about 30 cM. One isolate-specific QTL of resistance to P. graminea, mapped on the short arm of chromosome 2 (2H), is coincident with a QTL for resistance to Pyrenophora teres previously mapped in the 'Steptoe' x 'Morex' cross.  相似文献   

4.
5.
Net blotch of barley, caused by Pyrenophora teres Drechs., is an important foliar disease worldwide. Deployment of resistant cultivars is the most economic and eco-friendly control method. This report describes mapping of quantitative trait loci (QTL) associated with net blotch resistance in a doubled-haploid (DH) barley population using diversity arrays technology (DArT) markers. One hundred and fifty DH lines from the cross CDC Dolly (susceptible)/TR251 (resistant) were screened as seedlings in controlled environments with net-form net blotch (NFNB) isolates WRS858 and WRS1607 and spot-form net blotch (SFNB) isolate WRS857. The population was also screened at the adult-plant stage for NFNB resistance in the field in 2005 and 2006. A high-density genetic linkage map of 90 DH lines was constructed using 457 DArT and 11 SSR markers. A major NFNB seedling resistance QTL, designated QRpt6, was mapped to chromosome 6H for isolates WRS858 and WRS1607. QRpt6 was associated with adult-plant resistance in the 2005 and 2006 field trials. Additional QTL for NFNB seedling resistance to the more virulent isolate WRS858 were identified on chromosomes 2H, 4H, and 5H. A seedling resistance QTL (QRpts4) for the SFNB isolate WRS857 was detected on chromosome 4H as was a significant QTL (QRpt7) on chromosome 7H. Three QTL (QRpt6, QRpts4, QRpt7) were associated with resistance to both net blotch forms and lines with one or more of these demonstrated improved resistance. Simple sequence repeat (SSR) markers tightly linked to QRpt6 and QRpts4 were identified and validated in an unrelated barley population. The major 6H QTL, QRpt6, may provide adequate NFNB field resistance in western Canada and could be routinely selected for using molecular markers in a practical breeding program.  相似文献   

6.
Net blotch, which is caused by the fungus Pyrenophoral teres Drechs. f. teres Smedeg., presents a serious problem for barley production worldwide, and the identification and deployment of sources of resistance to it are key objectives for many breeders. Here, we report the identification of a major resistance gene, accounting for 65% of the response variation, in a cross between the resistant line C19819 and the susceptible cv. Rolfi. The resistance gene was mapped to chromosome 6H with the aid of two recently developed systems of retrotransposon-based molecular markers, REMAP and IRAP. A total of 239 BARE-1 and Sukkula retrotransposon markers were mapped in the cross, and the 30-cM segment containing the locus with significant resistance effect contained 26 of the markers. The type and local density of the markers should facilitate future map-based cloning of the resistance gene as well as manipulation of the resistance through backcross breeding.  相似文献   

7.
S J Molnar  L E James  K J Kasha 《Génome》2000,43(2):224-231
A doubled haploid barley (Hordeum vulgare L.) population that was created from a cross between cultivars 'Léger' and 'CI 9831' was characterized by RAPD (random amplified polymorphic DNA) markers for resistance to isolate WRS857 of Pyrenophora teres Drechs. f. sp. maculata Smedeg., the causal agent of the spot form of net blotch. Resistance, which initially appeared to be conferred by a single gene from the approximate 1:1 (resistant : susceptible) segregation ratio of the doubled-haploid (DH) progeny, was found to be associated with three different genomic regions by RAPD analysis. Of 500 RAPD random primers that were screened against the parents, 195 revealed polymorphic bands, seven showed an association to the resistance in bulks, and these seven markers were mapped to three unlinked genomic regions. Two of these regions, one of which was mapped to chromosome 2, have major resistance genes. The third region has some homology to the chromosome 2 region. This study demonstrates the simultaneous location of markers for more than one gene governing a trait by using RAPD and bulked segregant analysis (BSA).  相似文献   

8.

