首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MPM-2 antigens, a discrete set of phosphoproteins that contain similar phosphoepitopes (the MPM-2 epitope), are associated with various mitotically important structures. The central mitotic regulator cdc2 kinase has been proposed to induce M-phase by phosphorylating many proteins which might include the MPM-2 antigens. To clarify the relationship of cdc2 kinase and the MPM-2 antigens, we developed an in vitro assay that enabled us to specifically detect the kinases that phosphorylate the MPM-2 epitope (ME kinases) in crude cell extracts. Two different ME kinase activities were identified in unfertilized Xenopus eggs, neither of which was cdc2 kinase, but both appeared to be activated by the introduction of cdc2 kinase into oocytes or oocyte extract. The two ME kinases differed in molecular size, substrate specificity, peptide components, and MPM-2 reactivity. The larger one, ME kinase-H, phosphorylated several MPM-2 antigens, while the smaller one, ME kinase-L, phosphorylated mainly one. We purified ME kinase-L to near homogeneity by sequential chromatography and showed that it has the characteristics of the 42-kD microtubule-associated protein (MAP) kinase. Our results support the previous finding that MAP kinase is activated during Xenopus oocyte maturation and suggest that MAP kinase may contribute to oocyte maturation induction by phosphorylating one subtype of MPM-2 epitope.  相似文献   

2.
Microtubule-associated protein tau in a hyperphosphorylated state is the major component of the filamentous lesions that define a number of neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration, Pick's disease, argyrophilic grain disease and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Previous work has established that the phosphorylation-dependent anti-tau antibody AT100 is a specific marker for filamentous tau in adult human brain. Here we have identified protein kinases that generate the AT100 epitope in vitro and have used them, in conjunction with site-directed mutagenesis of tau, to map the epitope. We show that the sequential phosphorylation of recombinant tau by cAMP-dependent protein kinase (PKA) and the stress-activated protein kinases SAPK4/p38delta or JNK2 generated the AT100 epitope and that this required phosphorylation of T212, S214 and T217. Tau protein from newborn, but not adult, mouse brain was weakly labelled by AT100. Phosphorylation by PKA and SAPK4/p38delta abolished the ability of tau to promote microtubule assembly, but failed to influence significantly the heparin-induced assembly of tau into filaments.  相似文献   

3.
The primary sequence of the microtubule-associated protein tau contains multiple repeats of the sequence -X-Ser/Thr-Pro-X-, the consensus sequence for the proline-directed protein kinase (p34cdc2/p58cyclin A). When phosphorylated by proline-directed protein kinase in vitro, tau was found to incorporate up to 4.4 mol of phosphate/mol of protein. Isoelectric focusing of the tryptic phosphopeptides demonstrated the presence of five distinct peptides with pI values of approximately 6.9, 6.5, 5.6-5.9, 4.7, and 3.6. Mapping of the tryptic phosphopeptides by high performance liquid chromatography techniques demonstrated three distinct peaks. Data from gas phase sequencing, amino acid analysis, and phosphoamino acid analysis suggest that proline-directed protein kinase phosphorylates tau at four sites. Each site demonstrates the presence of a proline residue on the carboxyl-terminal side of the phosphorylated residue. Two phosphorylation sites are located adjacent to the three-repeat microtubule-binding domain that has been found to be required for the in vivo co-localization of tau protein to microtubules. Two other putative phosphorylation sites are located within the identified epitope of the monoclonal antibody Tau-1. Phosphorylation of these sites altered the immunoreactivity of tau to Tau-1 antibody. Since the neuronal microtubule-associated protein tau is multiply phosphorylated in Alzheimer's disease, and Tau-1 immunoreactivity is similarly reduced in neurofibrillary tangles and enhanced after dephosphorylation, phosphorylation at one or more of these sites may correlate with abnormally phosphorylated sites in tau protein in Alzheimer's disease.  相似文献   

