首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sulfated and phosphorylated β-D-galactan ([α]D + 8°) was isolated from the nuclei of the acellular slime mould Physarum polycephalum. The polysaccharide was isolated from cesium chloride gradients during the preparation of ribosomal DNA and purified. The purified galactan contained 89% galactose, 2.5% phosphate and 9.6% sulfate groups and had an average degree of polymerisation of 560. Periodate degradation and permethylation studies indicated the presence of mainly (1 → 4)-, but also of (1 → 3)-, and (1 → 6)-linked galactose units with one branch every 13 units. These results suggested that the intranuclear galactan, apart from its higher sulfate content, is similar to the extra-cellular polysaccharide produced by P. polycephalum.  相似文献   

2.
Chemical and spectroscopic methods showed that the water-soluble polysaccharide extracted fromSchizymenia dubyi from Sicily was composed of 1/0.75/1.3 galactose, glucuronic acids and sulfate groups; 45% of total galactose was present as the L-form and no 3,6-anhydrogalactose was detected. The structural characteristics of this galactan of molecular weight 290 000 were close to sulfated polysaccharide with 1,3-, 1,4- and terminal-linked galactose units and secondary ramifications in 1,3,6; 1,4,6; 1,3,4 and 1,6. Permethylation analysis suggested the presence of sulfate groups on positions O-2 and/or O-3 of 1,4-linked galactose and on O-2 and/or O-4 of 1,3-linked residues.Author for correspondence  相似文献   

3.
A new sulfated beta-galactan from clams with anti-HIV activity   总被引:3,自引:0,他引:3  
A new polysaccharide composed of galactan sulfate with a beta-(1-->3)-glycosidic linkage has been isolated from the marine clam species Meretrix petechialis. The polysaccharide was homogeneous in its composition containing D-galactose. The glycosidic linkage was examined by 2D DQF-COSY and 2D NOESY spectroscopy. The coupling constant of anomeric proton was 7.8 Hz, suggesting a beta-galacto configuration. The downfield shift of H-2 of galactose residue demonstrated the presence of 2-O-sulfonate group. TQF-COSY confirmed that the C-6 position was substituted with a sulfonate group. The anti-HIV activity of the polysaccharides has been evaluated by the inhibition of syncytia formation. The fusion index and percentage fusion inhibition of sulfated galactan were 0.34 and 56% at 200 micrograms/mL.  相似文献   

4.
Structure of the arabinogalactan from zea shoots   总被引:4,自引:4,他引:0       下载免费PDF全文
Kato Y  Nevins DJ 《Plant physiology》1984,75(3):745-752
The structure of the arabinogalactan obtained from the buffer-homogenate of Zea mays L. (hybrid B73 × Mo17) shoots has been studied. The purified polysaccharide was investigated by methylation analysis before and after controlled acid hydrolysis. Arabinogalactan-1 consists of arabinose, galactose, xylose, uronic acid, and glucose in the molar ratio of 37.1:55.8:3.0:4.1:trace, and arabinogalactan-2 consists of the same sugars in the ratio of 35.4:53.9:1.6:9.2:trace. A trace of protein was detected in arabinogalactan-1 and about 0.2% was present in 2. About 20% of the galactose residues in arabinogalactan-1 constitute a (1 → 3)-linked galactan chain and approximately 60% constitute a (1 → 6)-linked galactan sequence. About 15% of the galactose residues in arabinogalactan-1 are substituted by galactose in the 3- and 6-positions, thereby constituting branch points of the galactan framework. The remainder (5%) of the galactose residues in arabinogalactan-1 are located at nonreducing terminal positions. About 85% of the (1 → 6)-galactosyl sequence is substituted, mostly by single arabinose residues. Nonreducing terminal glucuronic acid is attached to C-6 of galactose residues. The basic structure of arabinogalactan-2 is similar to that of arabinogalactan-1.  相似文献   

