首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to the ovarian secretion of progesterone and estrogen during early pregnancy, the mammalian uterus develops the capacity to perform complex cellular activities which occur before and after blastocyst implantation. Luminal epithelial cells participate in regulation of the metabolism of the blastocyst through the control of its humoral environment, provide an appropriate matrix for changes to occur at the interface between trophoblast and epithelium, and appear to transmit information from the blastocyst to the underlying stroma to initiate decidualization. With the completion of these functions during implantation in rodents, the epithelial cells self-destruct and are removed by phagocytic activity of the trophoblast. Control of both the endocytotic and secretory activity of luminal epithelial cells and their eventual self-destruction would require regulation of the Golgi-endoplasmic reticulum-lysosomes system within these cells. Progesterone secretion during early pseudo-pregnancy increases levels of cathepsin D, a lysosomal proteinase, in luminal epithelial cells by increasing the rate of enzyme synthesis. Progesterone pretreatment of ovariectomized rats followed by estradiol treatment results in the development of uterine sensitivity to deciduogenic stimuli. The number of proteins which are synthesized by luminal epithelial cells in response to estradiol to achieve this sensitivity has been determined. Epithelial cytosol proteins from rats treated with medroxyprogesterone acetate (3.5 mg sc) or medroxyprogesterone acetate plus estradiol (200 ng sc) were separated by two dimensional polyacrylamide gel electrophoresis. The synthesis of two proteins increased after 8 h of estradiol treatment and the synthesis of another three was increased by 12 h. The increased synthesis of these proteins could be related to changes in the capacity of the luminal epithelial cell for prostaglandin synthesis. The epithelial capacity for prostaglandin synthesis increases during pseudopregnancy to maximum levels at the time of maximum sensitivity to deciduogenic stimuli. Epithelial prostaglandin synthetic capacity may also depend upon the accumulation of prostaglandin precursors within these cells. Estradiol treatment of medroxyprogesterone acetate pretreated ovariectomized rats increased the arachidonic acid content and composition of epithelial phosphatidyl choline but the increases were not statistically significant. These changes in protein and lipid synthesis controlled by progesterone and estrogen would appear to contribute to the cellular activities of the luminal epithelium during early pregnancy.  相似文献   

2.
The non-receptive uterine luminal epithelium forms an intact polarised epithelial barrier that is refractory to blastocyst invasion. During implantation, organised dismantling of this barrier leads to a receptive state promoting blastocyst attachment. Claudins are tight junction proteins that increase in the uterine epithelium at the time of implantation. Claudin 7 is a member of this family but demonstrates a basolateral localisation pattern that is distinct from other claudins. The present study investigated the localisation, abundance and hormonal regulation of claudin 7 to elucidate a role for the protein during implantation. The results showed that claudin 7 demonstrates a distinct basal and lateral localisation in the uterine luminal and glandular epithelium throughout early pregnancy. On day 1, claudin 7 is abundantly present in response to ovarian estrogen. At the time of implantation, claudin 7 decreases in abundance. This decrease is not dependent on blastocyst presence, as shown by results in pseudopregnant animals. We propose that claudin 7 mediates intercellular adhesions in the uterine epithelium and also may be responsible for stabilising adhesion proteins at the basolateral cell surface. Thus, claudin 7 may function under the maintenance of the uterine luminal epithelial barrier, in the non-receptive state preventing implantation from occurring.  相似文献   

3.
Prostaglandins (PGs) appear to have a role in the appearance of the increased uterine vascular permeability and subsequent decidualization observed at implantation in many species. However, the sites of production of these PGs have not been clearly established. To clarify the PG synthetic capacity of the blastocyst and the various types of cells in the uterus at implantation, we have studied the immunohistochemical localization of PG synthase in the rat blastocyst on Days 5 to 7 and uterus on Days 1, 4, 5, 6, and 7 of pregnancy. Labeling of PG synthase was negligible in the uterus on Day 1 of pregnancy. On Day 4, there was increased labeling in the luminal and glandular epithelium, in stromal cells adjacent to the luminal epithelium, and in blood vessels and some leukocytes. PG synthase was detected in the blastocysts on Days 5 to 7, but there was a gradual loss of label in the luminal and glandular epithelial cells during this period. Early differentiating stromal cells adjacent to the luminal epithelium in the implantation site on Day 5 showed bright labeling, whereas peripheral stromal cells were only slightly labeled. By Day 7, the differentiated cells of the primary decidual zone showed little or no label, but cells in the secondary decidual zone were brightly labeled. These results indicate that PG synthase is present in the rat blastocyst and in several kinds of uterine cells, and that its localization in uterine cells changed markedly during the implantation process.  相似文献   

