首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterochromatin protein 1 (HP1) is a nonhistone chromosomal protein primarily associated with the pericentric heterochromatin and telomeres in Drosophila. The molecular mechanism by which HP1 specifically recognizes and binds to chromatin is unknown. The purpose of this study was to test whether HP1 can bind directly to nucleosomes. HP1 binds nucleosome core particles and naked DNA. HP1-DNA complex formation is length-dependent and cooperative but relatively sequence-independent. We show that histone H4 amino-terminal peptides bind to monomeric and dimeric HP1 in vitro. Acetylation of lysine residues had no significant effect on in vitro binding. The C-terminal chromo shadow domain of HP1 specifically binds H4 N-terminal peptide. Neither the chromo domain nor chromo shadow domain alone binds DNA; intact native HP1 is required for such interactions. Together, these observations suggest that HP1 may serve as a cross-linker in chromatin, linking nucleosomal DNA and nonhistone protein complexes to form higher order chromatin structures.  相似文献   

2.
To identify the interaction proteins for the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunit glutamate receptor-interacting protein 1 (GRIP1), GRIP1 interactions with microtubule-associated protein (MAP)-1B light chain (LC) were investigated. GRIP1 interacts with MAP-1A and MAP-1B in the yeast two-hybrid assay, as is indicated also by glutathione S-transferase (GST) pull-down and coimmunoprecipitation with MAP-1B LC antibody in brain fractions. These results suggest a novel mechanism for localizing AMPA receptors to synaptic sites.  相似文献   

3.
4.
Inhibitor-1 is a potent and specific inhibitor of protein phosphatase 1. Phosphorylation by cAMP-dependent protein kinase is required for expression of its inhibitor activity. In the present study, we have used immobilized inhibitor-1 preparations to study the mechanism underlying protein phosphatase 1 inhibition. Protein phosphatase 1 bound to phosphorylated inhibitor-1 covalently coupled to Sepharose or Affi-Gel beads but did not bind to immobilized preparations of dephosphorylated inhibitor-1 or bovine serum albumin. Phosphorylated inhibitor-1 coupled to Sepharose or Affi-Gel beads retained its ability to inhibit protein phosphatase 1, although the apparent IC50 was decreased about 500-fold. The extent of protein phosphatase 1 binding to immobilized phosphorylated inhibitor-1 was comparable to the degree of protein phosphatase inhibition when the inhibitor protein was present at a concentration near the IC50. The efficiency of protein phosphatase 1 binding to immobilized phosphorylated inhibitor-1 was dependent on the inhibitor concentration on the matrix. Taken together these data indicate that the inhibition of protein phosphatase 1 by phosphorylated inhibitor-1 is a consequence of the binding of the inhibitor protein to one or more sites on protein phosphatase 1.  相似文献   

5.
Do transgene arrays form heterochromatin in vertebrates?   总被引:2,自引:0,他引:2  
Transgenic Research -  相似文献   

6.
7.
The yeast protein Rad23 belongs to a diverse family of proteins that contain an amino-terminal ubiquitin-like (UBL) domain. This domain mediates the binding of Rad23 to proteasomes, which in turn promotes DNA repair and modulates protein degradation, possibly by delivering ubiquitinylated cargo to proteasomes. Here we show that Rad23 binds proteasomes by directly interacting with the base subcomplex of the regulatory particle of the proteasome. A component of the base, Rpn1, specifically recognizes the UBL domain of Rad23 through its leucine-rich-repeat-like (LRR-like) domain. A second UBL protein, Dsk2, competes with Rad23 for proteasome binding, which suggests that the LRR-like domain of Rpn1 may participate in the recognition of several ligands of the proteasome. We propose that the LRR domain of Rpn1 may be positioned in the base to allow the cargo proteins carried by Rad23 to be presented to the proteasomal ATPases for unfolding. We also report that, contrary to expectation, the base subunit Rpn10 does not mediate the binding of UBL proteins to the proteasome in yeast, although it can apparently contribute to the binding of ubiquitin chains by intact proteasomes.  相似文献   