5.
Halymenia durvillei is a red seaweed with a great potential as sulphated galactan producer collected in the coastal waters of small island of Madagascar (Nosy-be in Indian Ocean). To elucidate the structure of its polysaccharide, NMR (1H and 13C), FTIR, HPAEC and different colorimetric methods were carried out. It has been shown that this polysaccharide, consisted mainly of galactose, was branched by xylose and galactose in minor amounts. Arabinose and fucose were also detected. This galactan was found highly sulphated (42%, w/w) and pyruvylated (1.8%, w/w). Analysis of glycosidic linkages by CPG-MS and 13C NMR indicated that the polysaccharide has the defining linear backbone of alternating 3-β-d-galactopyranosyl units and 4-linked α-l/d-galactopyranosyl residues. 3,6-Anhydrogalactose units have been also detected in minor quantity. This λ-carrageenan like polysaccharide has shown original sulphatation patterns with 2-O (26%) or 2/6-O (58%) sulphated 3-linked β-d-galactopyranosyl units and 6-O (19%) or 2/6-O (47%) 4-linked α-l/d-galactopyranosyl residues.  相似文献   

6.
With a particulate enzyme preparation from Phaseolus aureus hypocotyls, UDP-alpha-d-[U-(14)C]galactose served as a precursor for a number of products. One of these products was characterized as a beta-(1-->4)-linked galactan. The ADP-, GDP-, TDP- and CDP- derivatives of alpha-d-galactose did not serve as biosynthetic precursors for any products insoluble in 70% ethanol, nor as substrates for a sugar nucleotide 4-epimerase which is present in the particulate enzyme preparation. The (14)C-labelled beta-(1-->4)-galactan is alkali-insoluble and was characterized by analysis of partial acetolysis products. The labelling pattern of the [(14)C]oligosaccharides derived from acetolysis indicates that (1) only slightly more than two [(14)C]galactose moieties are added to the growing polysaccharide chain on average, and (2) these additions take place at the reducing end of the polysaccharide chain. The radioactive beta-(1-->4)-linked galactan chain represented 8.5% of the radioactivity initially added, and 20% of the water- and butanol-insoluble products derived from UDP-alpha-d-[(14)C]galactose. Total hydrolysis of the alkali-insoluble fraction of Phaseolus aureus hypocotyl yielded d-glucose and d-mannose in a 5:1 ratio but no detectable quantities of d-galactose. A trace quantity of a radioactive disaccharide, identified as (1-->3)-linked galactobiose, was isolated from the partial acetolysate of the alkali-insoluble [(14)C]polysaccharide material. Also isolated from this partial acetolysate was a C-1 derivative of [(14)C]galactose, which could not be identified. An alkali-soluble galactose-containing polysaccharide was also synthesized in this enzymic reaction, and represented 20% of the water- and butanol-insoluble products derived from UDP-alpha-d-[(14)C]galactose. The spectrum of radioactive oligosaccharides produced by partial acetolysis of this alkali-soluble polysaccharide material was different from that obtained from the alkali-insoluble polysaccharide, indicating a different structure.  相似文献   

7.
We report for the first time that marine angiosperms (seagrasses) possess sulfated polysaccharides, which are absent in terrestrial and freshwater plants. The structure of the sulfated polysaccharide from the seagrass Ruppia maritima was determined. It is a sulfated D-galactan composed of the following regular tetrasaccharide repeating unit: [3-beta-D-Gal-2(OSO3)-1-->4-alpha-D-Gal-1-->4-alpha-D-Gal-1-->3-beta-D-Gal-4(OSO3)-1-->]. Sulfated galactans have been described previously in red algae and in marine invertebrates (ascidians and sea urchins). The sulfated galactan from the marine angiosperm has an intermediate structure when compared with the polysaccharides from these two other groups of organisms. Like marine invertebrate galactan, it expresses a regular repeating unit with a homogenous sulfation pattern. However, seagrass galactan contains the D-enantiomer of galactose instead of the L-isomer found in marine invertebrates. Like red algae, the marine angiosperm polysaccharide contains both alpha and beta units of D-galactose; however, these units are not distributed in an alternating order, as in algal galactan. Sulfated galactan is localized in the plant cell walls, mostly in rhizomes and roots, indicative of a relationship with the absorption of nutrients and of a possible structural function. The occurrence of sulfated galactans in marine organisms may be the result of physiological adaptations, which are not correlated with phylogenetic proximity. We suggest that convergent adaptation, due to environment pressure, may explain the occurrence of sulfated galactans in many marine organisms.  相似文献   