4.
Lysosomal acid phosphatase was studied at both the light and electron microscope level in the rat uterine luminal and glandular epithelium, at oestrous, late dioestrous and day 6 of pregnancy. At the light-microscopic level lysosomal numbers were quantified and statistically analysed. A morphological study was also carried out on the lysosomes at the electron-microscopic level in the above-mentioned stages. Quantification of lysosomal numbers found day 6 of pregnancy to have a significantly higher lysosomal population in the luminal and glandular epithelium compared to non-pregnant states. At the electron-microscopic level the luminal epithelial lysosomes were frequently observed in an invaginated or vesiculated form whereas these characteristics were rarely observed during late dioestrous and were non-existent during oestrous. Generally, the lysosomes appeared more active in the luminal epithelium at day 6 of pregnancy compared to the non-pregnant state. The findings are discussed in reference to the role of the lysosome at the time of blastocyst implantation.  相似文献   

5.
Certain uterine prostaglandins (PGs) are elevated at implantation sites and are needed to trigger the events of blastocyst implantation that include blastocyst-uterine attachment and stromal decidualization with vascular permeability changes. Several decades of investigations showed that treatment with PG synthesis inhibitors, prior to or during the time of implantation, resulted in either complete inhibition or a delay in implantation or reduction in the number of implantation sites with diminished decidual tissue. Consistent with these findings, we observed that whereas a selective PG endoperoxide synthase (Ptgs) 1 inhibitor SC-560 failed to inhibit implantation, a selective Ptgs2 inhibitor SC-236 showed significantly reduced number and size of implantation sites in progesterone-treated ovariectomized pregnant hamsters. It is known that Ptgs2 expression and Ptgs2-derived prostacyclin (PGI2) synthesis at implantation sites are needed for implantation in the mouse (a rodent that needs ovarian estrogen for implantation). However, it is unknown which Ptgs and PG synthases produce which PGs at implantation sites of the hamster (a rodent that does not need ovarian estrogen for implantation). Here we demonstrate that as blastocyst implantation proceeds, a reduction in Ptgs1 expression from uterine luminal epithelial cells and a gradual induction in Ptgs2 expression exclusively in luminal epithelial and adjacent decidual cells occurred at implantation sites of hamsters. Results also reveal that PGE2, but not PGI2, is the major PG at implantation sites where Ptgs2 and microsomal type PGE synthases but not PGI synthases are co-expressed. This elevated uterine PGE2 at implantation sites may serve to initiate or amplify physiological signals required for specific aspects of the implantation process in hamsters.  相似文献   

6.
In the mouse, the process of implantation is initiated by the attachment reaction between the blastocyst trophectoderm and uterine luminal epithelium that occurs at 2200–2300 h on day 4 (day 1 = vaginal plug) of pregnancy. Several members of the EGF family are considered important in embryo–uterine interactions during implantation. This investigation demonstrates that the expression of two additions to the family, betacellulin and epiregulin, are exquisitely restricted to the mouse uterine luminal epithelium and underlying stroma adjacent to the implanting blastocyst. These genes are not expressed during progesterone-maintained delayed implantation, but are rapidly switched on in the uterus surrounding the implanting blastocyst following termination of the delay by estrogen. These results provide evidence that expression of betacellulin and epiregulin in the uterus requires the presence of an active blastocyst and suggest an involvement of these growth factors in the process of implantation.  相似文献   

