首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During pregnancy, parathyroid hormone-related protein (PTHrP) is one of many growth factors that play important roles to promote fetal growth and development, including stimulation of placental calcium transport. Angiotensin II, acting through the AT(1a) receptor, is also known to promote placental growth. We examined the effects of bilateral uterine artery and vein ligation (restriction), which mimics placental insufficiency in humans, on growth, intrauterine PTHrP, placental AT(1a), and pup calcium. Growth restriction was surgically induced on day 18 of pregnancy in Wistar-Kyoto female rats by uterine vessel ligation. Uteroplacental insufficiency reduced fetal body weight by 15% and litter size (P < 0.001) compared with the control rats with no effect on placental weight or amniotic fluid volume. Uteroplacental insufficiency reduced placental PTHrP content by 46%, with increases in PTHrP (by 2.6-fold), parathyroid hormone (PTH)/PTHrP receptor (by 11.6-fold), and AT(1a) (by 1.7-fold) relative mRNA in placenta following restriction compared with results in control (P < 0.05). There were no alterations in uterine PTHrP and PTH/PTHrP receptor mRNA expression. Maternal and fetal plasma PTHrP and calcium concentrations were unchanged. Although fetal total body calcium was not altered, placental restriction altered perinatal calcium homeostasis, as evidenced by lower pup total body calcium after birth (P < 0.05). The increased uterine and amniotic fluid PTHrP (P < 0.05) may be an attempt to compensate for the induced impaired placental function. The present study demonstrates that uteroplacental insufficiency alters intrauterine PTHrP, placental AT(1a) expression, and perinatal calcium in association with a reduction in fetal growth. Uteroplacental insufficiency may provide an important model for exploring the early origins of adult diseases.  相似文献   

2.
Parathyroid hormone-related protein (PTHrP), a factor responsible for malignancy associated hypercalcemia, plays a physiological roles such as bone development and placental calcium transport. The expression of PTHrP in adult human parathyroid tissues under normal and pathological conditions was analyzed. By immunohistochemistry, PTHrP expression was detected in 86% of normal parathyroid (12/14 cases), 74% of adenomas (14/19) and 89% of hyperplasia secondary to chronic renal failure (16/18). PTHrP protein was observed mainly in the cytoplasm of oxyphil cells, consistent with the localization of its mRNA demonstrated by in situ hybridization. The rate of PTHrP-positive cells was higher in areas consisting of oxyphil cells than in those of non-oxyphil cells, regardless of whether the parathyroid was normal or pathological. In the normal parathyroid, an age-related increase in PTHrP expression was observed with a relative increase in oxyphil cells, reflecting aging and deterioration of parathyroid tissue. In adenoma, cases with a predominance of oxyphil cells expressed PTHrP, whereas clear cell adenoma did not. In secondary hyperplasia, the rate of PTHrP-expressing cells was higher than in normal parathyroid or adenoma, with varying levels of expression among nodules. We speculate that PTHrP could act through the paracrine/autocrine mechanism to regulate proliferation and differentiation of normal and neoplastic parathyroid cells.  相似文献   

3.
Hypercalcemia may occur as a complication of haematological malignancies, in association with solid tumors with bone metastases, and with solid tumors in the absence of bone metastases. The latter syndrome, known as the humoral hypercalcemia of malignancy (HHM) shares many features with primary hyperparathyroidism. A parathyroid hormone-related protein (PTHrP) has been identified, isolated and cloned, which is most likely responsible for the calcium disturbances in HHM, PTHrP is a previously unrecognized hormone which has limited amino-terminal sequence homology with PTH and is the product of a separate gene. Tissue localization studies have identified PTHrP in squamous cell carcinomata, renal cortical carcinomata, in a proportion of breast cancers and in adult T-cell leukemia/lymphoma. In normal tissues, PTHrP has been immunohistochemically localized in keratinocytes, placenta and fetal parathyroid glands. In addition to its role in mediating hypercalcemia in cancer, PTHrP is likely to have an important endocrine role in the fetus, and perhaps a paracrine function in several organs.  相似文献   