4.
The stress-activated kinases c-Jun N-terminal kinase (JNK) and p38 are members of the mitogen-activated protein (MAP) kinase family and take part in signalling cascades initiated by various forms of stress. Their targets include the microtubule-associated protein tau, which becomes hyperphosphorylated in Alzheimer's disease. It is necessary, as a forerunner for in vivo studies, to identify the protein kinases and phosphatases that are responsible for phosphate turnover at individual sites. Using nanoelectrospray mass spectrometry, we have undertaken an extensive comparison of phosphorylation in vitro by several candidate tau kinases, namely, JNK, p38, ERK2, and glycogen synthase kinase 3beta (GSK3beta). Between 10 and 15 sites were identified for each kinase. The three MAP kinases phosphorylated Ser202 and Thr205 but not detectably Ser199, whereas conversely GSK3beta phosphorylated Ser199 but not detectably Ser202 or Thr205. Phosphorylated Ser404 was found with all of these kinases except JNK. The MAP kinases may not be strictly proline specific: p38 phosphorylated the nonproline sites Ser185, Thr245, Ser305, and Ser356, whereas ERK2 was the most strict. All of the sites detected except Thr245 and Ser305 are known or suspected phosphorylation sites in paired helical filament-tau extracted from Alzheimer brains. Thus, the three MAP kinases and GSK3beta are importantly all strong candidates as tau kinases that may be involved in the pathogenic hyperphosphorylation of tau in Alzheimer's disease.  相似文献   

5.
Alterations in the status of microtubules contribute to the cytoskeletal rearrangements that occur during apoptosis. The microtubule-associated protein tau regulates microtubule dynamics and thus is likely to play an important role in the cytoskeletal changes that occur in apoptotic cells. Previously, we demonstrated that the phosphorylation of tau at the Tau-1 epitope was increased during neuronal PC12 cell apoptosis, and further that the microtubule binding of tau from apoptotic cells was significantly impaired because of altered phosphorylation. The fact that the microtubule-binding capacity of tau from apoptotic cells was reduced to approximately 30% of control values indicated that sites in addition to those within the Tau-1 epitope were hyperphosphorylated during apoptosis. In this study using a combination of immunological and biochemical approaches, numerous sites were found to be hyperphosphorylated on tau isolated from apoptotic cells. Further, during apoptosis, the activities of cell division control protein kinase (cdc2) and cyclin-dependent kinase 5 (cdk5) were selectively and significantly increased. The association of these two protein kinases with tau was also increased during apoptosis. These findings are intriguing because many of the sites found to be hyperphosphorylated on tau during apoptosis are also hyperphosphorylated on tau from Alzheimer's disease brain. Likewise, there are data indicating that in Alzheimer's disease the activities of cdc2 and cdk5 are also increased.  相似文献   

6.
From bovine brain microtubules we purified tau protein kinase I (TPKI, Mr 45,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tau protein kinase II (TPKII) whose activity was attributed to a 30-kDa protein on SDS-PAGE by affinity-labeling using an ATP analog. Both kinases were activated by tubulin. TPKII, but not TPKI, phosphorylated tau fragment peptides previously used for detection of a Ser/ThrPro kinase activity. Therefore, TPKII was considered to be the Ser/ThrPro kinase. TPKI was more effective than TPKII for producing the decrease of tau-1 immunoreactivity and mobility shift of tau on SDS-PAGE. Moreover, TPKI, but not TPKII nor other well-known protein kinases, generated an epitope present on paired helical filaments. These findings suggested that tau phosphorylated by TPKI resembled A-68, a component of paired helical filaments.  相似文献   

7.
Monoclonal antibody Tau 2 was raised against bovine tau protein, was reported to recognize a conformational epitope, and stained tau was found in neurofibrillary tangles of Alzheimer's disease, but not normal human tau. We synthesized tetradeka peptides corresponding to the original bovine sequence, its serine-->proline substituted analog, the genuine human sequence of this region, and the bovine epitope phosphorylated on the crucial serine. The secondary structure of the peptides was determined by circular dichroism. It was found that only the original bovine epitope showed a tendency to form the beta-pleated sheets characteristic of the neurofibrillary tangles. The spectra of the human peptide, its analog, and the phosphorylated bovine sequence were very similar, featuring a weak, helical beta-turn character. Eventual phosphorylation of epitopes of this otherwise heavily phosphorylated protein may overcome inter-species conformational gaps.  相似文献   