7.
Two-way interactions between the blastocyst trophectoderm and the uterine luminal epithelium are essential for implantation. The key events of this process are cell-cell contact of trophectoderm cells with uterine luminal epithelial cells, controlled invasion of trophoblast cells through the luminal epithelium and the basement membrane, transformation of uterine stromal cells surrounding the blastocyst into decidual cells, and protection of the "semiallogenic" embryo from the mother's immunological responses. Because cell-cell contact between the trophectoderm epithelium and the luminal epithelium is essential for implantation, we investigated the expression of zonula occludens-1 (ZO-1) and E-cadherin, two molecules associated with epithelial cell junctions, in the mouse uterus during the periimplantation period. Preimplantation uterine epithelial cells express both ZO-1 and E-cadherin. With the initiation and progression of implantation, ZO-1 and E-cadherin are expressed in stromal cells of the primary decidual zone (PDZ). As trophoblast invasion progresses, these two molecules are expressed in stroma in advance of the invading trophoblast cells. These results suggest that expression of these adherence and tight junctions molecules in the PDZ serves to function as a permeability barrier to regulate access of immunologically competent maternal cells and/or molecules to the embryo and provide homotypic guidance of trophoblast cells in the endometrium.  相似文献   

8.
田振  杨增明 《动物学杂志》2008,43(4):133-139
胚泡着床是一个复杂的生理过程,依赖于胚泡发育和子宫内膜获得接受能力的同步进行.着床只发生在具有接受性的子宫内膜,而子宫内膜只在很短的时间内具有接受性.被称为"着床窗口".子宫内膜接受性的建立涉及子宫腔上皮的形态学改变,以及甾类激素和许多细胞因子复杂的调控作用.本文综述了子宫内膜接受性的建立及其分子调控.  相似文献   

9.
Embryonic development in the western spotted skunk is arrested after blastocyst formation for about 200 days. This developmental arrest is believed to be due to insufficiency of uterine conditions to support continuous development. Implantation and decidualization are defective in cyclooxygenase 2 (Cox2)-, but not Cox1-, deficient mice. We therefore used Northern and in situ hybridization to investigate changes in uterine expression of Cox1 and Cox2 genes during various stages of pregnancy in the spotted skunk. Cox1 was constitutively expressed at all stages of pregnancy examined, but it did exhibit localized up-regulation in the trophoblast and necks of uterine glands at early implantation sites. Cox2 expression was highly regulated with little or no expression during delayed implantation. Cox2 expression was first detected in the uterus and trophoblast prior to blastocyst attachment and remained detectable for 5-6 days after blastocyst attachment. Cox2 expression was also localized in the luminal and glandular epithelia of uterine segments located between implantation chambers. Changes in Cox expression were not correlated with the abrupt increase in uterine weight that occurs simultaneously with renewed embryonic development but was correlated with an influx of serum proteins into the uterus observed in a previous study.  相似文献   

10.
Focal adhesions play an important role in promoting embryo invasion; in particular, focal adhesions disassemble at the time of implantation in the rat, facilitating the detachment of the uterine luminal epithelium to allow the embryo to invade the endometrium. This study investigated focal adhesion protein, focal adhesion kinase (FAK) in the rat uterine luminal, and glandular epithelial cells to understand the dynamics of focal adhesions during early pregnancy. FAK undergoes extensive distributional change during early pregnancy, and surprisingly, FAK was not localized at the site of focal adhesions, instead being localized to the site of cell‐to‐cell contact and colocalizing with ZO‐1 on day 1 of pregnancy. At the time of implantation, FAK increases in the apical region of the uterine luminal epithelial cells which was regulated by progesterone. Using an in vitro co‐culture model of rat blastocysts attached to Ishikawa cells, FAK was present apically both in the rat blastocyst and the Ishikawa cells, suggesting a role in attachment andin mediating signal transduction between these two genetically different cell types. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Heparanase expression and function during early pregnancy in mice   总被引:1,自引:0,他引:1  
Embryo implantation is a complex process that involves interactions between cell-surface and extracellular components of the blastocyst and the uterus, including blastocyst adhesion to the uterine luminal epithelium, epithelial basement membrane penetration and stromal extracellular matrix remodeling, angiogenesis, and decidualization. These processes all involve interactions with heparan sulfate (HS) proteoglycans, which harbor various growth factors and cytokines and support cell adhesion. Heparanase (HPSE) is an endo-beta-glucuronidase that cleaves HS at specific sites. HPSE also can act as an adhesion molecule independent of its catalytic activity. Thus, HPSE is a multifunctional molecule contributing to and modulating HS-dependent processes. Exogenously added HPSE improves embryo implantation in mice; however, no information is available regarding the normal pattern of HPSE expression and activity during the implantation process in any system. Using several approaches, including real-time RT-PCR, in situ hybridization, and immunohistochemistry, we determined that uterine HPSE expression increases dramatically during early pregnancy in mice. Heparanase mRNA and protein were primarily expressed in decidua and were rapidly induced at the implantation site. Uterine HPSE activity was characterized and demonstrated to increase >40-fold during early pregnancy. Finally, we demonstrate that the HPSE inhibitor PI-88 severely inhibits embryo implantation in vivo. Collectively, these results indicate that HPSE plays a role in blastocyst implantation and complements previous studies showing a role for HS-dependent interactions in this process.  相似文献   