4.
The effects of an N-terminal peptide (amino acids 1-38) of Fugu parathyroid hormone-related protein (PTHrP 1-38) on calcium regulation of larval sea bream were investigated in seawater (36 per thousand) and after transfer to dilute seawater (12 per thousand). Exposure to PTHrP 1-38 evoked a 1.5-fold increase in calcium influx in both full-strength and dilute seawater. Calcium influx in dilute seawater-adapted larvae was roughly one-half that observed in full-strength seawater controls. PTHrP 1-38 also reduced drinking of fish in seawater but, at all concentrations tested, was without effect in dilute seawater. The amount of water imbibed was 55% lower in dilute seawater than in seawater. PTHrP 1-38 exposure affected the calcium influx route: the main contribution of calcium uptake shifted from intestinal absorption to extraintestinal uptake, probably by the induction of a dose-dependent increase in branchial (active) transport. Moreover, seawater-adapted fish exposed to 1 nM and 10 mM PTHrP 1-38 experienced a 2.5-fold reduction in overall calcium efflux. Overall, the calciotropic action of PTHrP 1-38 resulted in a dose-dependent increase in net calcium balance.  相似文献   

5.
Estradiol (E(2)) increases circulating calcium and phosphate levels in fish, thus acting as a hypercalcemic and hyperphosphatemic factor during periods of high calcium requirements, such as during vitellogenesis. Since parathyroid hormone (PTH)-related protein (PTHrP) has been shown to be calciotropic in fish, we hypothesized that the two hormones could be mediating the same process. Sea bream (Sparus auratus) juveniles receiving a single intraperitoneal injection of piscine PTHrP(1-34) showed an elevation in calcium plasma levels within 24 h. In contrast, injections of the PTH/PTHrP receptor antagonist PTHrP(7-34) decreased circulating levels of calcium in the same period. Intraperitoneal implants of estradiol-17beta (E(2); 10 microg/g) evoked significant increases of circulating plasma levels of calcium and phosphorus and a sustained increases of circulating plasma levels of PTHrP. However, a combined treatment of E(2) and PTHrP(7-34) evoked a markedly lower calcium response compared with E(2) alone. We conclude that PTHrP or a related peptide that binds the PTH/PTHrP receptor mediates, at least in part, the hypercalcemic effect of E(2) in calcium and phosphate balance in fish.  相似文献   

6.
The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that signals in response to extracellular calcium and regulates parathyroid hormone secretion. The CaR is also expressed on normal mammary epithelial cells (MMECs), where it has been shown to inhibit secretion of parathyroid hormone-related protein (PTHrP) and participate in the regulation of calcium and bone metabolism during lactation. In contrast to normal breast cells, the CaR has been reported to stimulate PTHrP production by breast cancer cells. In this study, we confirmed that the CaR inhibits PTHrP production by MMECs but stimulates PTHrP production by Comma-D cells (immortalized murine mammary cells) and MCF-7 human breast cancer cells. We found that changes in intracellular cAMP, but not phospholipase C or MAPK signaling, correlated with the opposing effects of the CaR on PTHrP production. Pharmacologic stimulation of cAMP accumulation increased PTHrP production by normal and transformed breast cells. Inhibition of protein kinase A activity mimicked the effects of CaR activation on inhibiting PTHrP secretion by MMECs and blocked the effects of the CaR on stimulating PTHrP production in Comma-D and MCF-7 cells. We found that the CaR coupled to Galpha(i) in MMECs but coupled to Galpha(s) in Comma-D and MCF-7 cells. Thus, the opposing effects of the CaR on PTHrP production are because of alternate G-protein coupling of the receptor in normal versus transformed breast cells. Because PTHrP contributes to hypercalcemia and bone metastases, switching of G-protein usage by the CaR may contribute to the pathogenesis of breast cancer.  相似文献   

7.
The extracellular calcium-sensing receptor (CaR) plays a key role in the defense against hypercalcemia by "sensing" extracellular calcium (Ca2+(o)) levels in the parathyroid and kidney, the key organs maintaining systemic calcium homeostasis. However, CaR function can be aberrant in certain pathophysiological states, e.g., in some types of cancers known to produce humoral hypercalcemia of malignancy (HHM) in humans and animal models in which high Ca2+(o), via the CaR, produces a homeostatically inappropriate stimulation of parathyroid hormone-related peptide (PTHrP) secretion from these tumors. Increased levels of PTHrP set a cycle in motion whereby elevated systemic levels of Ca2+(o) resulting from its increased bone-resorptive and positive renal calcium-reabsorbing effects give rise to hypercalcemia, which in turn begets worsening hypercalcemia by stimulating further release of PTHrP by the cancer cells. I review the relationship between CaR activation and PTHrP release in normal and tumor cells giving rise to HHM and/or malignant osteolysis and the actions of the receptor on key cellular events such as proliferation, angiogenesis, and apoptosis of cancer cells that will favor tumor growth and osseous metastasis. I also illustrate diverse signaling mechanisms underlying CaR-stimulated PTHrP secretion and other cellular events in tumor cells. Finally, I raise several necessary questions to demonstrate the roles of the receptor in promoting tumors and metastases that will enable consideration of the CaR as a potential antagonizing/neutralizing target for the treatment of HHM.  相似文献   