8.
The Heterochromatin Protein 1 family   总被引:6,自引:0,他引:6  
  相似文献   

9.
Centric regions of eukaryotic genomes are packaged into heterochromatin, which possesses the ability to spread along the chromosome and silence gene expression. The process of spreading has been challenging to study at the molecular level due to repetitious sequences within centric regions. A heterochromatin protein 1 (HP1) tethering system was developed that generates “ectopic heterochromatin” at sites within euchromatic regions of the Drosophila melanogaster genome. Using this system, we show that HP1 dimerization and the PxVxL interaction platform formed by dimerization of the HP1 chromo shadow domain are necessary for spreading to a downstream reporter gene located 3.7 kb away. Surprisingly, either the HP1 chromo domain or the chromo shadow domain alone is sufficient for spreading and silencing at a downstream reporter gene located 1.9 kb away. Spreading is dependent on at least two H3K9 methyltransferases, with SU(VAR)3-9 playing a greater role at the 3.7-kb reporter and dSETDB1 predominately acting at the 1.9 kb reporter. These data support a model whereby HP1 takes part in multiple mechanisms of silencing and spreading.HETEROCHROMATIN protein 1 (HP1) was identified in Drosophila as a nonhistone chromosomal protein enriched in centric heterochromatin (James and Elgin 1986; James et al. 1989). On polytene chromosomes, HP1 localizes near centromeres and telomeres, along the fourth chromosome and at ∼200 sites within the euchromatic arms (James et al. 1989; Fanti et al. 2003). Heterochromatin has the ability to “spread,” or propagate in cis, along the chromosome (Weiler and Wakimoto 1995). Spreading is observed when a chromosomal rearrangement places a euchromatic domain next to a heterochromatic domain. Cytologically, spreading is visualized as densely compact chromatin that emanates from the chromocenter, the structure formed by the fusion of centromeres, and extends into the banded regions of polytene chromosomes (Belyaeva and Zhimulev 1991). Euchromatic genes brought into juxtaposition with heterochromatin by chromosomal rearrangements exhibit gene silencing, termed position effect variegation (PEV) (Weiler and Wakimoto 1995). Mutations in Su(var)2-5, the gene encoding HP1, suppress silencing, suggesting HP1 plays a key role in spreading (Eissenberg et al. 1990). The molecular processes of spreading are not well understood.Repetitive sequences within heterochromatin make it difficult to study spreading at the molecular level. In addition, specific repetitive elements are thought to function as initiation sites for heterochromatin formation (Sun et al. 2004; Haynes et al. 2006), making it challenging to separate initiation from spreading. To overcome these problems, we generated a system that nucleates small domains (<20 kb) of repressive chromatin that share many properties with centric heterochromatin. Here we refer to these as ectopic heterochromatin domains. These domains are generated by expressing a fusion protein, consisting of the DNA binding domain of the Escherichia coli lac repressor (LacI) fused to HP1, in stocks possessing lac operator (lacO) repeats upstream of a reporter gene cassette (Danzer and Wallrath 2004). LacI-HP1 associates with the lacO repeats and causes