首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The stomach, cholecystokinin, and satiety   总被引:1,自引:0,他引:1  
The stomach of the rhesus monkey empties liquids in a fashion that varies with the character of the solutions. Physiological saline empties exponentially. Glucose solutions empty biphasically--rapidly for the first minutes, then slowly and proportionately to glucose concentration to deliver glucose calories through the pylorus at a regulated rate (0.4 kcal/min). This prolonged and regulated second phase of gastric emptying depends on intestinal inhibition of the stomach. Cholecystokinin (CCK), a hormone released by food in the intestine, is an inhibitor of gastric emptying. In vitro receptor autoradiography demonstrates CCK receptors to be clustered on the circular muscle of the pylorus. Exogenous CCK, in doses that inhibit gastric emptying, will reduce food intake only if combined with an infusion of saline in the stomach. These observations indicate how gastric distension can be a means for provoking satiety. The variably sustained distension produced by the stomach's slow, calorically regulated emptying could prolong intermeal intervals and thus permit high-calorie meals to inhibit further caloric intake over time. CCK, by directly inhibiting gastric emptying during a meal, could promote gastric distension and so restrict the duration and size of individual meals.  相似文献   

2.
Central structures involved in opioid-induced feeding   总被引:1,自引:0,他引:1  
This paper summarizes efforts to identify structures involved in the opioid regulation of feeding. Many opioid agonists and antagonists increase or decrease food intake when injected centrally, which suggests, but alone does not prove, that the opioid feeding system is located within the brain. Some conditions of hunger and feeding cause changes in opioid peptide levels in certain brain areas, notably the hypothalamus, which may indicate that the areas are components of this opioid system. Lesion studies have also identified some potentially important structures, inasmuch as lesions of these structures reduce the effectiveness of opioid agonists or antagonists to alter food intake. Finally, microinjection studies have mapped the brain in terms of the effects on feeding of opioid agonists and antagonists. Results of different types of studies are consistent in suggesting that parts of the hypothalamus, particularly the paraventricular and ventromedial nuclei and the lateral hypothalamic area, are important components of the opioid feeding system.  相似文献   

3.
Tumor patients' blood lymphocytes have the capacity to recognize autologous tumor cells in vitro. A consequence of this recognition is the proliferation of small-size, high-density, resting T cells. Both helper (CD4+) and cytotoxic/suppressor (CD8+) T lymphocytes proliferate in the mixed lymphocyte-tumor cell cultures. In contrast to the autologous mixed lymphocyte cultures, both the auto-erythrocyte rosetting and non-rosetting (AE+ and AE-) T cells participate in the auto-tumor response. In contrast to stimulation by virus-infected or hapten-modified cells, DR antigen expression is not essential for stimulation by autologous tumor cells. In a proportion of cancer patients, blood lymphocytes have the capacity to lyse the patients' own tumor cells in vitro. There are two populations of lymphocytes with auto-tumor cytotoxic function. The first is characterized by low buoyant density and by non-adaptive cytotoxicity. In contrast to the recognition of hapten-modified or virus-infected target cells by the CTL, recognition of autologous tumor cells by the cytotoxic LD cells occurs even when the MHC class I antigens are blocked by mAb. The CD3 complex is also not involved in LD-mediated lysis. The other population with auto-tumor cytotoxic function comprises high-density, resting T cells. Recognition of autologous tumor cells by cytotoxic HD lymphocytes shares the characteristics of CTLs, i.e., their function is abrogated by pretreatment of the effectors with mAbs directed to the T3 receptor complex and by preincubation of the targets with mAb to the MHC class I antigens. Cytotoxicity of HD cells is restricted to the autologous tumor cells. This selectivity and the characteristics shared with CTL suggest that the auto-tumor reactivity of HD lymphocytes reflects an immune response against the autologous tumor.  相似文献   

4.
5.
Several types of GTPases play important roles in intracellular vesicular transport. These include the Rab and Arf families of the Ras superfamily, which are key regulators of several steps in the overall process. The basic structural and mechanistic properties of these proteins and their interactions with partner proteins and membranes are reviewed and compared in this article.  相似文献   

6.
Cytokinesis is an event common to all organisms that involves the precise coordination of independent pathways involved in cell-cycle regulation and microtubule, membrane, actin and organelle dynamics. In animal cells, the spindle midzone/midbody with associated endo-membrane system are required for late cytokinesis events, including furrow ingression and scission. In plants, cytokinesis is mediated by the phragmoplast, an array of microtubules, actin filaments and associated molecules that act as a framework for the future cell wall. In this article (which is part of the Cytokinesis series), we discuss recent studies that highlight the increasing number of similarities in the components and function of the spindle midzone/midbody in animals and the phragmoplast in plants, suggesting that they might be analogous structures.  相似文献   