Key message

A CIho 5791 × Tifang recombinant inbred mapping population was developed and used to identify major dominant resistance genes on barley chromosomes 6H and 3H in CI5791 and on 3H in Tifang.

Abstract

The barley line CIho 5791 confers high levels of resistance to Pyrenophora teres f. teres, causal agent of net form net blotch (NFNB), with few documented isolates overcoming this resistance. Tifang barley also harbors resistance to P. teres f. teres which was previously shown to localize to barley chromosome 3H. A CIho 5791 × Tifang F6 recombinant inbred line (RIL) population was developed using single seed descent. The Illumina iSelect SNP platform was used to identify 2562 single nucleotide polymorphism (SNP) markers across the barley genome, resulting in seven linkage maps, one for each barley chromosome. The CIho 5791 × Tifang RIL population was evaluated for NFNB resistance using nine P. teres f. teres isolates collected globally. Tifang was resistant to four of the isolates tested whereas CIho 5791 was highly resistant to all nine isolates. QTL analysis indicated that the CIho 5791 resistance mapped to chromosome 6H whereas the Tifang resistance mapped to chromosome 3H. Additionally, CIho 5791 also harbored resistance to two Japanese isolates that mapped to a 3H region similar to that of Tifang. SNP markers and RILs harboring both 3H and 6H resistance will be useful in resistance breeding against NFNB.
  相似文献   

9.
The genetic control of virulence was studied in four isolates of the fungus Pyrenophora teres f. teres, originating from various geographic regions in experiments with nine barley accessions, possessing known resistance genes. Experiments were performed with the ascospore progeny of two crosses. The results of segregation for virulence in the progeny of direct crosses were confirmed by analysis of backcrosses and sib crosses. One to four genes for avirulence toward various barley genotypes were found in the isolates under study. It is suggested that dominant suppressor genes are involved in the genetic control of avirulence toward four barley genotypes.  相似文献   

10.
Net type net blotch (NTNB), caused by Pyrenophora teres f. teres Drechs., is prevalent in barley growing regions worldwide. A population of 118 doubled haploid (DH) lines developed from a cross between barley cultivars ‘Rika’ and ‘Kombar’ were used to evaluate resistance to NTNB due to their differential reaction to various isolates of P. teres f. teres. Rika was resistant to P. teres f. teres isolate 15A and susceptible to isolate 6A. Conversely, Kombar was resistant to 6A, but susceptible to 15A. A progeny isolate of a 15A × 6A cross identified as 15A × 6A#4 was virulent on both parental lines. The Rika/Kombar (RK) DH population was evaluated for disease reactions to the three isolates. Isolate 15A induced a resistant:susceptible ratio of 78:40 (R:S) whereas isolate 6A induced a resistant:susceptible ratio of 40:78. All but two lines had opposite disease reactions indicating two major resistance genes linked in repulsion. Progeny isolate 15A × 6A#4 showed a resistant:susceptible ratio of 1:117 with the one resistant line also being the single line that was resistant to both 15A and 6A. An RK F2 population segregated in a 1:3 (R:S) ratio for both 15A and 6A indicating that resistance is recessive. Molecular markers were used to identify a region on chromosome 6H that harbors the two NTNB resistance genes. This work shows that multiple NTNB resistance genes exist at the locus on chromosome 6H, and the recombinant DH line harboring the resistance alleles from both parents will be useful for the development of NTNB-resistant barley germplasm.  相似文献   

