首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simvastatin is a lipid-lowering drug in the pharmaceutical group statins. Interaction of a drug with lipids may define its role in the system and be critical for its pharmacological activity. We examined the interactions of simvastatin with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) as a function of temperature at different simvastatin concentrations using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The FTIR results indicate that the effect of simvastatin on membrane structure and dynamics depends on the type of membrane lipids. In anionic DPPG MLVs, high simvastatin concentrations (12, 18, 24 mol%) change the position of the CH2 antisymmetric stretching mode to lower wavenumber values, implying an ordering effect. However, in zwitterionic DPPC MLVs, high concentrations of simvastatin disorder systems both in the gel and liquid crystalline phases. Moreover, in DPPG and DPPC MLVs, simvastatin has opposite dual effects on membrane dynamics. The bandwidth of the CH2 antisymmetric stretching modes increases in DPPG MLVs, implying an increase in the dynamics, whereas it decreases in DPPC MLVs. Simvastatin caused broadening of the phase transition peaks and formation of shoulders on the phase transition peaks in DSC curves, indicating multi-domain formations in the phospholipid membranes. Because physical features of membranes such as lipid order and fluidity may be changed with the bioactivity of drugs, opposing effects of simvastatin on the order and dynamics of neutral and charged phospholipids may be critical to deduce the action mechanism of the drug and estimate drug-membrane interactions.  相似文献   

2.
M Myers  E Freire 《Biochemistry》1985,24(15):4076-4082
The interactions of the opioid peptide [D-Ala2]methionine-enkephalinamide with dipalmitoylphosphatidylcholine (DPPC) large unilamellar vesicles containing gangliosides GM1, Gd1a, and Gt1b and synaptic plasma membranes selectively enriched with dimyristoylphosphatidylcholine (DMPC) and ganglioside Gd1a have been investigated by using high-sensitivity differential scanning calorimetry. In the absence of gangliosides, the addition of enkephalinamide in concentrations of up to 10(-3) M does not induce any appreciable change in the heat capacity function of DPPC. In the presence of gangliosides, however, changes in the heat capacity function were observed with as little as micromolar concentrations of the enkephalinamide; the same is true for DMPC-Gd1a-enriched synaptic membranes. The magnitude and the nature of the enkephalinamide effect depend on the type of ganglioside studied. For DPPC vesicles containing ganglioside GM1 only a slight broadening in the heat capacity function and a small upward shift in the transition temperature were observed. For DPPC vesicles containing ganglioside Gd1a the effect was more dramatic; enkephalinamide concentrations as low as 10(-5) M caused the appearance of two well-defined peaks in the heat capacity function in contrast to the one peak observed in the absence of enkephalinamide. In the case of DPPC vesicles containing ganglioside Gt1b the enkephalinamide effect was seen at concentrations of 10(-4) M or higher. Synaptic plasma membranes were isolated from bovine brain, selectively enriched with exogenous lipid, and their thermotropic behavior was characterized by steady-state fluorescence spectroscopy and differential scanning calorimetry. This lipid enrichment results in the appearance of a membrane phase transition otherwise absent in the intact membrane preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Molecular motion of dipalmitoylphosphatidylcholine (DPPC)/CaCl2 lamellae in a gel phase was studied by pulse NMR. Proton 1/T1 for DPPC in a gel phase showed that the rate of reorientation about the long axis of the lipid molecule decreased gradually from 0 to 500 mM CaCl2. At 10-50 mM CaCl2 the correlation time reached the value of the inverse Larmor frequency (approx. 2.6 ns). A proton NMR absorption spectrum and a spin-pair-dipolar-echo (SPDE) decay showed that the second moment in the hydrocarbon chain region decreased below about 1 mM CaCl2 and increased from 1 to 500 mM CaCl2. The second moment in the polar head group increased gradually with an increase in the CaCl2 concentration. The increase in the second moment at the high CaCl2 concentrations was attributed to an increase in the order parameters of the segments both in the polar head group and in the hydrocarbon chain region. At the lower CaCl2 concentrations, however, calcium ion possibly induced disorder in the lamellae which led to a decrease in the order parameter in the hydrocarbon chain region.  相似文献   

4.
J S Vincent  I W Levin 《Biochemistry》1988,27(9):3438-3446
The vibrational Raman spectra of both pure L-alpha-dipalmitoylphosphatidylcholine (DPPC) liposomes and DPPC multilayers reconstituted with ferricytochrome c under varying conditions of pH and ionic strength are reported as a function of temperature. Total integrated band intensities and relative peak height intensity ratios, two spectral scattering parameters used to determine bilayer disorder, are invariant to changes in pH and ionic strength but exhibit a sensitivity to the bilayer concentration of the ferricytochrome c. Protein concentrations were estimated by comparing the 1636 cm-1 resonance Raman line of known ferricytochrome c solutions to intensity values for the reconstituted multilayer samples. Temperature-dependent profiles of the 3100-2800 cm-1 C-H stretching, 1150-1000 cm-1 C-C stretching, 1440 cm-1 CH2 deformation, and 1295 cm-1 CH2 twisting mode regions characteristic of acyl chain vibrations reflect bilayer perturbations due to the weak interactions of ferricytochrome c. The DPPC multilamellar gel to liquid-crystalline phase transition temperature, TM, defined by either the C-H stretching mode I2935/I2880 or the C-C stretching mode I1061/I1090 peak height intensity ratios, is decreased by approximately 4 degrees C for the approximately 10(-4) M ferricytochrome c reconstituted DPPC liposomes. Other spectral features, such as the increase in the 2935 cm-1 C-H stretching mode region and the enhancement of higher frequency CH2 twisting modes, which arise in bilayers containing approximately 10(-4) M protein, are interpreted in terms of protein penetration into the hydrophobic region of the bilayer.  相似文献   