7.
The hypothalamic AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) pathway is known to play an important role in the control of food intake and energy expenditure. Here, we hypothesize that citrate, an intermediate metabolite, activates hypothalamic ACC and is involved in the control of energy mobilization. Initially, we showed that ICV citrate injection decreased food intake and diminished weight gain significantly when compared to control and pair-fed group results. In addition, we showed that intracerebroventricular (ICV) injection of citrate diminished (80% of control) the phosphorylation of ACC, an important AMPK substrate. Furthermore, citrate treatment inhibited (75% of control) hypothalamic AMPK phosphorylation during fasting. In addition to its central effect, ICV citrate injection led to low blood glucose levels during glucose tolerance test (GTT) and high glucose uptake during hyperglycemic-euglycemic clamp. Accordingly, liver glycogen content was higher in animals given citrate (ICV) than in the control group (23.3+/-2.5 vs. 2.7+/-0.5 microg mL(-1) mg(-1), respectively). Interestingly, liver AMPK phosphorylation was reduced (80%) by the citrate treatment. The pharmacological blockade of beta3-adrenergic receptor (SR 59230A) blocked the effect of ICV citrate and citrate plus insulin on liver AMPK phosphorylation. Consistently with these results, rats treated with citrate (ICV) presented improved insulin signal transduction in liver, skeletal muscle, and epididymal fat pad. Similar results were obtained by hypothalamic administration of ARA-A, a competitive inhibitor of AMPK. Our results suggest that the citrate produced by mitochondria may modulate ACC phosphorylation in the hypothalamus, controlling food intake and coordinating a multiorgan network that controls glucose homeostasis and energy uptake through the adrenergic system.  相似文献   

8.
Fei Wang  Tian de R  Tso P  Han JS 《Peptides》2011,32(12):2394-2399
Obesity is a major health problem in the world. Since effective remedies are rare, researchers are trying to discover new therapies for obesity, and acupuncture is among the most popular alternative approaches. This study investigated the anti-obesity mechanisms of EA, using a rat model of diet-induced obesity. After feeding with a high-fat diet for 9 weeks, a number of rats who gained weight that surpassed the maximal body weight of rats in the chow-fed group were considered obese and employed in the study. A 2 Hz EA treatment at the acupoints ST36/SP6 with the intensity increasing stepwise from 0.5-1-1.5 mA was given once a day for 30 min. Rats treated with EA showed significantly decreased food intake and reduced body weight compared with the rats in DIO and restraint group. EA treatment increased peptide levels of α-MSH and mRNA levels of its precursor POMC in the arcuate nuclear of hypothalamus (ARH) neurons. In addition, the cerebral spinal fluid (CSF) content of α-MSH was elevated by EA application. ARH lesions by monosodium glutamate abolished the inhibition effect of EA on food intake and body weight. A non-acupoint stimulation did not show the benefit effect on food intake inhibition and body weight reduction compared with restraint and ST36/SP6 EA treatment. We concluded that EA treatment at ST36/SP6 acted through ARH to significantly inhibit food intake and body weight gain when fed a high-fat diet and that the stimulation of α-MSH expression and release might be involved in the mechanism.  相似文献   

9.
Molecular structures of proteins involved in vesicle fusion   总被引:3,自引:0,他引:3  
We present a summary of the structures of 13 proteins involved in the docking and fusion of intracellular transport vesicles to their target membranes.  相似文献   

10.
In this study we try to simultaneously investigate the response of neurons and astrocytes of rats following hyperosmotic stimulation and test the possibility that the reciprocal pathways between medullary visceral zone (MVZ) and hypothalamic paraventricular nucleus (PVN) or supraoptic nucleus (SON). Hyperosmotic pressure animal model was established by administering 3% sodium chloride as drinking water to rats. The distribution and expression of the HRP retrogradely labeled neurons, Fos, tyrosine hydroxylase (TH) or vasopressin (VP) positive neuron and glial fibrillary acidic protein (GFAP) positive astrocytes in the MVZ, SON and PVN were observed by quadruplicate-labeling methods of WGA-HRP retrograde tracing combined with anti-Fos, TH (or VP) and GFAP immunohistochemical technique. Fos positive neurons within the MVZ, PVN and SON increased markedly. There were also a large number of GFAP positive structures in the brain and their distribution pattern was fundamentally similar or analogous to Fos positive neurons in the above-mentioned areas. The augmented GFAP reactivities took on hypertrophic cell bodies, thicker and longer processes. Quadruplicate immunohistochemical staining showed that a neuron could be closely surrounded by many astrocytes and they formed neuron-astrocytic complex (N-ASC). Fos+/TH+/HRP+/GFAP+ and Fos+/VP+/HRP+/GFAP+ quadruplicate labeled N-ASC could be found in the MVZ, PVN and SON, respectively. The present results indicated that the neurons and astrocytes might be very active following hyperosmotic pressure and N-ASC as a functional unit might serve to modulate osmotic pressure. There were reciprocal osmoregulation pathways between the MVZ and SON or PVN in the brain.  相似文献   