8.
Marine red algae are an abundant source of sulfated galactans with potent anticoagulant activity. However, the specific structural motifs that confer biological activity remain to be elucidated. We have now isolated and purified a sulfated galactan from the marine red alga, Gellidium crinale. The structure of this polysaccharide was determined using NMR spectroscopy. It is composed of the repeating structure -4-alpha-Galp-(1-->3)-beta-Galp1--> but with a variable sulfation pattern. Clearly 15% of the total alpha-units are 2,3-di-sulfated and another 55% are 2-sulfated. No evidence for the occurrence of 3,6-anhydro alpha-galactose units was observed in the NMR spectra. We also compared the anticoagulant activity of this sulfated galactan with a polysaccharide from the species, Botryocladia occidentalis, with a similar saccharide chain but with higher amounts of 2,3-di-sulfated alpha-units. The sulfated galactan from G. crinale has a lower anticoagulant activity on a clotting assay when compared with the polysaccharide from B. occidentalis. When tested in assays using specific proteases and coagulation inhibitors, these two galactans showed significant differences in their activity. They do not differ in thrombin inhibition mediated by antithrombin, but in assays where heparin cofactor II replaces antithrombin, the sulfated galactan from G. crinale requires a significantly higher concentration to achieve the same inhibitory effect as the polysaccharide from B. occidentalis. In contrast, when factor Xa instead of thrombin is used as the target protease, the sulfated galactan from G. crinale is a more potent anticoagulant. These observations suggest that the proportion and/or the distribution of 2,3-di-sulfated alpha-units along the galactan chain may be a critical structural motif to promote the interaction of the protease with specific protease and coagulation inhibitors.  相似文献   

9.
The acellular slime mold Physarum polycephalum produces an extracellular sulfated and phosphorylated beta-D-galactan which was recently isolated from the nuclei of this organism. This polysaccharide has now been localized in the nuclei of P. polycephalum by electron microscopy using a specific "sandwich" technique: thin sections of P. polycephalum microplasmodia were incubated with the Ricinus communis lectin specific for D-galactose residues. The bound lectin was then localized with gold granules labeled with a galactose-terminated glycoprotein (desialylated ceruloplasmin). The galactan was found in the nuclei mainly associated with chromatin and, also, but to a smaller extent, in the cytoplasm and in some vacuoles. The specificity of the method was assessed by marking under the same condition the galactomannan present in the cell wall of the yeast Schizosaccharomyces pombe.  相似文献   