8.
Hyperphosphorylation and aggregation of protein tau are typical for neurodegenerative tauopathies, including Alzheimer's disease (AD). We demonstrate here that human tau expressed in yeast acquired pathological phosphoepitopes, assumed a pathological conformation, and formed aggregates. These processes were modulated by yeast kinases Mds1 and Pho85, orthologues of GSK-3beta and cdk5, respectively. Surprisingly, inactivation of Pho85 increased phosphorylation of tau-4R, concomitant with increased conformational change defined by antibody MC1 and a 40-fold increase in aggregation. Soluble protein tau, purified from yeast lacking PHO85, spontaneously and rapidly formed tau filaments in vitro. Further fractionation of tau by anion-exchange chromatography yielded a hyperphosphorylated monomeric subfraction, termed hP-tau/MC1, with slow electrophoretic mobility and enriched with all major epitopes, including MC1. Isolated hP-tau/MC1 vastly accelerated in vitro aggregation of wild-type tau-4R, demonstrating its functional capacity to initiate aggregation, as well as its structural stability. Combined, this novel yeast model recapitulates hyperphosphorylation, conformation, and aggregation of protein tau, provides insight in molecular changes crucial in tauopathies, offers a source for isolation of modified protein tau, and has potential for identification of modulating compounds and genes.  相似文献   

9.
Calcineurin dephosphorylated microtubule-associated protein 2 (MAP2) and tau factor phosphorylated by cyclic AMP-dependent and Ca2+, calmodulin-dependent protein kinases from the brain. Tubulin, only phosphorylated by the Ca2+, calmodulin-dependent protein kinase, served as substrate for calcineurin. The concentrations of calmodulin required to give half-maximal activation of calcineurin were 21 and 16 nM with MAP2 and tau factor as substrates, respectively. The Km and Vmax values were in ranges of 1-3 microM and 0.4-1.7 mumol/mg/min, respectively, for MAP2 and tau factor. The Km value for tubulin was in a similar range, but the Vmax value was lower. The peptide map analysis revealed that calcineurin dephosphorylated MAP2 and tau factor universally, but not in a site-specific manner. The autophosphorylated Ca2+, calmodulin-dependent protein kinase was not dephosphorylated by calcineurin. These results suggest that calcineurin plays an important role in the functions of microtubules via dephosphorylation.  相似文献   

10.
The microtubule-associated protein tau is a major component of the paired helical filaments (PHFs) observed in Alzheimer's disease brains. The pathological tau is distinguished from normal tau by its state of phosphorylation, higher apparent M(r) and reaction with certain antibodies. However, the protein kinase(s) have not been characterized so far. Here we describe a protein kinase from brain which specifically induces the Alzheimer-like state in tau protein. The 42 kDa protein belongs to the family of mitogen activated protein kinases (MAPKs) and is activated by tyrosine phosphorylation. It is capable of phosphorylating Ser-Pro and Thr-Pro motifs in tau protein (approximately 14-16 P1 per tau molecule). By contrast, other proline directed Ser/Thr kinases such as p34(cdc2) combined with cyclin A or B have only minor effects on tau phosphorylation. We propose that MAP kinase is abnormally active in Alzheimer brain tissue, or that the corresponding phosphatases are abnormally passive, due to a breakdown of the normal regulatory mechanisms.  相似文献   