11.
12.
13.
14.
Summary The occurrence of CRF (corticotropin-releasing factor)-immunoreactive nerve fibers in the circumventricular organs of adult male monkeys, Macaca fuscata, was studied on serially sectioned brains, by means of the peroxidase-antiperoxidase technique in combination with a highly specific and sensitive CRF antiserum. CRF-containing nerve fibers were found in high concentrations in the infundibulum and, in addition, in small numbers in the posterior lobe, organum vasculosum laminae terminalis, subfornical organ, and area postrema; they were missing in the pineal body and the subcommissural organ. The CRF immunoreactive nerve fibers distributed in these organs were located in the proximity of the blood vessels.Supported by a grant (No. 56440022) from the Ministry of Education, Science, and Culture, Japan  相似文献   

15.
16.
Structures of 79 proteins involved in human diseases were predicted by sequence alignments with structural templates. The predicted structures for ALDP and CSA, proteins responsible for adrenoleukodystrophy and the Cockayne syndrome, respectively, were analyzed to elucidate the molecular basis of disease mutations. In particular we positioned residue P484 of ALDP in the homodimer interface. This positioning is consistent with a recent experimental finding that the mutation P484R significantly decreases the self-interaction of ALDP and suggests that the disease mechanism of this mutation lies in the impaired ALDP dimerization. We identified two new WD repeats in CSA and suggest that one of these forms part of the interaction surface with other proteins.  相似文献   

17.
Epidermal Growth Factor (EGF), a small polypeptide which acts as a mitogen for many cell types, has previously been shown to bind to a specific plasma membrane receptor on 3T3 cells. If 125I-EGF is bound to 3T3 cells for one hour at 4°C, it remains predominantly associated with the plasma membrane-containing fractions obtained by subjecting cell supernatants to equilibrium sedimentation on sucrose gradients. When binding is followed by a 10-minute incubation at 37°C, over 50% of the 125I-EGF is associated with two internal membrane-containing peaks having higher densities than the plasma membrane. After one hour at 37°C, over 80% of the 125I-EGF is degraded and removed from the cells. The most rapidly labeled internal peak corresponds in density to brain-coated vesicles (CVs). Antiserum prepared against coated vehicles from brain precipitates the 125I-EGF in this peak. In addition, CVs containing 125I-EGF can be co-purified from 3T3 cells exposed to 125I-EGF, using brain as a carrier. Several lines of evidence suggest that the other 125I-EGF-labeled intracellular peak is 125I-EGF in lysosomes. These results provide kinetic and biochemical evidence for a unidirectional pathway for EGF catabolism by 3T3 cells. EGF first binds to the plasma membrane bound receptors, is then moved to the cytoplasm in CVs, and finally appears in lysosomes, where it is degraded and released from the cells. Ten-millimolar NH4Cl blocks lysosomal hydrolysis of EGF almost completely. Subsequently, EGF internalization is inhibited. This finding suggests that the pathway for EGF internalization and degradation is tightly coupled.  相似文献   

18.
19.
The electrophysiological responses of neurons in the canine area postrema (AP) to ionophoretic application of neuropeptides and transmitters were studied and correlated with the presence or absence of an emetic response on systemic administration. Of 17 common neuropeptides 11 were emetic when applied systemically at doses of 0.03-0.35 mg/kg. The emesis was dose dependent and was no longer observed in animals with chronic ablation of the AP. The responses of 122 AP single units were recorded. Neurons were silent at rest, and most were excited by glutamate, apomorphine, and dopamine. Excitatory responses to each of eight emetic peptides were recorded in 22-65% of cells studied; no responses were found to two peptides that were not emetic. The response to glutamate was always a brief, high-frequency discharge; the responses to all 13 other excitatory substances were of long latency, low frequency, and long duration. With high ionophoretic current or multiple applications, units would frequently become spontaneously active for many minutes or longer. The similarity of response of so many substances on small neurons suggests a common ionic or metabolic mechanism underlying the response. The direct correlation between the occurrence of emesis on systemic administration and the presence of excitatory receptors on AP neurons provides strong support for the proposed role of the AP as the chemoreceptor trigger zone for emesis.  相似文献   

20.
Cholecystokinin and intestinal satiety in the rat   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号