12.
Adhesion molecules play an important part in preparing uterine epithelial cells for receptivity to the implanting embryo, and their rearrangement is crucial in allowing successful implantation. CD43 is an adhesion molecule which has previously been suggested to take part in implantation in mice. Indirect immunofluorescence microscopy localising CD43 was performed on uterine tissue during early pregnancy, and tissue obtained from ovariectomised rats administered with ovarian hormones. Western blotting was performed during early pregnancy on isolated epithelial cells and ovariectomised rats for comparison of the amount of CD43. Immunofluorescence microscopy showed CD43 was situated basally in uterine luminal epithelial cells on day 1 of pregnancy and during oestrogen administration, corresponding to a 95-kDa band of CD43 seen in western blotting. At the time of implantation, and during progesterone or progesterone plus oestrogen combined treatment, CD43 is apical in uterine luminal epithelial cells, resulting in an 85-kDa form of CD43. We suggest that a de-glycosylated form of CD43 moves from basally to apically at the time of implantation, thus facilitating blastocyst attachment to uterine epithelial cells as well as their removal.  相似文献   

13.
In preparation for blastocyst implantation, uterine luminal epithelial cells express new cell adhesion molecules on their apical plasma membrane. Since one mechanism epithelial cells employ to regulate membrane polarity is the establishment of specific membrane-cytoskeletal interactions, this study was undertaken to determine if new cytokeratin (CK) intermediate filament assemblies are expressed in endometrial epithelial cells during developmental stages related to blastocyst implantation. Type-specific CK antibodies were used for immunocytochemical and immunoblot analyses of 1) intermediate filament networks of the endometrial epithelium during embryo implantation in rabbits and 2) proliferative and secretory phases of the human menstrual cycle. CK18, a type I CK found in most simple epithelia, was expressed in all luminal and glandular epithelial cells of both the human and rabbit endometrium at all developmental stages analyzed; it was also strongly expressed in trophectoderm of the implanting rabbit blastocyst. In contrast, CK13, another type I cytokeratin, exhibited a regulated expression pattern in luminal, but not glandular, epithelial cells of secretory phase human and peri-implantation stage rabbit endometrium. Furthermore, in the rabbit implantation chambers, CK13 was predominantly localized at the cell apex of luminal epithelial cells, where it assembled into a dense filamentous network. These data suggest that the stage-specific expression of CK13 and a reorganization of the apical intermediate filament cytoskeleton of uterine luminal epithelial cells may play important functions in preparation for the implantation process.  相似文献   

14.
Affinity-purified antibodies to cellCAM-105, an adhesive cell surface glycoprotein, were used in immunohistochemical investigations of rat uteri at various functional stages: (i) the oestrous, pro-oestrous, metoestrous, and dioestrous stages of the oestrous cycle, (ii) Days 1-8 of normal pregnancy, (iii) delayed implantation, (iv) 18 h after oestrogen reactivation from delay of implantation, and (v) juvenile rats, and normal ovariectomized adults, respectively, before and after experimental injection of progesterone and/or oestrogen. CellCAM-105 was present in the apical zones of the luminal and glandular epithelium cells in a stage-specific and hormone-dependent manner. The results indicate that: (1) steroid hormones are essential for the expression of cellCAM-105 in the uterine epithelial cells; (2) progesterone induces cellCAM-105 expression in the glandular epithelium, and oestrogen induces cellCAM-105 expression in the luminal epithelium; (3) progesterone induces down-regulation of cellCAM-105 from the surface of the uterine luminal epithelium of juvenile rats; (4) cellCAM-105 is absent in the luminal epithelial cells but present in the glandular epithelial cells of the rat uterus at the time of blastocyst implantation.  相似文献   

