首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Xylitol production from D-arabitol by the membrane and soluble fractions of Gluconobacter oxydans was investigated. Two proteins in the soluble fraction were found to have the ability to increase xylitol production. Both of these xylitol-increasing factors were purified, and on the basis of their NH2-terminal amino acid sequences the genes encoding both of the factors were cloned. Expression of the cloned genes in Escherichia coli showed that one of the xylitol-increasing factors is the bifunctional enzyme transaldolase/glucose-6-phosphate isomerase, and the other is ribulokinase. Using membrane and soluble fractions of G. oxydans, 3.8 g/l of xylitol were produced from 10 g/l D-arabitol after incubation for 40 h, and addition of purified recombinant transaldolase/glucose-6-phosphate isomerase or ribulokinase increased xylitol to 5.4 g/l respectively, confirming the identity of the xylitol-increasing factors.  相似文献   

2.
Microorganisms capable of producing xylitol from D-arabitol were screened for. Of the 420 strains tested, three bacteria, belonging to the genera Acetobacter and Gluconobacter, produced xylitol from D-arabitol when intact cells were used as the enzyme source. Among them, Gluconobacter oxydans ATCC 621 produced 29.2 g/l xylitol from 52.4 g/l D-arabitol after incubation for 27 h. The production of xylitol was increased by the addition of 5% (v/v) ethanol and 5 g/l D-glucose to the reaction mixture. Under these conditions, 51.4 g/l xylitol was obtained from 52.4 g/l D-arabitol, a yield of 98%, after incubation for 27 h. This conversion consisted of two successive reactions, conversion of D-arabitol to D-xylulose by a membrane-bound D-arabitol dehydrogenase, and conversion of D-xylulose to xylitol by a soluble NAD-dependent xylitol dehydrogenase. Use of disruptants of the membrane-bound alcohol dehydrogenase genes suggested that NADH was generated via NAD-dependent soluble alcohol dehydrogenase.  相似文献   

3.
Xylitol dehydrogenase (XDH) was purified from the cytoplasmic fraction of Gluconobacter oxydans ATCC 621. The purified enzyme reduced D-xylulose to xylitol in the presence of NADH with an optimum pH of around 5.0. Based on the determined NH2-terminal amino acid sequence, the gene encoding xdh was cloned, and its identity was confirmed by expression in Escherichia coli. The xdh gene encodes a polypeptide composed of 262 amino acid residues, with an estimated molecular mass of 27.8 kDa. The deduced amino acid sequence suggested that the enzyme belongs to the short-chain dehydrogenase/reductase family. Expression plasmids for the xdh gene were constructed and used to produce recombinant strains of G. oxydans that had up to 11-fold greater XDH activity than the wild-type strain. When used in the production of xylitol from D-arabitol under controlled aeration and pH conditions, the strain harboring the xdh expression plasmids produced 57 g/l xylitol from 225 g/l D-arabitol, whereas the control strain produced 27 g/l xylitol. These results demonstrated that increasing XDH activity in G. oxydans improved xylitol productivity.  相似文献   

4.
氧化葡萄糖酸杆菌Gluconobacter oxydans NH-10能够转化D-阿拉伯糖醇,经木酮糖生成木糖醇,但该菌中存在的NAD+型D-阿拉伯糖醇脱氢酶可将中间产物D-木酮糖还原成D-阿拉伯糖醇,从而影响木糖醇的积累.利用同源重组基因敲除的方法构建G.oxydans NH-10 NAD+型D-阿拉伯糖醇脱氢酶( sArDH)基因敲除突变株.PCR结果显示:sArDH基因在1株重组菌中完全被卡那抗性基因替代,表明sArDH基因敲除突变体构建成功.生物学特性鉴定显示:突变菌在菌落形态,生长状态方面与原始菌无明显差异.静息细胞转化D-阿拉伯糖醇结果显示,突变株不存在还原D-木酮糖产D-阿拉伯糖醇的逆反应,终产物木糖醇的产量有所提高.  相似文献   