silencing of the adjacent reporter genes. Silencing correlates with alterations in chromatin structure that include the generation of regular nucleosome arrays similar to those observed in centric heterochromatin (Sun et al. 2001; Danzer and Wallrath 2004). Chromatin immunoprecipitation (ChIP) experiments demonstrated that HP1 spreads bidirectionally, 5–10 kb from the lacO repeats, encompassing the reporter genes (Danzer and Wallrath 2004). Thus, HP1 is sufficient to nucleate small heterochromatin-like domains at genomic locations devoid of repetitious sequences, allowing for molecular studies of spreading.HP1 contains an amino terminal chromo domain (CD) and a carboxy chromo shadow domain (CSD), separated by a flexible hinge (Li et al. 2002). The CD forms a hydrophobic pocket implicated in chromosomal association through binding to di- and trimethylated lysine 9 of histone H3 (H3K9me2 and me3, respectively), an epigenetic mark generated by the histone methyltransferases (HMT) SU(VAR)3-9 and dSETDB1 (also known as Egg) (Jacobs et al. 2001; Schotta et al. 2002; Schultz et al. 2002; Ebert et al. 2004; Clough et al. 2007; Seum et al. 2007; Tzeng et al. 2007). Association with methylated H3 is one mechanism of HP1 chromosome association; however, other mechanisms involving interactions with DNA and/or partner proteins likely exist (Fanti et al. 1998; Li et al. 2002; Cryderman et al. 2005). In Drosophila HP1, a single amino acid substitution within the CD (V26M) is present in the Su(var)2-502 allele; flies heterozygous for this allele show suppression of gene silencing by heterochromatin (Eissenberg et al. 1990). Furthermore, flies trans-heterozygous for Su(var)2-502 and a null allele of Su(var)2-5 show dramatic reduction of HP1 near centromeres and do not survive past the third larval stage (Fanti et al. 1998). Consistent with these observations, structural studies show that V26 plays a critical role in forming the hydrophobic pocket of the CD that binds to H3K9me (Jacobs et al. 2001).The HP1 CSD dimerizes and mediates interactions with a variety of nuclear proteins (Cowieson et al. 2000; Yamamoto and Sonoda 2003; Thiru et al. 2004). CSD dimerization sets up an interaction platform for the binding of proteins possessing a penta-peptide motif, PxVxL (where x represents any amino acid) (Thiru et al. 2004; Lechner et al. 2005). Amino acid substitutions within HP1 have been identified that disrupt dimerization, and interaction with PxVxL proteins (Lechner et al. 2000; Thiru et al. 2004). For example, a single amino acid substitution within the CSD (I161E) disrupts dimerization of mouse HP1beta (Brasher et al. 2000). The lack of dimerization also caused the loss of interactions with nuclear factors containing PxVxL motifs and non-PxVxL partners (Yamamoto and Sonoda 2003; Lechner et al. 2005). In contrast, a single amino acid substitution elsewhere in the CSD (W170A) of mouse HP1beta does not prevent dimerization, but disrupts the interaction with PxVxL partner proteins (Brasher et al. 2000). Therefore, the requirement for HP1 dimerization and binding to the PxVxL proteins can be functionally separated. Here, we investigate effects of HP1 domain deletions and amino acid substitutions on HP1 localization, partner protein interactions, and heterochromatin spreading.  相似文献   