15.
Pregnant mice were ovariectomized at pre-implantation stage and exogenous nidatory estradiol was administered to evaluate the DNA synthesis of the endometrial cells during activation of uterine receptivity for blastocyst implantation. After 0, 3, 6, 12 and 18 hrs. of estradiol treatment, the animals received 3H-thymidine injection, sacrificed 1 hr. later, and the uteri were prepared for light and electron microscopic radioautography. At time 0, no labelled stromal or epithelial cells was found in the endometrium. According to the time-lapse after estradiol induction, a gradual increase of labelled stromal and endothelial cells was seen in the endometrium. The highest labeling index was observed at the antimesometrial side of the implantation sites and the lowest value was found at the interimplantation site. The cells found at mesometrial side of the implantation site showed an intermediate labeling index. Eighteen hrs. after estradiol treatment, the labelled stromal cells found near the implantation chamber resembled the morphology of decidual cells while those labelled cells localized at the interimplantation sites were similar to the fibroblast. The uterine luminal epithelial cells showed low DNA synthesis after estradiol treatment resulting in only a few labelled cells at the interimplantation sites and no labelled cells at the implantation sites. A similar labeling pattern was seen in the glandular epithelium. The distribution of labelled cells seen among the regions of pregnant endometrium under estradiol effect suggest that DNA synthesis related to uterine activation for blastocyst implantation is a focal reaction, where the luminal epithelium does nt proliferate while the stromal and endothelial cells around the conceptus increase the DNA synthesis to prepare the endometrial decidualization.  相似文献   

16.
Vitamin A (VA) is required for normal fetal development and successful pregnancy. Excessive VA intake during pregnancy may lead to adverse maternal and fetal effects. Cytochrome P450 26A1 (cyp26a1), a retinoic acid (RA)‐metabolizing enzyme, is involved in VA metabolism. It has been shown that cyp26a1 is expressed in female reproductive tract, especially in uterus. In order to investigate the role of cyp26a1 during pregnancy, we constructed a recombinant plasmid DNA vaccine encoding cyp26a1 protein and immunized mice with the plasmid. Compared to control groups, the pregnancy rate of the cyp26a1 plasmid‐immunized mice were significantly decreased (P < 0.01). Further results showed that both cyp26a1 mRNA and protein were specifically induced in the uterus during implantation period and localized in the uterine luminal epithelium. Importantly, the number of implantation sites was also significantly reduced (P < 0.05) after the uterine injection of cyp26a1‐specific antisense oligos or anti‐cyp26a1 antibody on day 3 of pregnancy. Accordingly, the expression of RA‐related cellular retinoic acid binding protein 1 and tissue transglutaminase was markedly increased (P < 0.05) in the uterine luminal epithelium after intrauterine injection treatments. These data demonstrate that uterine cyp26a1 activity is important for the maintenance of pregnancy, especially during the process of blastocyst implantation. J. Cell. Physiol. 223: 471–479, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Occlusion and reformation of the rat uterine lumen during pregnancy   总被引:1,自引:0,他引:1  
Implantation sites were obtained from rats at various stages of pregnancy and were studied by light microscopy and scanning electron microscopy. Early in pregnancy the uterine luminal epithelium and the decidual cells in the implantation site formed an implantation chamber containing the conceptus. The epithelial cells lining the chamber and the mouth of the chamber degenerated, and the uterine lumen that was mesometrial to the conceptus was obliterated such that the uterine lumen became discontinuous, and the luminal epithelia of intersite areas were isolated. As the conceptus continued to grow, the decidua-conceptus unit bulged into the intersite areas and was partially covered by an epithelium that eventually became discontinuous and degenerated. Once this had occurred, the luminal epithelium of the intersite areas reestablished contact antimesometrial to the decidua-conceptus unit, and the uterine lumen was again continuous. However, the epithelium lining the lumen was not complete in the mesometrial region because of the vascular connections between the uterine stroma and the placenta. Factors influencing the restructuring of the uterine luminal epithelium were discussed.  相似文献   