5.
After an extensive selection procedure, Saccharomyces cerevisiae strains that express the xylose isomerase gene from the fungus Piromyces sp. E2 can grow anaerobically on xylose with a mu(max) of 0.03 h(-1). In order to investigate whether reactions downstream of the isomerase control the rate of xylose consumption, we overexpressed structural genes for all enzymes involved in the conversion of xylulose to glycolytic intermediates, in a xylose-isomerase-expressing S. cerevisiae strain. The overexpressed enzymes were xylulokinase (EC 2.7.1.17), ribulose 5-phosphate isomerase (EC 5.3.1.6), ribulose 5-phosphate epimerase (EC 5.3.1.1), transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1.2). In addition, the GRE3 gene encoding aldose reductase was deleted to further minimise xylitol production. Surprisingly the resulting strain grew anaerobically on xylose in synthetic media with a mu(max) as high as 0.09 h(-1) without any non-defined mutagenesis or selection. During growth on xylose, xylulose formation was absent and xylitol production was negligible. The specific xylose consumption rate in anaerobic xylose cultures was 1.1 g xylose (g biomass)(-1) h(-1). Mixtures of glucose and xylose were sequentially but completely consumed by anaerobic batch cultures, with glucose as the preferred substrate.  相似文献   

6.
Subcellular distribution of pentose-phosphate cycle enzymes in rat liver was investigated, using differential and isopycnic centrifugation. The activities of the NADP+-dependent dehydrogenases of the pentose-phosphate pathway (glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase) were detected in the purified peroxisomal fraction as well as in the cytosol. Both dehydrogenases were localized in the peroxisomal matrix. Chronic administration of the hypolipidemic drug clofibrate (ethyl-alpha-p-chlorophenoxyisobutyrate) caused a 1.5-2.5-fold increase in the amount of glucose-6-phosphate and phosphogluconate dehydrogenases in the purified peroxisomes. Clofibrate decreased the phosphogluconate dehydrogenase, but did not alter glucose-6-phosphate dehydrogenase activity in the cytosolic fraction. The results obtained indicate that the enzymes of the non-oxidative segment of the pentose cycle (transketolase, transaldolase, triosephosphate isomerase and glucose-phosphate isomerase) are present only in a soluble form in the cytosol, but not in the peroxisomes or other particles, and that ionogenic interaction of the enzymes with the mitochondrial and other membranes takes place during homogenization of the tissue in 0.25 M sucrose. Similar to catalase, glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase are present in the intact peroxisomes in a latent form. The enzymes have Km values for their substrates in the millimolar range (0.2 mM for glucose-6-phosphate and 0.10-0.12 mM for 6-phosphogluconate). NADP+, but not NAD+, serves as a coenzyme for both enzymes. Glucose-6-phosphate dehydrogenase was inhibited by palmitoyl-CoA, and to a lesser extent by NADPH. Peroxisomal glucose-6-phosphate and phosphogluconate dehydrogenases have molecular mass of 280 kDa and 96 kDa, respectively. The putative functional role of pentose-phosphate cycle dehydrogenases in rat liver peroxisomes is discussed.  相似文献   

7.
The biotransformation of D-arabitol into xylitol was investigated with focus on the conversion of D-xylulose into xylitol. This critical conversion was accomplished using Escherichia coli to co-express a xylitol dehydrogenase gene from Gluconobacter oxydans and a cofactor regeneration enzyme gene which was a glucose dehydrogenase gene from Bacillus subtilis for system 1 and an alcohol dehydrogenase gene from G. oxydans for system 2. Both systems efficiently converted D-xylulose into xylitol without the addition of expensive NADH. Approximately 26.91 g/L xylitol was obtained from around 30 g/L D-xylulose within system 1 (E. coli Rosetta/Duet-xdh-gdh), with a 92% conversion yield, somewhat higher than that of system 2 (E. coli Rosetta/Duet-xdh-adh, 24.9 g/L, 85.2%). The xylitol yields for both systems were more than 3-fold higher compared to that of the G. oxydans NH-10 cells (7.32 g/L). The total turnover number (TTN), defined as the number of moles of xylitol formed per mole of NAD(+), was 32,100 for system 1 and 17,600 for system 2. Compared with that of G. oxydans NH-10, the TTN increased by 21-fold for system 1 and 11-fold for system 2, hence, the co-expression systems greatly enhanced the NADH supply for the conversion, benefiting the practical synthesis of xylitol.  相似文献   