8.
《Bone and mineral》1991,12(3):157-166
We have investigated the actions of parathyroid hormone (PTH) and PTH-related peptide (PTHrP) on the bones of parathyroidectomized (PTX) rats by histomorphometric analysis. Miniosmotic pumps filled with either human PTH (hPTH)(1–34), hPTHrP(1–34) or vehicle were subcutaneously implanted on the backs of the rats. The peptides were continuously infused for 6 days at a rate of 15 nmole/kg/day. PTH and PTHrP exhibited similar hypercalcemic and hypophosphatemic actions on these PTX rats. No significant differences were noted in bone weight or calcium and phosphorus contents of the ashed bone among the 3 groups. By quantitative histomorphometric analysis, hPTH(1–34) and hPTHrP(1–34) were found similarly to enhance both bone formation and resorption. Peritrabecular fibrosis was observed only in the PTH-infused animals. PTHrP thus mimics the actions of PTH, but is not as effective in promoting mesenchymal cell proliferation along the bone trabeculae.  相似文献   

9.
Evidence implicates pivotal roles for parathyroid hormone-related protein (PTHrP) in stimulating cell growth and differentiation, placental calcium transport, and placental vasodilatation. As spontaneously hypertensive rat (SHR) fetuses are growth restricted compared with those of its normotensive control, the Wistar Kyoto (WKY) rat, we examined intrauterine PTHrP and total and ionic calcium concentrations in these rats. Fetal plasma PTHrP concentrations, but not total calcium concentrations, were lower in the SHR compared with WKY (P < 0.05). SHR placental concentrations of PTHrP were lower than in WKY (P < 0.03) and failed to show the increase observed in WKY near term (P < 0.05). PTHrP concentrations in amniotic fluid from SHR were not raised near term and were lower compared with WKY (P < 0.0005). The increased ionic calcium concentrations in amniotic fluid in the WKY near term (P < 0.05) were not detected in the SHR. Thus SHR fetal plasma, placental, and amniotic fluid PTHrP concentrations were reduced and associated with fetal growth restriction. We suggest that PTHrP may play a role in the etiology of both growth restriction during pregnancy and hypertension later in life.  相似文献   

10.
The present study was performed to investigate the regulation of cytosolic pH (pHi) and DNA synthesis by parathyroid hormone(PTH) and PTH-related peptide (PTHrP) in osteoblasts, using osteoblastic osteosarcoma cells, UMR-106 which possessed PTH-responsive dual signal transduction systems (cAMP-dependent protein kinase (PKA) and calcium/protein kinase C [Ca/PKC]) and amiloride-inhibitable Na+/H+ exchange system. Both human (h)PTH-(1-34) and hPTHrP-(1-34) caused a progressive decrease in pHi and the inhibition of [3H]thymidine incorporation (TdR) to the same degree in a dose-dependent manner with a minimal effective dose of 10(-10) M. Dibutyryl cAMP (10(-4) M and Sp-cAMPS (10(-4) M), a direct stimulator of PKA also caused a progressive decrease in pHi, and calcium ionophores (A23187 and ionomycin, 10(-6) M) caused a transient decrease in pHi. Pretreatment with amiloride (0.3 mM) mostly blocked dbcAMP- and Sp-cAMPS-induced decrease in pHi but did not affect calcium ionophore-induced decrease in pHi. In the presence of amiloride, PTH and PTHrP caused a transient decrease in pHi, which was similar to the pattern of calcium ionophore-induced change in pHi. Amiloride did not affect the inhibition of TdR by PTH or PTHrP as well as that by cAMP analogues or calcium ionophores. The present study indicated that PTH and PTHrP caused cytosolic acidification through PKA-inhibited Na+/H+ exchange and increased cytosolic calcium-induced pathway and that the regulation of DNA synthesis by PTH and PTHrP was not via Na+/H+ exchange system.  相似文献   

