首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurofibromatosis type 1 (NF1), a neuroectodermal disorder, is caused by germline mutations in the NF1 gene. NF1 affects approximately 1/3,000 individuals worldwide, with about 50% of cases representing de novo mutations. Although the NF1 gene was identified in 1990, the underlying gene mutations still remain undetected in a small but obdurate minority of NF1 patients. We postulated that in these patients, hitherto undetected pathogenic mutations might occur in regulatory elements far upstream of the NF1 gene. In an attempt to identify such remotely acting regulatory elements, we reasoned that some of them might reside within DNA sequences that (1) have the potential to interact at distance with the NF1 gene and (2) lie within a histone H3K27ac-enriched region, a characteristic of active enhancers. Combining Hi-C data, obtained by means of the chromosome conformation capture technique, with data on the location and level of histone H3K27ac enrichment upstream of the NF1 gene, we predicted in silico the presence of two remotely acting regulatory regions, located, respectively, approximately 600 kb and approximately 42 kb upstream of the NF1 gene. These regions were then sequenced in 47 NF1 patients in whom no mutations had been found in either the NF1 or SPRED1 gene regions. Five patients were found to harbour DNA sequence variants in the distal H3K27ac-enriched region. Although these variants are of uncertain pathological significance and still remain to be functionally characterized, this approach promises to be of general utility for the detection of mutations underlying other inherited disorders that may be caused by mutations in remotely acting regulatory elements.  相似文献   

2.
Aligning and comparing genomic sequences enables the identification of conserved sequence signatures and can enrich for coding and noncoding functional regions. In vertebrates, the comparison of human and rodent genomes and the comparison of evolutionarily distant genomes, such as human and pufferfish, have identified specific sets of 'ultraconserved' sequence elements associated with the control of early development. However, is this just the tip of a 'conservation iceberg' or do these sequences represent a specific class of regulatory element? Studies on the zebrafish phox2b gene region and the ENCODE project suggest that many regulatory elements are not highly conserved, posing intriguing questions about the relationship between noncoding sequence conservation and function and the evolution of regulatory sequences.  相似文献   

3.
In vivo characterization of a vertebrate ultraconserved enhancer   总被引:6,自引:1,他引:5  
Genomic sequence comparisons among human, mouse, and pufferfish (Takifugu rubripes (Fugu)) have revealed a set of extremely conserved noncoding sequences. While this high degree of sequence conservation suggests severe evolutionary constraint and predicts a lack of tolerance to change to retain in vivo functionality, such elements have been minimally explored experimentally. In this study, we describe the in-depth characterization of an ancient conserved enhancer, Dc2, located near the dachshund gene, which displays a human-Fugu identity of 84% over 424 basepairs (bp). In addition to this large overall conservation, we find that Dc2 is characterized by the presence of a large block of sequence (144 bp) that is completely identical among human, mouse, chicken, zebrafish, and Fugu. Through the testing of reporter vector constructs in transgenic mice, we observed that the 424-bp Dc2-conserved element is necessary and sufficient for brain tissue enhancer activity. In vivo analyses also revealed that the 144-bp 100% conserved sequence is necessary, but not sufficient, to replicate Dc2 enhancer function. However, the introduction of two separate 16-bp insertions into the highly conserved enhancer core did not cause any detectable modification of its in vivo activity. Our observations indicate that the 144-bp 100% conserved element is tolerant of change at least at the resolution of this transgenic mouse assay and suggest that purifying selection on the Dc2 sequence might not be as strong as we predicted or that some unknown property also constrains this highly conserved enhancer sequence.  相似文献   

4.
5.
6.
With the imminent completion of the whole genome sequence of humans, increasing attention is being focused on the annotation of cis-regulatory elements in the human genome. Comparative genomics approaches based on evolutionary conservation have proved useful in the detection of conserved cis-regulatory elements. The pufferfish, Fugu rubripes, is an attractive vertebrate model for comparative genomics, by virtue of its compact genome and maximal phylogenetic distance from mammals. Fugu has lost a large proportion of nonessential DNA, and retained single orthologs for many duplicate genes that arose in the fish lineage. Non-coding sequences conserved between fugu and mammals have been shown to be functional cis-regulatory elements. Thus, fugu is a model fish genome of choice for discovering evolutionarily conserved regulatory elements in the human genome. Such evolutionarily conserved elements are likely to be shared by all vertebrates, and related to regulatory interactions fundamental to all vertebrates. The functions of these conserved vertebrate elements can be rapidly assayed in mammalian cell lines or in transgenic systems such as zebrafish/medaka and Xenopus, followed by validation of crucial elements in transgenic rodents.  相似文献   

7.
Fierce (frc) mice are deleted for nuclear receptor 2e1 (Nr2e1), and exhibit cerebral hypoplasia, blindness, and extreme aggression. To characterize the Nr2e1 locus, which may also contain the mouse kidney disease (kd) allele, we compared sequence from human, mouse, and the puffer fish Fugu rubripes. We identified a novel gene, c222389, containing conserved elements in noncoding regions. We also discovered a novel vertebrate gene conserved across its length in prokaryotes and invertebrates. Based on a dramatic upregulation in lactating breast, we named this gene lactation elevated-1 (LACE1). Two separate 100-bp elements within the first NR2E1 intron were virtually identical between the three species, despite an estimated 450 million years of divergent evolution. These elements represent strong candidates for functional NR2E1 regulatory elements in vertebrates. A high degree of conservation across NR2E1 combined with a lack of interspersed repeats suggests that an array of regulatory elements embedded within the gene is required for proper gene expression.  相似文献   