8.
The yeast Candida tropicalis produces xylitol, a natural, low-calorie sweetener whose metabolism does not require insulin, by catalytic activity of NADPH-dependent xylose reductase. The oxidative pentose phosphate pathway (PPP) is a major basis for NADPH biosynthesis in C. tropicalis. In order to increase xylitol production rate, xylitol dehydrogenase gene (XYL2)disrupted C. tropicalis strain BSXDH-3 was engineered to co-express zwf and gnd genes which, respectively encodes glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6-PGDH), under the control of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. NADPH-dependent xylitol production was higher in the engineered strain, termed "PP", than in BSXDH-3. In fermentation experiments using glycerol as a co-substrate with xylose, strain PP showed volumetric xylitol productivity of 1.25 g l(-1) h(-1), 21% higher than the rate (1.04 g l(-1) h(-1)) in BSXDH-3. This is the first report of increased metabolic flux toward PPP in C. tropicalis for NADPH regeneration and enhanced xylitol production.  相似文献   

9.
Using ion-exchange chromatography of sucrose phosphates on Dowex-1, it was demonstrated that the highly purified rat liver transketolase (specific activity 1.7 mumol/min.mg protein) is capable of catalyzing the synthesis of erythrose-4-phosphate, a metabolite of the pentose phosphate pathway non-oxidizing step, from the initial participants of glycolysis, i. e., glucose-6-phosphate and fructose-6-phosphate. As can be evidenced from the reaction course, the second product of this synthesis is octulose-8-phosphate. The reaction was assayed by accumulation of erythrose-4-phosphate. The soluble fraction from rat liver catalyzes under identical conditions the synthesis of heptulose-7-phosphate (but not erythrose-4-phosphate), which points to the utilization of the erythrose-4-phosphate formed in the course of the transketolase reaction by transaldolase which is also present in the soluble fraction. The role of the transketolase reaction reversal from the synthesis of pentose phosphate derivatives to glycolytic products is discussed. The transketolase reaction provides for the relationship between glycolysis and the anaerobic step of the pentose phosphate pathway which share common metabolites, i. e. glucose-6-phosphate and fructose-6-phosphate.  相似文献   

10.
A variety of raw materials have been used in fermentation process. This study shows the use of rice straw hemicellulosic hydrolysate, as the only source of nutrient, to produce high added-value products. In the present work, the activity of the enzymes xylose reductase (XR); xylitol dehydrogenase (XD); and glucose-6-phosphate dehydrogenase (G6PD) during cultivation of Candida guilliermondii on rice straw hemicellulosic hydrolysate was measured and correlated with xylitol production under different pH values (around 4.5 and 7.5) and initial xylose concentration (around 30 and 70 g l(-1)). Independent of the pH value and xylose concentration evaluated, the title of XD remained constant. On the other hand, the volumetric activity of G6PD increased whereas the level of XR decreased when the initial xylose concentration was increased from 30 to 70 g l(-1). The highest values of xylitol productivity (Q (P) approximately 0.40 g l(-1)) and yield factor (Y (P/S) approximately 0.60 g g(-1)) were reached at highest G6PD/XR ratio and lowest XR/XD ratio. These results suggest that NADPH concentrations influence the formation of xylitol more than the activity ratios of the enzymes XR and XD. Thus, an optimal rate between G6PD and XR must be reached in order to optimize the xylitol production.  相似文献   

11.
【目的】获得葡萄糖酸氧化杆菌(Gluconobacter oxydans CGMCC 1.637)的木糖醇脱氢酶基因,研究其酶学性质及碳源特别是D-阿拉伯醇和木糖醇对该酶活性的影响。【方法】通过已报道序列的木糖醇脱氢酶的保守区设计引物,用聚合酶链式反应(polymerase chain reaction,PCR)扩增获得目的基因片段。根据获得的片段序列设计引物克隆目的基因的5’和3’片段,将所获得的片段拼接,获得完整的木糖醇脱氢酶基因。通过构建工程菌获得重组蛋白,并利用氧化还原反应测定重组酶的活性。用含不同碳源的培养基培养G.oxydans CGMCC 1.637,并测定其破胞上清液木糖醇脱氢酶氧化木糖醇的活性;用不同碳源培养的G.oxydans CGMCC 1.637转化木酮糖,用高效液相色谱法测定木糖醇的产量。【结果】获得一个新的798bp的木糖醇脱氢酶基因,所编码的木糖醇脱氢酶含265个氨基酸,属于短链脱氢酶家族。酶学性质研究发现,该木糖醇脱氢酶催化木糖醇氧化的最适合条件为35℃、pH 10.0,最高活性为23.27 U/mg,催化木酮糖还原为木糖醇的最适条件为30℃、pH 6.0。最高活性为255.55 U/mg;该木糖醇脱氢酶的对木糖醇的Km和Vmax分别为78.97 mmol/L和40.17 U/mg。碳源诱导实验表明,d-山梨醇对G.oxydans CGMCC 1.637木糖醇脱氢酶的活性有明显的促进作用,而葡萄糖、果糖、木糖、木糖醇、D-阿拉伯醇对木糖醇脱氢酶活性有明显的抑制作用。而在转化实验中,用d-甘露糖培养的G.oxydans CGMCC 1.637的转化能力明显高于其他碳源培养的G.oxydans CGMCC 1.637的转化能力,其中,用阿拉伯醇培养的G.oxydans CGMCC 1.637的转化能力最低,仅为对照的35%。【结论】克隆自G.oxydans CGMCC 1.637的木糖醇脱氢酶基因是一个新的基因,用阿拉伯醇培养的G.oxydans CGMCC 1.637破胞液木糖醇脱氢酶活性低;且阿拉伯醇对G.oxydans CGMCC 1.637木酮糖的还原能力具有抑制作用。  相似文献   