18.
Implantation requires coordination between development of the blastocyst and the sex steroid hormone-regulated differentiation of the uterus. Under the influence of these hormones, the uterine luminal epithelium becomes receptive to attachment of the hatched blastocyst. In this study we sought to identify genes regulated by progesterone (P4) in the uterine epithelium. This resulted in the identification of one novel P4-regulated gene that had been previously found in lipopolysaccharide-stimulated macrophages and called immune response gene-1 (Irg1) and which is the mammalian ortholog of the bacterial gene encoding methylcitrate dehydratase. In adult mice Irg1 expression was limited to the uterine luminal epithelium where it is expressed only during pregnancy with a peak coinciding with implantation. Irg1 mRNA expression is regulated synergistically by P4 and estradiol (E2) but not by E2 alone. In macrophages Irg1 is induced by lipopolysaccharide through a protein kinase C (PKC)-regulated pathway. Now we demonstrate that the PKC pathway is induced in the uterine epithelium at implantation by the synergistic action of P4 and E2 and is responsible for the hormone induction of Irg1. These results suggest that the PKC pathway plays an important role in modulating steroid hormone responsiveness in the uterine luminal epithelium during the implantation window and that Irg1 will be an important marker of this window and may play an important role in implantation.  相似文献   

19.
The infertility phenotype of cyclooxygenase-2 (Cox-2)-deficient female mice establishes the important role of Cox-2 in pregnancy. Cox-2 deficiency results in defective ovulation, fertilization, implantation, and decidualization; the latter of which can be restored in part by the prostacyclin analog carbaprostacyclin. Uterine Cox-2 expression during early pregnancy shows distinct localization and kinetics in the uterine luminal epithelium and underlying stromal cells, suggesting that expression is tightly regulated. Several intracellular signaling cascades including ERK, p38, and JNK are implicated in vitro as critical components of regulated Cox-2 expression in response to mitogens, growth factors, and cytokines. We investigated the involvement of these signaling pathways during Cox-2 induction in vivo by monitoring uterine kinase activity after intraluminal application of a deciduogenic stimulus. Our results show that the ERK and p38 pathways are activated in uterine preparations as early as 5-min post-stimulation. ERK activation was sustained for several hours with a return to baseline levels by 4 h. p38 activation was rapid with a peak at 5-min post-stimulation and returned to near baseline levels after 45 min. Systemic administration of a MEK inhibitor completely inhibited ERK activation, but did not affect early (2 h) luminal epithelial or late (24 h) stromal Cox-2 expression and only modestly affected decidualization. In contrast, administration of a p38 inhibitor modestly inhibited early Cox-2 expression in the luminal epithelium, while dramatically diminishing late stromal expression. In parallel, induced stromal peroxisomal proliferator activated receptor-delta (PPARdelta) expression is blunted by p38 inhibition. p38 inhibition also significantly inhibited decidualization. These results suggest that p38, but not ERK, activation is required for induced Cox-2 and PPARdelta expression during decidualization. In addition, inhibition of p38 led to decreased decidualization suggesting that an intracrine prostanoid pathway consisting of Cox-2, prostacyclin, and PPARdelta is required for maintenance of early pregnancy.  相似文献   

20.
Summary— During early pregnancy, in the lead up to blastocyst implantation, the apical cell surface of luminal epithelial cells of the rat uterus undergo a dramatic shape transformation. This study aims to investigate the role of the cytoskeleton in this apical transformation by considering the effects of the drugs cytochalasin D and colchicine on the uterine luminal cell surface. The results are determined using transmission and scanning electron microscopy. In vivo exposure to cytochalasin D during oestrus, as well as on day 1 of pregnancy, did not affect the long, regular surface microvilli. This drug, however, did disrupt the terminal web within the apical cytoplasm of these cells. Disruption of microfilament (MF) polymerization by cytochalasin D on day 4 of pregnancy induced a cell surface transformation, resulting in the appearance of numerous irregular projections normally present during blastocyst implantation on day 6 of pregnancy. Colchicine did not alter the uterine microvilli of oestrus or day 1 pregnant tissue. Unlike the effect of cytochalasin D, colchicine-induced microtubule (MT) disruption on day 4 of pregnancy did not increase irregular projections and hence this treatment did not result in the cell surface appearance associated with blastocyst implantation. These results indicate that the disruption of MF, rather than MT, contributes to the transformation of the uterine luminal cell surface during the lead up to blastocyst attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号