11.
Sensitivity of Resistance to Net Blotch in Barley   总被引:1,自引:0,他引:1  
The aim of this study was to demonstrate various methods of analysing terminal net blotch, Pyrenophora teres Drechs. f. teres Smedeg., severity data from 15 spring barleys, Hordeum vulgare L., grown in Finnish official variety trials in five environments. The analyses have been developed and used principally by plant breeders for assessing crop yield, but lend themselves to use by plant pathologists. Pyrenophora teres is the major barley phytopathogen in Finland and improved resistance to it is sought. Joint regression analysis (JRA) and an additive main effects and multiplicative interaction (AMMI) model were used to investigate the data. Statistically significant genotype by environment (GE) interaction for resistance was indicated, and this included qualitative (crossover) interactions among genotypes over environments. A stable, non-sensitive, response to net blotch over environments, combined with a low mean score for terminal severity of the disease characterized the six-row barley 'Thule' which showed statistically significant crossover interaction only with 'Tyra'. 'Kustaa' exhibited the lowest mean terminal net blotch severity, but was relatively sensitive to net blotch. 'Arve' exhibited severe terminal net blotch in all environments, was relatively sensitive to environment and exhibited no crossover interaction with other genotypes. AMMI analysis appeared to represent a useful method for analysing these disease severity data, facilitating the selection of useful sources of resistance. Plots of AMMI-adjusted mean net blotch severities against first principal component axis (PCA) scores were informative for differentiating genotype response over environments, and are therefore potentially useful to plant pathologists and barley breeders seeking to gauge and subsequently improve the resistance status of barley to net blotch.  相似文献   

12.
Net form net blotch (NFNB), caused by Pyrenophora teres f. teres Drechs., is prevalent in barley-growing regions worldwide. A population of 132 recombinant inbred lines (RILs) developed from a cross of the barley varieties ‘Falcon’ and ‘Azhul’ were used to evaluate resistance to NFNB due to their differential reactions to isolates of P. teres f. teres from Australia, Canada, Japan, and the USA. Falcon is a six-rowed, hulless feed barley harboring resistance to NFNB, while Azhul is a six-rowed, hulless food barley with high levels of susceptibility to many P. teres f. teres isolates. Seedling disease resistance data were collected on seedlings of parents, RILs, and checks in a growth chamber. The population was genotyped using Illumina’s GoldenGate assay, and quantitative trait loci (QTL) were detected on chromosomes 2H, 3H, 4H, and 6H. We identified a single genetic region on barley chromosome 4H that provided varying levels of resistance to all P. teres f. teres isolates evaluated.  相似文献   

13.
Net blotch (caused by Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) are important foliar diseases of barley in the midwestern region of the USA. To determine the number and chromosomal location of Mendelian and quantitative trait loci (QTL) controlling resistance to these diseases, a doubled haploid population (Steptoe/Morex) was evaluated to the pathogens at the seedling stage in the greenhouse and at the adult plant stage in the field. Alleles at two or three unlinked loci were found to confer resistance to the net blotch pathogen at the seedling stage depending on how progeny exhibiting an intermediate infection response were classified. This result was corroborated in the quantitative analysis of the raw infection response data as 2 major QTL were identified on chromosomes 4 and 6M. A third QTL was also identified on chromosome 6P. Seven QTL were identified for net blotch resistance at the adult plant stage and mapped to chromosomes 1P, 2P, 3P, 3M, 4, 6P, and 7P. The 7 QTL collectively accounted for 67.6% of the phenotypic variance under a multiple QTL model. Resistance to the spot blotch pathogen was conferred by a single gene at the seedling stage. This gene was mapped to the distal region of chromosome 1P on the basis of both qualitative and quantitative data analyses. Two QTL were identified for spot blotch resistance at the adult plant stage: the largest QTL effect mapped to chromosome 5P and the other mapped to chromosome 1P near the seedling resistance locus. Together, the 2 QTL explained 70.1% of the phenotypic variance under a multiple QTL model. On the basis of the chromosomal locations of resistance alleles detected in this study, it should be feasible to combine high levels of resistance to both P. teres f. teres and C. sativus in barley cultivars.  相似文献   