10.
Telomeres of Drosophila melanogaster contain arrays of the retrotransposon-like elements HeT-A and TART. Their transposition to broken chromosome ends has been implicated in chromosome healing and telomere elongation. We have developed a genetic system which enables the determination of the frequency of telomere elongation events and their mechanism. The frequency differs among lines with different genotypes, suggesting that several genes are in control. Here we show that the Su(var)2-5 gene encoding heterochromatin protein 1 (HP1) is involved in regulation of telomere length. Different Su(var)2-5 mutations in the heterozygous state increase the frequency of HeT-A and TART attachment to the broken chromosome end by more than a hundred times. The attachment occurs through either HeT-A/TART transposition or recombination with other telomeres. Terminal DNA elongation by gene conversion is greatly enhanced by Su(var)2-5 mutations only if the template for DNA synthesis is on the same chromosome but not on the homologous chromosome. The Drosophila lines bearing the Su(var)2-5 mutations maintain extremely long telomeres consisting of HeT-A and TART for many generations. Thus, HP1 plays an important role in the control of telomere elongation in D. melanogaster.  相似文献   

11.
Adamson AL 《Journal of virology》2005,79(12):7899-7904
Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and is associated with several types of cancers, including nasopharyngeal carcinoma and Burkitt's lymphoma. An EBV protein that plays an integral role during lytic replication is the immediate-early protein BZLF1. Our laboratory has found that BZLF1 (Z) localizes to host chromosomes during mitosis. Two Z-interacting proteins are also found localized to mitotic chromosomes in the presence of Z. The association between Z and mitotic chromosomes may lead to the sequestering of Z-interacting proteins within the cell and potentially cause an alteration of chromosome compaction or chromatin structure.  相似文献   

12.
Microtubule-associated protein 1B, MAP1B, is a major cytoskeletal protein during brain development and one of the largest brain MAPs associated with microtubules and microfilaments. Here, we identified several proteins that bind to MAP1B via immunoprecipitation with a MAP1B-specific antibody, by one and two-dimensional gel electrophoresis and subsequent mass spectrometry identification of precipitated proteins. In addition to tubulin and actin, a variety of proteins were identified. Among these proteins were glyceraldehyde-3-phosphate dehydrogenase (GAPDH), heat shock protein 8, dihydropyrimidinase related proteins 2 and 3, protein-L-isoaspartate O-methyltransferase, beta-spectrin, and clathrin protein MKIAA0034, linking either directly or indirectly to MAP1B. In particular, GAPDH, a key glycolytic enzyme, was bound in large quantity to the heavy chain of MAP1B in adult brain tissue. In vitro binding studies confirmed a direct binding of GAPDH to MAP1B. In PC12 cells, GAPDH was found in cytoplasm and nuclei and partially co-localized with MAP1B. It disappeared from the cytoplasm under oxidative stress or after a disruption of cytoskeletal elements after colcemid or cytochalasin exposure. GAPDH may be essential in the local energy provision of cytoskeletal structures and MAP1B may help to keep this key enzyme close to the cytoskeleton.  相似文献   

13.
Heterochromatin protein 1 (HP1) is a conserved nonhistone chromosomal protein, which is involved in heterochromatin formation and gene silencing in many organisms. In addition, it has been shown that HP1 is also involved in telomere capping in Drosophila. Here, we show a novel striking feature of this protein demonstrating its involvement in the activation of several euchromatic genes in Drosophila. By immunostaining experiments using an HP1 antibody, we found that HP1 is associated with developmental and heat shock-induced puffs on polytene chromosomes. Because the puffs are the cytological phenotype of intense gene activity, we did a detailed analysis of the heat shock-induced expression of the HSP70 encoding gene in larvae with different doses of HP1 and found that HP1 is positively involved in Hsp70 gene activity. These data significantly broaden the current views of the roles of HP1 in vivo by demonstrating that this protein has multifunctional roles.  相似文献   

14.
Constitutive heterochromatin is essential for chromosome maintenance in all eukaryotes. However, the repetitive nature of the underlying DNA, the presence of very stable protein-DNA complexes and the highly compacted nature of this type of chromatin represent a challenge for the DNA replication machinery. Data collected from different model organisms suggest that at least some of the components of the DNA replication checkpoint could be essential for ensuring the completion of DNA replication in the context of heterochromatin. I review and discuss the literature that directly or indirectly contributes to the formulation of this hypothesis. In particular, I focus my attention on Rif1, a newly discovered member of the DNA replication checkpoint. Recent data generated in mammalian cells highlight the spatial and temporal relation between Rif1, pericentromeric heterochromatin and S-phase. I review these recent and the previous data coming from studies performed in yeast in order to highlight the possible evolutionary conserved links and propose a molecular model for Rif1 role in heterochromatin replication.  相似文献   

15.
We describe a method, DNA array to protein array (DAPA), which allows the 'printing' of replicate protein arrays directly from a DNA array template using cell-free protein synthesis. At least 20 copies of a protein array can be obtained from a single DNA array. DAPA eliminates the need for separate protein expression, purification and spotting, and also overcomes the problem of long-term functional storage of surface-bound proteins.  相似文献   