10.
BACKGROUND AND AIMS: The cotyledons of Lupinus angustifolius contain large amounts of cell wall storage polysaccharide (CWSP) composed mainly of (1-->4)-beta-linked D-galactose residues in the form of branches attached to a rhamnogalacturonan core molecule. An exo-(1-->4)-beta-galactanase with a very high specificity towards (1-->4)-beta-linked D-galactan has been isolated from L. angustifolius cotyledons, and shown to vary (activity and specific protein) in step with CWSP mobilization. This work aimed to confirm the hypothesis that galactan is the main polymer retrieved from the wall during mobilization at the ultrastructural level, using the purified exo-galactanase as a probe. METHODS: Storage mesophyll cell walls ('ghosts') were isolated from the cotyledons of imbibed but ungerminated lupin seeds, and also from cotyledons of seedlings after the mobilization of the CWSP. The pure exo-(1-->4)-beta-galactanase was coupled to colloidal gold particles and shown to be a specific probe for (1-->4)-beta-D-galactan. They were used to localize galactan in ultrathin sections of L. angustifolius cotyledonary mesophyll tissue during CWSP mobilization. KEY RESULTS: On comparing the morphologies of isolated cell walls, the post-mobilization 'ghosts' did not have the massive wall-thickenings of pre-mobilization walls. Compositional analysis showed that the post-mobilization walls were depleted in galactose and, to a lesser extent, in arabinose. When pre-mobilization ghosts were treated with the pure exo-galactanase, they became morphologically similar to the post-mobilization ghosts. They were depleted of approximately 70% of the galactose residues that would have been mobilized in vivo, and retained all the other sugar residues originally present. Sharply defined electron-transparent wall zones or pockets are associated with CWSP mobilization, being totally free of galactan, whereas wall areas immediately adjacent to them were apparently undepleted. CONCLUSIONS: The exo-(1-->4)-beta-galactanase is the principal enzyme involved in CWSP mobilization in lupin cotyledons in vivo. The storage walls dramatically change their texture during mobilization as most of the galactan is hydrolysed during seedling development.  相似文献   

11.
An endo-β-1,4-galactanase (PcGAL1) and an exo-β-1,4-galactanase (PcGALX35C) were purified from the culture filtrate of Penicillium chrysogenum 31B. Pcgal1 and Pcgalx35C cDNAs encoding PcGAL1 and PcGALX35C were isolated by in vitro cloning. The deduced amino acid sequences of PcGAL1 and PcGALX35C are highly similar to a putative endo-β-1,4-galactanase of Aspergillus terreus (70 % amino acid identity) and a putative β-galactosidase of Neosartorya fischeri (72 %), respectively. Pfam analysis revealed a “Glyco_hydro_53” domain in PcGAL1. PcGALX35C is composed of five distinct domains including “Glyco_hydro_35,” “BetaGal_dom2,” “BetaGal_dom3,” and two “BetaGal_dom4_5” domains. Recombinant enzymes (rPcGAL1 and rPcGALX35C) expressed in Escherichia coli and Pichia pastoris, respectively, were active against lupin galactan. The reaction products of lupin galactan revealed that rPcGAL1 cleaved the substrate in an endo manner. The enzyme accumulated galactose and galactobiose as the main products. The smallest substrate for rPcGAL1 was β-1,4-galactotriose. On the other hand, rPcGALX35C released only galactose from lupin galactan throughout the reaction, indicating that it is an exo-β-1,4-galactanase. rPcGALX35C was active on both β-1,4-galactobiose and triose, but not on lactose, β-1,3- or β-1,6-galactooligosaccharides even after 24 h of incubation. To our knowledge, this is the first report of a gene encoding a microbial exo-β-1,4-galactanase. rPcGAL1 and rPcGALX35C acted synergistically in the degradation of lupin galactan and soybean arabinogalactan. Lupin galactan was almost completely degraded to galactose by the combined actions of rPcGAL1 and rPcGALX35C. Surprisingly, neither rPcGAL1 nor rPcGALX35C released any galactose from sugar beet pectin.  相似文献   

12.
A high-molecular-mass polysaccharide galactan (M 2000 kDa) was isolated from flax at the stage of cell wall thickening of the bast fiber development. The polymer structure was studied by 1H NMR spectroscopy and MALDI TOF mass spectrometry. It is built up of Gal (59%), Rha (15%), GalA (23%), and Ara (3%) residues. The galactan backbone consists of successively alternating monomer disaccharide units (→ 4GalA1 → 2Rha1 →)n and is similar in its structure to the backbone of rhamnogalacturonan-1 (RG-I). Rhamnose residues bear in position 4 β-(1 → 4)-galactose side chains of various lengths with a polymerization degree of up to 28 or higher. A part of the side chains have branchings.  相似文献   