11.
The scales of bony fish represent a significant reservoir of calcium but little is known about their contribution, as well as of bone, to calcium balance and how calcium deposition and mobilization are regulated in calcified tissues. In the present study we report the action of parathyroid hormone-related protein (PTHrP) on calcium mobilization from sea bream (Sparus auratus) scales in an in vitro bioassay. Ligand binding studies of piscine 125I-(1-35(tyr))PTHrP to the membrane fraction of isolated sea bream scales revealed the existence of a single PTH receptor (PTHR) type. RT-PCR of fish scale cDNA using specific primers for two receptor types found in teleosts, PTH1R, and PTH3R, showed expression only of PTH1R. The signalling mechanisms mediating binding of the N-terminal amino acid region of PTHrP were investigated. A synthetic peptide (10(-8) M) based on the N-terminal 1-34 amino acid residues of Fugu rubripes PTHrP strongly stimulated cAMP synthesis and [3H]myo-inositol incorporation in sea bream scales. However, peptides (10(-8) M) with N-terminal deletions, such as (2-34), (3-34) and (7-34)PTHrP, were defective in stimulating cAMP production but stimulated [3H]myo-inositol incorporation. (1-34)PTHrP induced significant osteoclastic activity in scale tissue as indicated by its stimulation of tartrate-resistant acid phosphatase. In contrast, (7-34)PTHrP failed to stimulate the activity of this enzyme. This activity could also be abolished by the adenylyl cyclase inhibitor SQ-22536, but not by the phospholipase C inhibitor U-73122. The results of the study indicate that one mechanism through which N-terminal (1-34)PTHrP stimulates osteoclastic activity of sea bream scales, is through PTH1R and via the cAMP/AC intracellular signalling pathway. It appears, therefore, that fish scales can act as calcium stores and that (1-34)PTHrP regulates calcium mobilization from them; it remains to be established if this mechanism contributes to calcium homeostasis in vivo.  相似文献   

12.
Parathyroid hormone-related protein (PTHrP) was first discovered as the factor causing hypercalcaemia produced by solid tumours frequently associated with the head and neck, breast, lung and kidney. The homology of its amino-terminus to parathyroid hormone (PTH; eight of the first 13 residues are identical), enables it to share the same receptor and perform similar biological functions to PTH. The sequences of PTHrP C-terminal to its PTH-like region confer functions such as transplacental calcium transport, renal bicarbonate excretion and in vitro osteoclast inhibition. Recent findings have shown that PTHrP is a nuclear/nucleolar protein in certain tissues and that this localization is cell cycle-regulated, mediated by the middle portion of the molecule, and involves the nuclear import receptor importin beta1. The present review discusses what is known about the pathway by which PTHrP localizes to the nucleus/nucleolus and the putative roles it may have there.  相似文献   

13.
PTHrP is necessary for the formation of the embryonic mammary gland and, in its absence, the embryonic mammary bud fails to form the neonatal duct system. In addition, PTHrP is produced by the breast during lactation and contributes to the regulation of maternal calcium homeostasis during milk production. In this study, we examined the role of PTHrP during post-natal mammary development. Using a PTHrP-lacZ transgenic mouse, we surveyed the expression of PTHrP in the developing post-natal mouse mammary gland. We found that PTHrP expression is restricted to the basal cells of the gland during pubertal development and becomes expressed in milk secreting alveolar cells during pregnancy and lactation. Based on the previous findings that overexpression of PTHrP in cap and myoepithelial cells inhibited ductal elongation during puberty, we predicted that ablation of native PTHrP expression in the post-natal gland would result in accelerated ductal development. To address this hypothesis, we generated two conditional models of PTHrP-deficiency specifically targeted to the postnatal mammary gland. We used the MMTV-Cre transgene to ablate the floxed PTHrP gene in both luminal and myoepithelial cells and a tetracycline-regulated K14-tTA;tetO-Cre transgene to target PTHrP expression in just myoepithelial and cap cells. In both models of PTHrP ablation, we found that mammary development proceeds normally despite the absence of PTHrP. We conclude that PTHrP signaling is not required for normal ductal or alveolar development.  相似文献   