16.
Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis   总被引:4,自引:0,他引:4  
The protein kinase MST1 is proapoptotic when overexpressed in an active form, however, its physiologic regulation and cellular targets are unknown. An overexpressed inactive MST1 mutant associates in COS-7 cells with an endogenous 761-amino acid polypeptide known as "death-associated protein 4" (DAP4). The DAPs are a functionally heterogeneous array of polypeptides previously isolated by Kimchi and colleagues (Kimchi, A. (1998) Biochim. Biophys. Acta 1377, F13-F33 in a screen for elements involved in the interferon gamma-induced apoptosis of HeLa cells. DAP4, which is encoded by a member of a vertebrate-only gene family, contains no identifiable domains, but is identical over its amino-terminal 488 amino acids to p52(rIPK), a putative modulator of protein kinase R. DAP4 is a widely expressed, constitutively nuclear polypeptide that homodimerizes through its amino terminus and binds MST1 through its carboxyl-terminal segment. MST1 is predominantly cytoplasmic, but cycles continuously through the nucleus, as evidenced by its rapid accumulation in the nucleus after addition of the Crm1 inhibitor, leptomycin B. Overexpression of DAP4 does not cause apoptosis, however, coexpression of DAP4 with a submaximal amount of MST1 enhances MST1-induced apoptosis in a dose-dependent fashion. DAP4 is not significantly phosphorylated by MST1 nor does it alter MST1 kinase activity in vivo or in vitro. MST1-induced apoptosis is suppressed by a dominant interfering mutant of p53. MST1 is unable to directly phosphorylate p53, however, DAP4 binds endogenous and recombinant p53. DAP4 may promote MST1-induced apoptosis by enabling colocalization of MST with p53.  相似文献   

17.
Prostaglandin E1 binds to Z protein of rat liver   总被引:4,自引:0,他引:4  
Z protein or fatty-acid-binding protein is abundant in the cytosol of many cell types including liver cells. It is considered to play an important role in intracellular transport and metabolism of long-chain fatty acids and other organic anions. We studied the role of Z protein in the metabolism of prostaglandin E1 (PGE1). Binding of tritiated prostaglandin E1 to this fatty-acid-binding protein (Z protein) purified from rat liver was determined. The binding of [3H]prostaglandin E1 to Z protein is rapid, saturable and reversible. Scatchard analysis of [3H]PGE1 binding to Z protein showed a single class of binding sites with a dissociation constant (Kd) of 37 nM. The binding capacity is 110 nmol/mg Z protein. Optimal [3H]PGE1 binding occurred at pH 7.4. The presence of 3 mM MgCl2 stimulated the prostaglandin E1 binding to Z protein. Competition experiments show that the binding of this autacoid to Z protein is highly specific. It could not be displaced by other prostaglandins (PGA1, PGA2, PGE2, PGB1, PGI2, PGD2, PGF2 alpha, and 6-keto PGF1 alpha). Z protein might be involved in the metabolism of prostaglandins in the cytosol.  相似文献   

18.
19.
Heterochromatin   总被引:8,自引:0,他引:8  
Hennig W 《Chromosoma》1999,108(1):1-9
The properties of heterochromatin are reconsidered in the context of our present understanding of gene silencing, telomeric and centromeric properties, position-effect variegation and X-chromosome inactivation. It is proposed that the chromatin in heterochromatic chromosomal regions is generally similar in its molecular composition to that in silenced chromosomal regions. Heterochromatic appearance hence reflects not a particular quality of the respective chromosomal regions but only a specific kind of chromatin packaging comparable to that required for the inactivation of genes. This packaging may be initiated by particular signals in the DNA but can be propagated over more extended chromosomal regions by the formation of multiprotein complexes that interact with histones and possibly cell-specific additional components (RNA or proteins) that determine the status of the chromosome in a particular cell type. Received: 15 November 1998 / Accepted: 8 December 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号