11.
Protein phosphatase C was purified 140-fold from bovine brain with 8% yield using histone H1 phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase (cyclic AMP-kinase). Brain protein phosphatase C was considered to consist of 10 and 90%, respectively, of the catalytic subunits of protein phosphatases 1 and 2A on the basis of the effects of ATP and inhibitor-2. Protein phosphatase C dephosphorylated microtubule-associated protein 2 (MAP2), tau factor, and tubulin phosphorylated by a multifunctional Ca2+/calmodulin-dependent protein kinase (calmodulin-kinase) and the catalytic subunit of cyclic AMP-kinase. The properties of dephosphorylation of MAP2, tau factor, and tubulin were compared. The Km values were in the ranges of 1.6-2.7 microM for MAP2 and tau factor. The Km value for tubulin decreased from 25 to 10-12.5 microM in the presence of 1.0 mM Mn2+. No difference in kinetic properties of dephosphorylation was observed between the substrates phosphorylated by the two kinases. Protein phosphatase C did not dephosphorylate the native tubulin, but universally dephosphorylated tubulin phosphorylated by the two kinases. The holoenzyme of protein phosphatase 2A from porcine brain could also dephosphorylate MAP2, tau factor, and tubulin phosphorylated by the two kinases. The phosphorylation of MAP2 and tau factor by calmodulin-kinase separately induced the inhibition of microtubule assembly, and the dephosphorylation by protein phosphatase C removed its inhibitory effect. These data suggest that brain protein phosphatases 1 and 2A are involved in the switch-off mechanism of both Ca2+/calmodulin-dependent and cyclic AMP-dependent regulation of microtubule formation.  相似文献   

12.
It is well known that tau is a good in vitro substrate for Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). However, it is not clear at present whether CaM kinase II phosphorylates tau in vivo or not. Serine 416, numbered according to the longest human tau isoform, has been reported to be one of the major phosphorylation sites by CaM kinase II in vitro. In this study, we produced a specific antibody against tau phosphorylated at serine 416 (PS416-tau). Immunoblot analysis revealed that the antibody reacted with tau in the rat brain extract which was prepared in the presence of protein phosphatase inhibitors. Developmental study indicated that serine 416 was strongly phosphorylated at early developmental stages in rat brain. We examined the localization of PS416-tau in primary cultured hippocampal neurons and the immortalized GnRH neurons (GT1-7 cells), which were stably transfected with CaM kinase IIalpha cDNA. Immunostaining of these cells indicated that tau was phosphorylated mainly in neuronal soma. Interestingly, tau in neuronal soma in Alzheimer's disease (AD) brain was strongly immunostained by the antibody. These results suggest that CaM kinase II is involved in the accumulation of tau in neuronal soma in AD brain.  相似文献   

13.
In the brains of Alzheimer's disease patients, the tau protein dissociates from the axonal microtubule and abnormally aggregates to form a paired helical filament (PHF). One of the priorities in Alzheimer research is to determine the effects of abnormal phosphorylation on the local structure. A series of peptides corresponding to isolated regions of tau protein have been successfully synthesized using Fmoc-based chemistry and their conformations were determined by 1H NMR spectroscopy and circular dichroism (CD) spectroscopy. Immunodominant peptides corresponding to tau-(256-273), tau-(350-367) and two phosphorylated derivatives in which a single Ser was phosphorylated at positions 262 and 356, respectively, were the main focus of the study. A direct alteration of the local structure after phosphorylation constitutes a new strategy through which control of biological activity can be enforced. In our study on Ser262 in R1 peptide and Ser356 in R4 peptide, phosphorylation modifies both the negative charge and the local conformation nearby the phosphorylation sites. Together, these structural changes indicate that phosphorylation may act as a conformational switch in the binding domain of tau protein to alter specificity and affinity of binding to microtubule, particularly in response to the abnormal phosphorylation events associated with Alzheimer's disease.  相似文献   