14.
Resistance to the disease septoria tritici blotch of wheat (Triticum aestivum L.), caused by the fungus Mycosphaerella graminicola (Fuckel.) J. Schrot in Cohn (anamorph Septoria tritici Roberge in Desmaz.) was investigated in a doubled-haploid (DH) population of a cross between the susceptible winter wheat cultivar Savannah and the resistant cultivar Senat. A molecular linkage map of the population was constructed including 76 SSR loci and 244 AFLP loci. Parents and DH progeny were tested for resistance to single isolates of M. graminicola in a growth chamber at the seedling stage, and to an isolate mixture at the adult plant stage, in field trials. A gene located at or near the Stb6 locus mapping to chromosome 3A provided seedling resistance to IPO323. Two complementary genes, mapping to chromosome 3A, one of which was the IPO323 resistance gene, were needed for resistance to the Danish isolate Ris?97-86. In addition, a number of minor loci influenced the expression of resistance in the growth chamber. In the field, four QTLs for resistance to septoria tritici blotch were detected. Two QTLs, located on chromosomes 3A and 6B explained 18.2 and 67.9% of the phenotypic variance in the mean over two trials. Both these QTLs were also detected at the seedling stage with isolate Ris?97-86, whereas isolate IPO323 only detected the QTL on 3A. Additionally, two QTLs identified in adult plants on chromosomes 2B and 7B were not detected at the seedling stage. Four QTLs were detected for plant height located on chromosomes 2B, 3A, 3B and on a linkage group not assigned to a chromosome. The major QTLs on 3A and on the unassigned linkage group were consistent over two trials, and the QTL on 3A seemed to be linked to a QTL for septoria tritici blotch resistance.  相似文献   

15.
Net form of net blotch (NFNB) caused by the fungus Pyrenophora teres f. teres is an economically important foliar disease of barley (Hordeum vulgare) in southern and eastern Africa. Little attention has been given to disease resistance breeding, and knowledge about the presence of NFNB resistance in breeding lines is limited. Deploying resistance into varieties used in this region is important for future control of the disease. We have identified NFNB disease resistance in existing South African breeders’ lines and have mapped the resistance in line UVC8. Six different trials, three conducted in South Africa and another three in Australia, were used to identify resistance QTL. A major QTL was identified on chromosome 6H having a LOD score of 40.5 and 55% of the phenotypic variance explained. Kompetitive Allele Specific PCR (KASP?) markers were designed for this QTL region. These and microsatellite markers can now be used to routinely select for NFNB resistance.  相似文献   

16.
Causative fungi of net-type and spot-type lesions on barley were isolated and identified as anamorphs of Pyrenophora teres and Pyrenophora japonica respectively. Comparison of morphological characteristics showed that isolates of the two species are separable on the basis of differences in colony texture, conidiophore shape, conidial arrangement and conidial dimensions. The two species could also be distinguished from each other on account of adult-plant reactions exhibited by Dampier barley after inoculation by various isolates from South Africa, one isolate from Germany and one isolate from Washington State in North America.  相似文献   

17.
Net blotch is a barley foliar disease caused by two forms of Pyrenophora teres: Pyrenophora teres f. teres (PTT) and Pyrenophora teres f. maculata (PTM). To monitor and quantify their occurrence during the growing season, diagnostic system based on real-time PCR was developed. TaqMan MGB (Minor Groove Binder) primers and probes were designed that showed high specificity for each of the two forms of P. teres. As a host plant internal standard, TaqMan MGB primers and probe based on RacB gene sequence were designed. The method was optimised on pure fungal DNA and on plasmid standard dilutions. Quantification was accomplished by comparing Ct values of unknown samples with those obtained from plasmid standard dilutions. The assay detects down to five gene copies per reaction. It is able to produce reliable quantitative data over a range of six orders of magnitude. The developed assay was used to differentiate and quantify both forms of P. teres in infected barley leaves. Correlation R(2)=0.52 was obtained between the Ct values and size of symptoms areas in early stage of infection. Application of the TaqMan MGB technology to leaf samples collected in 20 barley varieties in the region Kromeriz during the growing season of 2003 and 2004 revealed that P. teres f. teres predominated in these 2 years. The developed method is an important tool to quantify and monitor the dynamics of the two forms of P. teres during the growing season.  相似文献   