13.
PMIa is a Type II arabinogalactan with anti-complementary activity isolated from the leaves of Plantago major L. It has a molecular weight of 77000–80000 Da and consists of arabinose (38%), galactose (49%), rhamnose (6%), galacturonic acid (7%) and 1.5% protein with hydroxyproline, alanine and serine as the main amino acids. Characterization of PMIa by methylation and GC-MS, methanolysis and GC, Smith degradation, weak acid hydrolysis, 13C-NMR, 1H-NMR, two-dimensional heteronuclear NMR and DEPT show that it consists of 1,3-linked galactan chains with 1,6-linked galactan side chains attached to position 6. The side chains are further branched in position 3 with 1,3-linked galactose residues which have 1,6-linked galactose attached to position 6; these 1,3- and 1,6-linked galactose chains altogether probably form a network. Terminal and 1,5-linked arabinose in furanose form are attached to the galactan mainly through position 3 of the 1,6-linked galactose side chains.  相似文献   

14.
The purified polysaccharide isolated from the cambium layer of a young bael (Aegle marmelos) tree contains galactose, arabinose, rhamnose, xylose, and glucose in the molar ratios of 10.0:9.8:1.4:1.9:1. Methylation analysis and Smith degradation studies established the linkages of the different monosaccharide residues. The anomeric configurations of the various sugar units were determined by oxidation of the acetylated polysaccharide with chromium(VI) trioxide. The oligosaccharides isolated from the polysaccharide by graded hydrolysis were characterized. The structural significance of these results is discussed.  相似文献   

15.
Aqueous extraction of gametophytic Schizymenia binderi afforded a polysaccharide composed of galactose and sulfate groups in a molar ratio of 1.0:0.89 together with uronic acids (6.8 wt%) and minor amounts of other neutral sugars. Alkali-treatment of the polysaccharide afforded a polysaccharide devoid of 3,6-anhydrogalactose. 13C NMR spectroscopy of the desulfated alkali-treated polysaccharide showed a backbone structure of alternating 3-linked beta-D-galactopyranosyl and 4-linked alpha-galactopyranosyl units that are predominantly of the D-configuration and partly of the L-configuration. Methylation, ethylation and NMR spectroscopic studies of the alkali-treated polysaccharide indicated that the sulfate groups are located mainly at positions O-2 of 3-linked beta-D-galactopyranosyl residue and at position O-3 of 4-linked-alpha-galactopyranosyl residues, the latter is partially glycosylated at position O-2. The sulfated galactan from S. binderi exhibited highly selective antiviral activity against Herpes simplex virus types 1 and 2, with selectivity indices (ratio cytotoxicity/antiviral activity) >1000 for all assayed virus strains. This compound was shown to interfere with the initial adsorption of viruses to cells.  相似文献   

16.
A high-molecular-mass polysaccharide galactan (M 2000 kDa) was isolated from flax at the stage of cell wall thickening of the bast fiber development. The polymer structure was studied by 1H NMR spectroscopy and MALDI TOF mass spectrometry. It is built up of Gal (59%), Rha (15%), GalA (23%), and Ara (3%) residues. The galactan backbone consists of successively alternating monomer disaccharide units (--> 4GalA1 --> 2Rha1 -->)n and is similar in its structure to the backbone of rhamnogalacturonan-1 (RG-I). Rhamnose residues bear in position 4 beta-(1 --> 4)-galactose side chains of various lengths with a polymerization degree of up to 28 or higher. A part of the side chains have branchings.  相似文献   

17.
A galactan sulfate has been isolated from the seaweed Porphyra columbina, and its structure established by a combination of methylation, methanolysis, treatment with alkali followed by methylation, and 13C-n.m.r. spectroscopy. The polysaccharide belongs to the porphyran class, and consists of 3-linked β-d-galactosyl residues and 4-linked α-l-galactosyl residues. 3,6-Anhydro-l-galactose and l-galactose 6-sulfate residues total approximately half of the sugar units, the other half being made up of d-galactose and 6-O-methyl-d-galactose residues. Some evidence is presented that suggests that the galactan sulfate does not have a completely alternating structure.  相似文献   