14.
It has been suggested that hyperphosphorylation of the tau protein in neurofibrillary tangles may be relevant to the etiology of Alzheimer's disease and that at least one of the hyperphosphorylated sites lies within a consensus sequence for the p34cdc2/cdc28 family of kinases. We describe a new method for large-scale purification of p34cdc28 kinase from Saccharomyces cerevisiae and show that the purified enzyme can phosphorylate bovine and human tau. Phosphorylation was greatly enhanced by the addition of basic and acidic substrate modulators. The effect of the substrate modulators differed both with the structures of the substrates and the modulators. Similar results were obtained with a kinase that could be purified from neurofilaments by p13suc1 affinity chromatography, a hallmark of p34cdc2/cdc28-type kinases. These results are consistent with the hypothesis that a kinase of this type is involved in tau phosphorylation in vivo and open the possibility that hyperphosphorylation in Alzheimer's disease may be controlled by substrate modulators.  相似文献   

15.
The paired helical filaments (PHFs) of Alzheimer's disease consist mainly of the microtubule-associated protein tau. PHF tau differs from normal human brain tau in that it has a higher Mr and a special state of phosphorylation. However, the protein kinase(s) involved, the phosphorylation sites on tau and the resulting conformational changes are only poorly understood. Here we show that a new monoclonal antibody, AT8, records the PHF-like state of tau in vitro, and we describe a kinase activity that turns normal tau into a PHF-like state. The epitope of AT8 is around residue 200, outside the region of internal repeats and requires the phosphorylation of serines 199 and/or 202. Both of these are followed by a proline, suggesting that the kinase activity belongs to the family of proline-directed kinases. The epitope of AT8 is nearly coincident with that of another phosphorylation-dependent antibody, TAU1 [Binder, L.I., Frankfurter, A. and Rebhun, L. (1985) J. Cell Biol., 101, 1371-1378], but the two are complementary since TAU1 requires a dephosphorylated epitope.  相似文献   

16.
Microtubule-associated protein tau from Alzheimer brain has been shown to be phosphorylated at several ser/thr-pro and ser/thr-X sites (Hasegawa, M. et al., J. Biol. Chem, 267, 17047–17054, 1992). Several proline-dependent protein kinases (PDPKs) (MAP kinase, cdc2 kinase, glycogen synthase kinase-3, tubulin-activated protein kinase, and 40 kDa neurofilament kinase) are implicated in the phosphorylation of the ser-thr-pro sites. The identity of the kinase(s) that phosphorylate that ser/thr-X sites are unknown. To identify the latter kinase(s) we have compared the phosphorylation of bovine tau by several brain protein kinases. Stoichiometric phosphorylation of tau was achieved by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, protein kinase C and cyclic AMP-dependent protein kinase, but not with casein kinase-2 or phosphorylase kinase. Casein kinase-1 and calmodulin-dependent protein kinase II were the best tau kinases, with greater than 4 mol and 3 mol32P incorporated, respectively, into each mol of tau. With the sequential addition of these two kinases,32P incorporation approached 6 mol. Peptide mapping revealed that the different kinases largely phosphorylate different sites on tau. After phosphorylation by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, cyclic AMP-dependent protein kinase and casein kinase-2, the mobility of tau isoforms as detected by SDS-PAGE was decreased. Protein kinase C phosphorylation did not produce such a mobility shift. Our results suggest that one or more of the kinases studied here may participate in the hyperphosphorylation of tau in Alzheimer disease. Such phosphorylation may serve to modulate the activaties of other tau kinases such as the PDPKs.Abbreviations PHF paired helical filaments - A-kinase cyclic AMP-dependent protein kinase - CaM kinase II calcium/calmodulin-dependent protein kinase II - C-kinase calcium-phospholipid-dependent protein kinase - CK-1 casein kinase-1 - CK-2 casein kinase-2 - Gr kinase calcium/calmodulin-dependent protein kinase from rat cerebellum - GSK-3 glycogen synthase kinase-3 - MAP kinase mitogen-activated protein kinase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