18.
A survey for resistance against net blotch disease (caused by Pyrenophora teres) was performed on some Egyptian barley landraces and some selected resistance and susceptible standard German barley genotypes. The results indicated that most of the Egyptian barley landraces are extremely resistant to the disease. Molecular analysis using RAPD and AFLP showed unique banding profiles for the different genotypes, and specific AFLP markers for the Egyptian genotypes were identified. The effectiveness of RAPD and AFLP for identifying different barley genotypes of different origins and with different reactions against P. teres was discussed. The results of the biological evaluation and molecular characterization done in this study can be seen as the starting point needed to identify the valuable net blotch resistant Egyptian barley germplasm at both the phenotype and genotype levels and draw the attention of breeders and banks of natural plant genetic resources towards this valuable yet neglected germplasm.  相似文献   

19.
Barley net form net blotch (NFNB), caused by the necrotrophic fungus Pyrenophora teres f. teres, is a destructive foliar disease in barley‐growing regions worldwide. Little is known about the genetic and molecular basis of this pathosystem. Here, we identified a small secreted proteinaceous necrotrophic effector (NE), designated PttNE1, from intercellular wash fluids of the susceptible barley line Hector after inoculation with P. teres f. teres isolate 0–1. Using a barley recombinant inbred line (RIL) population developed from a cross between the sensitive/susceptible line Hector and the insensitive/resistant line NDB 112 (HN population), sensitivity to PttNE1, which we have named SPN1, mapped to a common resistance/susceptibility region on barley chromosome 6H. PttNE1–SPN1 interaction accounted for 31% of the disease variation when the HN population was inoculated with the 0–1 isolate. Strong accumulation of hydrogen peroxide and increased levels of electrolyte leakage were associated with the susceptible reaction, but not the resistant reaction. In addition, the HN RIL population was evaluated for its reactions to 10 geographically diverse P. teres f. teres isolates. Quantitative trait locus (QTL) mapping led to the identification of at least 10 genomic regions associated with disease, with chromosomes 3H and 6H harbouring major QTLs for resistance/susceptibility. SPN1 was associated with all the 6H QTLs, except one. Collectively, this information indicates that the barley–P. teres f. teres pathosystem follows, at least partially, an NE‐triggered susceptibility (NETS) model that has been described in other necrotrophic fungal disease systems, especially in the Dothideomycete class of fungi.  相似文献   

20.
Spot blotch and net blotch are important foliar barley (Hordeum vulgare L.) diseases in Canada and elsewhere. These diseases result in significant yield reduction and, more importantly, loss of grain quality, downgrading barley from malt to feed. Combining resistance to these diseases is a breeding priority but is a significant challenge using conventional breeding methodology. In the present investigation, an evaluation of the inheritance of resistance to spot and net blotch was conducted in a doubled-haploid barley population from the cross CDC Bold (susceptible)?×?TR251 (resistant). The population was screened at the seedling stage in the Phytotron and at the adult-plant stage in the field for several years. Chi-squared analysis indicated one- to four-gene segregation depending on disease, isolate, plant development stage, location and year. A major seedling and adult-plant resistance quantitative trait locus (QTL), designated QRpt6, was re-confirmed for net-form net blotch resistance, explaining 32?C61% of phenotypic variation in different experiments. Additional QTL for seedling and adult-plant resistance to net blotch were identified. For spot blotch resistance, a major seedling resistance QTL (QRcss1) was detected on chromosome 1H for isolate WRS1909, explaining 79% of the phenotypic variation. A highly significant QTL on 3H (QRcs3) was identified for seedling resistance to isolate WRS1908 and adult-plant resistance at Brandon, MB, Canada in 2008. The identification of QTL at only one location or from 1?year suggests spot blotch resistance is complex and highly influenced by the environment. Efforts are being made to combine spot and net blotch resistance in elite barley lines using molecular marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号