18.
The polysaccharide component of the stigmatic exudate from Lilium longiflorum has the composition, arabinose (26%), rhamnose (6%), galactose (57%) and glucuronic acid (11%). The highly branched polysaccharide bears a striking resemblance to the acidic polysaccharide exudate from Araucaria bidwillii in belonging to the galactan group and in carrying outer chains terminated by arabinofuranose, rhamnopyranose, galactopyranose and glucuronic acid residues. Both polysaccharides contain the sequence O-rhamnopyranosyl-(1→4)-glucopyranosyluronic acid-(1→6)-galactopyranose in some of the outer chains.  相似文献   

19.
Crude fucoidan was extracted from the brown alga Undaria pinnatifida collected monthly from April to last July in Peter the Great Bay (Japan Sea, Russia). The amount of crude fucoidan rose markedly from April to June–July (from 3.2 to 16.0% dry weight) as the plant matures. An analysis of the monosaccharide composition of the fucoidan extracted showed that the alga synthesized polysaccharides with various structures which were dependent on the algae age. In juvenile plants collected in April–May, this was represented by sulfated manno-galactofucan containing up to 19–28 mol% of mannose and about 20 mol% of galactose, whereas in matured plants collected in June–July, the polysaccharide was represented by a sulfated galactofucan containing more than 38 mol% galactose. It is postulated that the production of sori causes a subsequent effect on fucoidan synthesis and leads to an enhanced of crude fucoidan content and an increased molar concentration of galactose. Crude fucoidan content in sporophylls increased 5 times, and galactose content in this polysaccharide rose s1.6 times with sori formation. The structural characteristics of the fucoidan extracted from sporophylls of Undaria collected in July were also studied. The fractionation of crude fucoidan on DEAE-Sephadex A-25 gave two fractions, F1 and F2 in equal quantities. F1 was characterized as manno-galactofucan sulfate and F2 was galactofucan sulfate. The molecular weights of both fractions were in a range of 30–80 kDa. Analysis of fucoidan structure using ESI-FTICR mass spectrometry showed the presence of mixed oligosaccharides consisting of fucose and galactose. Presumably, the polysaccharide molecules contain blocks built up of successively linked residues of fucose and galactose. These blocks are built from two to five or more residues of monosaccharides. According to IR-spectroscopy data, the main portion of sulfates is located at C2; in addition, sulfate esters are also present at C4 on the fucose and C3 and C6 of the galactose units.  相似文献   

20.
A sulfated polysaccharide fraction was isolated from the hot water extract of the green alga Caulerpa racemosa and designated HWE. This polymer, which contained galactose, glucose, arabinose and xylose as the major component sugars, had [alpha](D)(30) + 46.2 degrees in water and contained 9% sulfate hemiester groups. Sugar linkage analysis indicates that HWE was branched and mainly contained 1,3- and 1,3,6-linked galactose, 1,3,4-linked arabinose, 1,4-linked glucose and terminal- and 1,4-linked xylose residues. Sulfation was deduced from infrared spectroscopy and methylation analysis to occur on O-6 of galactose and O-3 of arabinose. The native polysaccharide could be fractionated by size exclusion chromatography into two overlapping fractions and the major fraction has a hydrodynamic volume similar to that of 70 kDa dextran. HWE was a selective inhibitor of reference strains and TK(-) acyclovir-resistant strains of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in Vero cells, with antiviral effective concentration 50% (EC(50)) values in the range of 2.2-4.2 microg/ml and lacking cytotoxic effects. Furthermore, HWE did not exhibit anticoagulant properties at concentrations near the EC(50).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号