17.
Members of the mitogen-activated protein (MAP) kinase family are implicated in mediating entry of cells into the cell cycle, as well as passage through meiotic M phase. These kinases have attracted much interest because their activation involves phosphorylation on both tyrosine and threonine residues, but little is known about their physiological targets. In this study, two distinct members of the MAP kinase family (p44mpk and p42mapk) are shown to phosphorylate chicken lamin B2 at a single site identified as Ser16. Moreover, these MAP kinases cause depolymerization of in-vitro-assembled longitudinal lamin head-to-tail polymers. Ser16 was previously shown to be phosphorylated during mitosis in vivo, and to be a target of the mitotic protein kinase p34cdc2 in vitro. Accordingly, lamins were proposed to be direct in vivo substrates of p34cdc2. This proposal is supported by quantitative analyses indicating that lamin B2, when assayed in vitro, is a substantially better substrate for p34cdc2 than for MAP kinases. Nevertheless, a physiological role of MAP kinases in lamin phosphorylation is not excluded. The observation that members of the MAP kinase family display sequence specificities overlapping that of p34cdc2 raises the possibility that some of the purported substrates of p34cdc2 may actually be physiological substrates of MAP kinases.  相似文献   

18.
Oncoprotein 18 or stathmin was isolated from bovine brain, characterized and novel features of its function as a microtubule depolymerizing factor were tested.The effect of phosphorylation of stathmin on its function as a microtubule depolymerizing factor has been tested in vitro. Five different protein kinases, protein kinase A, MAP kinase, cdc2 kinase, glycogen synthase kinase 3 and casein kinase 2, were used to modify stathmin, since it is known that these kinases could phosphorylate several residues that are modified in vivo and could have important roles in stathmin function. The residues phosphorylated in vitro by the different protein kinases were identified and in some cases they correspond to those modified in vivo.Recombinant unphosphorylated stathmin and native stathmin, which was previously dephosphorylated with alkaline phosphatase, showed similar microtubule depolymerizing activity. This activity is higher than that of stathmin phosphorylated by protein kinase A, MAP kinase or cdc 2 kinase, whereas phosphorylation of the protein with casein kinase 2 or glycogen synthase kinase 3 resulted in a slight increase of the depolymerizing activity.  相似文献   

19.
Phosphorylation of the microtubule-associated protein tau is regulated by the balanced interplay of kinases and phosphatases. Disturbance of this balance causes hyperphosphorylation of tau and neurofibrillary tangle formation in Alzheimer’s disease brain. Here, we crossed Dom5 mice that express a substrate-specific dominant negative mutant form, L309A Cα, of protein phosphatase 2A (PP2A) with neurofibrillary-tangle-forming P301L mutant tau transgenic pR5 mice. This exacerbated the tau pathology of pR5 mice significantly. Double-transgenic Dom5/pR5 mice showed 7-fold increased numbers of hippocampal neurons that specifically phosphorylated the pathological S422 epitope of tau. They showed 8-fold increased numbers of tangles compared to pR5 mice, in agreement with our previous finding that tangle formation is correlated with and preceded by phosphorylation of tau at the S422 epitope. This suggests that, in addition to kinases, PP2A and its regulatory subunits may be a therapeutic target for Alzheimer’s disease.  相似文献   

20.
In Alzheimer's disease, the most characteristic neuropathological changes are the formation of neurofibrillary tangles (NFT) and neuritic plaques (NP) characterized by the presence of bundles of paired helical filaments (PHF) that accumulate in the degenerating neurites and neuronal cell bodies. Although the protein composition of the PHF is ill-defined, a number of microtubule-associated proteins have been implicated in these lesions. Here we report results with an antiserum monospecific for the microtubule-associated protein MAP 2 which does not cross-react with any other microtubular protein. Immunostaining with this antibody of sections from an Alzheimer's brain show a strong reactivity with NFT but no reactivity at the level of the NP. On the other hand, immunostaining of Alzheimer's brain sections with another antibody specific for the microtubule-associated protein tau shows strong staining of PHF on both NFT and NP. These findings confirm the presence of the tau proteins in the PHF and strongly suggest that MAP 2 may not be a main structural component of the PHF. Labelling of NFT with the anti-MAP 2 antiserum suggests a non-specific binding of MAP 2 to the PHF during the process of NFT formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号