8.
9.
10.
11.
In order to facilitate molecular analysis of antibody responses in Rhesus monkeys ( Macaca mulatta), we used PCR techniques to clone and sequence the germline IGHD gene repertoire and the IGHD7- IGHJ6 locus in its entirety. We identified 30 distinct Rhesus DH genes belonging to seven subgroups and their recombination signal sequences that together share an average of 91% identity with their human counterparts, six potentially functional IGHJ genes and their recombination signal sequences that together share 93% identity with their human counterparts, as well as a novel IGHJ gene, IGHJ5 beta, which is a duplicated variant of IGHJ5. The presence, on average, of one additional IGHD gene in Rhesus IGHD subgroups when compared with human and one additional IGHJ gene suggests Rhesus has undergone at least two independent duplications beyond those that mark the human IGHD/IGHJ locus. Amino acid sequence composition is highly conserved between Rhesus and human, with IGHD insertions and deletions limited to three-nucleotide multiples, which serve to preserve enrichment for tyrosine, glycine, and serine residues in IGHD reading frame 1. The high degree of conservation between human and Rhesus IGHD and IGHJ genes supports the hypothesis that the germline repertoire encodes evolutionarily preferred antibody sequence as a result of selection for function.  相似文献   

12.
Several studies have demonstrated high levels of sequence conservation in noncoding DNA compared between two species (e.g., human and mouse), and interpreted this conservation as evidence for functional constraints. If this interpretation is correct, it suggests the existence of a hidden class of abundant regulatory elements. However, much of the noncoding sequence conserved between two species may result from chance or from small-scale heterogeneity in mutation rates. Stronger inferences are expected from sequence comparisons using more than two taxa, and by testing for spatial patterns of conservation in addition to primary sequence similarity. We used a Bayesian local alignment method to compare approximately 10 kb of intron sequence from nine genes in a pairwise manner between human, whale, and seal to test whether the degree and pattern of conservation is consistent with neutral divergence. Comparison of the three sets of conserved gapless pairwise blocks revealed the following patterns: The proportion of identical intron nucleotides averaged 47% in pairwise comparisons and 28% across the three taxa. Proportions of conserved sequence were similar in unique sequence and general mammalian repetitive elements. We simulated sequence evolution under a neutral model using published estimates of substitution rate heterogeneity for noncoding DNA and found pairwise identity at 33% and three-taxon identity at 16% of nucleotide sites. Spatial patterns of primary sequence conservation were also nonrandomly distributed within introns. Overall, segments of intron sequence closer to flanking exons were significantly more conserved than interior intron sequence. This level of intron sequence conservation is above that expected by chance and strongly suggests that intron sequences are playing a larger functional role in gene regulation than previously realized.  相似文献   

13.
14.
15.
16.
17.
The Otx2 gene, containing a highly conserved paired-type homeobox, plays a pivotal role in the development of the rostral head throughout vertebrates. Precise regulation of the temporal and spatial expression of Otx2 is likely to be crucial for proper head specification. However, regulatory mechanisms of Otx2 expression remain largely unknown. In this study, the Otx2 genome of the puffer fish Fugu rubripes, which has been proposed as a model vertebrate owing to its highly compact genome, was cloned. Consistently, Fugu Otx2 possesses introns threefold smaller in size than those of the mouse Otx2 gene. Otx2 mRNA was transcribed after MBT, and expressed in the rostral head region throughout the segmentation and pharyngula periods of wild-type Fugu embryos. To elucidate regulatory mechanisms of Otx2 expression, the expression of Otx2-lacZ reporter genes nearly covering the Fugu Otx2 locus, from -30.5 to +38.5 kb, was analyzed, by generating transgenic mice. Subsequently, seven independent cis-regulators were identified over an expanse of 60 kb; these regulators are involved in the mediation of spatiotemporally distinct subdomains of Otx2 expression. Additionally, these expression domains appear to coincide with local signaling centers and developing sense organs. Interestingly, most domains do not overlap with one another, which implies that cis-regulators for redundant expression may be abolished exclusively in the pufferfish so as to reduce its genome size. Moreover, these cis-regions were also able to direct expression in zebrafish embryos equivalent to that observed in transgenic mice. Further comparative sequence analysis of mouse and pufferfish intergenic regions revealed eight highly conserved elements within these cis-regulators. Therefore, we propose that, in vertebrate evolution, the Otx2 promoter acquires multiple, spatiotemporally specific cis-regulators in order to precisely control highly coordinated processes in head development.  相似文献   

18.
19.
Temporal control of rearrangement at the TCR alpha/delta locus is crucial for development of the gamma delta and alpha beta T cell lineages. Because the TCR delta locus is embedded within the alpha locus, rearrangement of any V alpha-J alpha excises the delta locus, precluding expression of a functional gamma delta TCR. Approximately 100 kb spanning the C delta-C alpha region has been sequenced from both human and mouse, and comparison has revealed an unexpectedly high degree of conservation between the two. Of interest in terms of regulation, several highly conserved sequence blocks (> 90% over > 50 bp) were identified that did not correspond to known regulatory elements such as the TCR alpha and delta enhancers or to coding regions. One of these blocks lying between J alpha 4 and J alpha 3, which appears to be conserved in other vertebrates, has been shown to augment TCR alpha enhancer function in vitro and differentially bind factors from nuclear extracts. To further assess a plausible regulatory role for this element, we have created mice in which this conserved sequence block is either deleted or replaced with a neomycin resistance gene driven by the phosphoglycerate kinase promoter (pgk-neor). Deletion of this conserved sequence block in vivo did have a local effect on J alpha usage, echoing the in vitro data. However, its replacement with pgk-neor had a much more dramatic, long range effect, perhaps underscoring the importance of maintaining overall structure at this locus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号