12.
The coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans was investigated. By investigation of the activities of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) in the soluble fraction of G. oxydans, and cloning and expression of genes in Escherichia coli, it was found that both G6PDH and 6PGDH have NAD/NADP dual coenzyme specificities. It was suggested that the pentose phosphate pathway is responsible for NADH regeneration in G. oxydans.  相似文献   

13.
Molecular analysis of the structural gene for yeast transaldolase   总被引:5,自引:0,他引:5  
We have cloned the structural gene for yeast transaldolase. Transformants carrying the TAL1 gene on a multicopy plasmid over-produced transaldolase. A deletion mutant which was constructed using the cloned gene did not show any detectable transaldolase activity in vitro. Furthermore, both transaldolase isoenzymes which were detected in wild-type crude extracts by immunoblotting were missing in the deletion mutants. Thus, TAL1 is the only transaldolase structural gene in yeast. TAL1 is not an essential gene. Deletion of the transaldolase gene did not affect growth on complete media with different carbon sources or on synthetic media. However, the transaldolase-deficient strains accumulated sedoheptulose 7-phosphate, an intermediate of the pentose-phosphate pathway. Mutants lacking both transaldolase and phosphoglucose isomerase grew more slowly than the single mutants. They accumulated more sedoheptulose 7-phosphate on medium containing fructose than on glucose medium. This shows that fructose 6-phosphate and glyceraldehyde 3-phosphate, metabolites of glycolysis, can enter the nonoxidative part of the pentose-phosphate pathway.  相似文献   

14.
Abstract— Methods are presented for the measurement of the non-oxidative enzymes of the pentose phosphate pathway in freeze-dried samples of tissue weighing 2 μg or less. The activities of transketolase (EC 2.2.1.1), transaldolase (EC 2.2.1.2), ribosephosphate isomerase (EC 5.3.1.6), and ribulosephosphate epimerase (EC 5.1.3.1), together with glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) have been measured in seven specific regions in the central nervous system of the rat. Michaelis constants and temperature coefficients of these enzymes were obtained on homogenates of whole rat brain. The entire enzymic complement of the pentose phosphate pathway was detected in each of the regions examined. The activities of the non-oxidative enzymes and 6-phosphogluconate dehydrogenase did not vary greatly among the different regions examined, whereas the activity of glucose-6-phosphate dehydrogenase varied in close correspondence with the lipid content of the various structures. The cellular, granular layer of the cerebellum was exceptional, since it exhibited at least three times more transaldolase activity than that observed in other structures, an observation suggesting an association of transaldolase with nerve cell bodies.  相似文献   

15.
Microbial Production of Xylitol from Glucose   总被引:3,自引:0,他引:3       下载免费PDF全文
A microbiological method is described for the production of xylitol, which is used as a sugar substitute for diabetics. A sequential fermentation process yielded 9.0 g of xylitol from 77.5 g of glucose via D-arabitol and D-xylulose. Candida guilliermondii var. soya (ATCC 20216) consumed 5.1 g of D-xylulose and produced 2.8 g of xylitol per 100 ml. Pentitol production from D-xylulose by yeasts was divided into three types: I, yeast-produced xylitol; II, yeast-produced D-arabitol; and III, yeast-produced xylitol and D-arabitol. D-Xylulose, but not glucose, was dissimilated to xylitol by yeasts under aerobic conditions.  相似文献   