14.
Parathyroid hormone-related protein: biochemistry and molecular biology   总被引:10,自引:0,他引:10  
This article critically reviews the current state of knowledge regarding the recently identified and cloned novel hormone parathyroid hormone-related protein (PTHrP). PTHrP is produced by tumors associated with the syndrome of humoral hypercalcemia of malignancy giving rise to the parathyroid hormone (PTH)-like symptoms characteristic of the syndrome. Areas that will be reviewed include identification, purification and cloning, localization, actions, and significance of PTHrP in cancers and normal physiology. The structure and regulation of the PTHrP gene that may be ancestrally related to the PTH gene will also be discussed. Studies in vivo and in vitro with synthetic and recombinant PTHrP sequences and antibodies developed against them have established that the PTH-like actions of PTHrP are mediated via the N-terminal sequences, which show some limited sequence homology with PTH. Evidence for PTH and non-PTH-like actions of PTHrP in normal physiology, which implicate a role for PTHrP in fetal and neonatal development, is also presented.  相似文献   

15.
16.
Studies of humoral hypercalcemia of malignancy (HHM) have provided evidence that tumors produce a protein that acts through the parathyroid (PTH) receptor but is immunologically distinct from PTH. We have recently purified and cloned a parathyroid hormone-related protein (PTHrP) implicated in HHM from a human lung cancer cell line (BEN). Full-length cDNA clones have been isolated and found to encode a prepropeptide of 36 amino acids and a mature protein of 141 amino acids. Eight of the first 13 amino-terminal residues are identical with human PTH, although antisera directed to the amino-terminus of PTHrP do not recognize PTH. The striking homology with PTH about the amino-terminal region is not maintained in the remainder of the molecule. PTHrP therefore represents a previously unrecognized hormone. A 34-amino acid synthetic peptide, PTHrP(1-34) was 2-4 times more potent than bovine or human PTH(1-34) in bioassays promoting the formation of cAMP and plasminogen activity in osteogenic sarcoma cells and activation of adenylate cyclase in chick kidney membranes. Like PTH, PTHrP peptides of less than 30 residues from the amino-terminus showed substantially reduced activity. PTHrP(1-34) was also more potent than hPTH(1-34) in stimulating cAMP and phosphate excretion and reducing calcium excretion in the isolated perfused rat kidney. Immunohistochemical localization of PTHrP was consistently demonstrated in squamous cell carcinomas. In normal tissues PTHrP has been immunohistochemically localized in keratinocytes and PTHrP-like activity has been extracted from ovine placenta and fetal ovine parathyroids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
《Endocrine practice》2007,13(1):67-71
ObjectiveTo report a case of congenital craniopharyngioma and parathyroid hormone-related protein (PTHrP)-associated humoral hypercalcemia.MethodsDetails of this unusual case are reviewed, from detection of fetal hydrocephalus and a brain tumor, through cesarean delivery at 36 weeks of gestation, to subsequent laboratory studies, management, and confirmation of the diagnosis.ResultsAlthough PTHrP has been well documented as a cause of humoral hypercalcemia of malignancy (HHM) in adult patients with cancer, HHM is uncommon in children. In addition, HHM has rarely been ascribed to nonmalignant tumors. To the best of our knowledge, we report the first case of a neonate with congenital craniopharyngioma and refractory hypercalcemia (peak ionized calcium level of 1.92 mmol/L; normal, 1.05 to 1.3) attributed to an elevated PTHrP value of 8.6 pmol/L (normal, less than 4.7). Intact parathyroid hormone was appropriately undetectable (less than 10 pg/mL; normal, 15 to 65). Despite calcitonin treatment, the hypercalcemia persisted. Although pamidronate infusion stabilized the serum calcium level, the baby did not survive.ConclusionThe diagnosis of craniopharyngioma was confirmed at autopsy, and immunohistochemical studies substantiated that the craniopharyngioma produced PTHrP. (Endocr Pract. 2007;13:67-71)  相似文献   

18.
19.
20.
Abstract

This article critically reviews the current state of knowledge regarding the recently identified and cloned novel hormone parathyroid hormone-related protein (PTHrP). PTHrP is produced by tumors associated with the syndrome of humoral hypercalcemia of malignancy giving rise to the parathyroid hormone (FTH)-like symptoms characteristic of the syndrome.

Areas that will be reviewed include identification, purification and cloning, localization, actions, and significance of PTHrP in cancers and normal physiology. The structure and regulation of the PTHrP gene that may be ancestrally related to the PTH gene will also be discussed.

Studies in vivo and in vitro with synthetic and recombinant PTHrP sequences and antibodies developed against them have established that the PTH-like actions of PTHrP are mediated via the N-terminal sequences, which show some limited sequence homology with PTH.

Evidence for PTH and non-PTH-like actions of PTHrP in normal physiology, which implicate a role for FTHrP in fetal and neonatal development, is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号