16.
Methods for the quantitative determination of ribose 5-phosphate isomerase, ribulose 5-phosphate 3-epimerase, transketolase and transaldolase in tissue extracts are described. The determinations depend on the measurement of glyceraldehyde 3-phosphate by using the coupled system triose phosphate isomerase, α-glycero-phosphate dehydrogenase and NADH. By using additional purified enzymes transketolase, ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase conditions could be arranged so that each enzyme in turn was made rate-limiting in the overall system. Transaldolase was measured with fructose 6-phosphate and erythrose 4-phosphate as substrates, and again glyceraldehyde 3-phosphate was measured by using the same coupled system. Measurements of the activities of the non-oxidative reactions of the pentose phosphate pathway were made in a variety of tissues and the values compared with those of the two oxidative steps catalysed by glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase.  相似文献   

17.
D-Xylulose and L-xylulose were produced biologically by the oxidation of a corresponding pentitol. A Klebsiella pneumoniae mutant was constructed for the oxidation of D-arabitol to D-xylulose. This mutant constitutively synthesized the D-arabitol permease system and D-arabitol dehydrogenase but was unable to produce the D-xylulokinase of the D-arabitol pathway or the D-xylose isomerase and D-xylulokinase of the D-xylose pathway. An Erwinia uredovora mutant which constitutively synthesized a novel xylitol-4-dehydrogenase but could not synthesize L-xylulokinase was used for the oxidation of xylitol to L-xylulose. Washed cell suspensions of either mutant incubated with 0.5% pentitol would oxidize 60 to 65% of the pentitol to the corresponding ketopentose in 18 h and excrete the ketopentose into the medium. Ketopentoses were rapidly purified from the remaining pentitol by hydroxyl affinity chromatography.  相似文献   

18.
D-Xylulose and L-xylulose were produced biologically by the oxidation of a corresponding pentitol. A Klebsiella pneumoniae mutant was constructed for the oxidation of D-arabitol to D-xylulose. This mutant constitutively synthesized the D-arabitol permease system and D-arabitol dehydrogenase but was unable to produce the D-xylulokinase of the D-arabitol pathway or the D-xylose isomerase and D-xylulokinase of the D-xylose pathway. An Erwinia uredovora mutant which constitutively synthesized a novel xylitol-4-dehydrogenase but could not synthesize L-xylulokinase was used for the oxidation of xylitol to L-xylulose. Washed cell suspensions of either mutant incubated with 0.5% pentitol would oxidize 60 to 65% of the pentitol to the corresponding ketopentose in 18 h and excrete the ketopentose into the medium. Ketopentoses were rapidly purified from the remaining pentitol by hydroxyl affinity chromatography.  相似文献   

19.
Evidence for a pentose phosphate pathway in Helicobacter pylori   总被引:1,自引:0,他引:1  
Abstract Evidence for the presence of enzymes of the pentose phosphate pathway in Helicobacter pylori was obtained using 31P nuclear magnetic resonance spectroscopy. Activities of enzymes which are part of the oxidative and non-oxidative phases of the pathway were observed directly in incubations of bacterial lysates with pathway intermediates. Generation of NADPH and 6-phosphogluconate from NADP+ and glucose 6-phosphate indicated the presence of glucose 6-phosphate dehydrogenase and 6-phosphogluconolactonase. Reduction of NADP+ with production of ribulose 5-phosphate from 6-phosphogluconate revealed 6-phosphogluconate dehydrogenase activity. Phosphopentose isomerase and transketolase activities were observed in incubations containing ribulose 5-phosphate and xylulose 5-phosphate, respectively. The formation of erythrose 4-phosphate from xylulose 5-phosphate and ribose 5-phosphate suggested the presence of transaldolase. The activities of this enzyme and triosephosphate isomerase were observed directly in incubations of bacterial lysates with dihydroxyacetone phosphate and sedoheptulose 7-phosphate. Glucose-6-phosphate isomerase activity was measured in incubations with fructos 6-phosphate. The presence of these enzymes in H. pylori suggested the existence of a pentose phosphate pathway in the bacterium, possibly as a mechanism to provide NADPH for reductive biosynthesis and ribose 5-phosphate for synthesis of nucleic acids.  相似文献   

20.
Tetrahymena pyriformis, strain HSM, do not have glucose-6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, but contain transaldolase, transketolase, ribose 5-phosphate isomerase, ribulose-5-phosphate 3-epimerase, and ribokinase. The nonoxidative enzymes of the pentose phosphate shunt function in metabolism as indicated by the incorporation of label from [1-14C]ribose into CO2 and glycogen and by the increase in total glycogen content of cultures supplemented with ribose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号