5.
L J Lis  V A Parsegian  R P Rand 《Biochemistry》1981,20(7):1761-1770
We have confirmed that CaCl2 swells the multilayer lattice formed by dipalmitolyphosphatidylcholine (DPPC) in an aqueous solution. Specifically, at room temperature 1 mM CaCl2 causes these lipid bilayers to increase their separation, dw, from 19 A in pure water to greater than 90 A. CaCl2 concentrations greater than 4 mM cause less swelling. We have measured the net repulsive force between the bilayers in 30 mM CaCl2 at T = 25 degrees C (below the acyl chain freezing temperature). For interbilayer separations between 30 and 90 A, the dominant repulsion between bilayers is probably electrostatic; Ca2+ binds to DPPc lecithin bilayers, imparting a charge to them. The addition of NaCl to CaCl2 solutions decreases this repulsion. For dw less than 20 A, the bilayer repulsion appears to be dominated by the "hydration forces" observed previously between both neutral and charged phospholipids. From the electrostatic repulsive force, we estimate the extent of Ca2+ binding to the bilayer surface. The desorption and bound Ca2+, apparent when bilayers are pushed together, is more rapid than one would expect if an association constant governed Ca2+ binding. The association affinity does not appear to be a fixed quantity but rather a sensitive function of ionic strength and bilayer separation.  相似文献   

6.
Interactions of progesterone with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) multilamellar liposomes were investigated as a function of temperature and progesterone concentration by using three non-invasive techniques namely Fourier transform infrared spectroscopy, turbidity at 440 nm, and differential scanning calorimetry. The results reveal that progesterone changes the physical properties of DPPC bilayers by decreasing the main phase-transition temperature, abolishing the pre-transition, broadening the phase-transition profile, disordering the system both in gel and liquid crystalline phase, increasing the dynamics at low concentrations whereas stabilizing the membrane at high concentrations, and inducing phase separation. Progesterone does not change the hydration of the CO groups, while it strengthens the hydrogen bonding between the PO2- groups of lipids and the water molecules around.  相似文献   

7.
Fusion of vesicles with the air-water interface and consequent monolayer formation has been studied as a function of temperature. Unilamellar vesicles of DMPC, DPPC, and DODAX (X=Cl(-), Br(-)) were injected into a subphase containing NaCl, and the surface pressure (tension) was recorded on a Langmuir Balance (Tensiometer) using the Wilhelmy plate (Ring) method. For the zwitterionic vesicles, plots of the initial surface pressure increase rate (surface tension decrease rate) as a function of temperature show a peak at the phase transition temperature (T(m)) of the vesicles, whereas for ionic ones they show a sharp rise. At high concentrations of NaCl, ionic DODA(Cl) vesicles seem to behave like zwitterionic ones, and the rate of fusion is higher at the T(m). The influence of size was studied comparing large DODA(Cl) vesicles with small sonicated ones, and no significant changes were found regarding the rate of fusion with the air-water interface.  相似文献   

8.
J Zeng  K E Smith    P L Chong 《Biophysical journal》1993,65(4):1404-1414
6-Carboxyfluorescein was employed to examine the effect of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine (DPPC) large unilamellar vesicles. Proton permeability was measured by monitoring the decrease of 6-carboxyfluorescein fluorescence after a pH gradient from 3.5 (outside the vesicle) to 8.0 (inside the vesicle) was established. At 20 degrees C and below 1.2 M ethanol, the fluorescence decrease is best described by a single exponential function. Above 1.2 M ethanol, the intensity decrease is better described by a two-exponential decay law. Using the fitted rate constants and the vesicle radii determined from light-scattering measurements, the proton permeability coefficient, P, in DPPC vesicles was calculated as a function of ethanol concentration. At 20 degrees C, P increases monotonically with increasing ethanol content up to 1.0 M, followed by an abrupt increase at 1.2 M. The vesicle size also exhibits a sudden increase at around 1.2 M ethanol, which has been shown to result from vesicle aggregation rather than vesicle fusion. The abrupt increases in P and in vesicle size occur at the concentration region close to the critical ethanol concentration for the formation of the fully interdigitated gel state of DPPC. At 14 degrees C, the abrupt change in P shifts to 1.9-2.0 M ethanol, completely in accordance with the ethanol-temperature phase diagram of interdigitated DPPC. Effects of methanol and benzyl alcohol on lipid interdigitation have also been examined. At 20 degrees C, DPPC large unilamellar vesicles exhibit a dramatic change in P at 3 M methanol and at 40 mM benzyl alcohol. These concentrations come close to the critical methanol and benzyl alcohol concentrations for the formation of fully interdigitated DPPC structures determined previously by others. It can be concluded that proton permeability increases dramatically as DPPC is transformed from the noninterdigitated gel to the fully interdigitated gel state by high concentrations of alcohol. This marked increase in proton permeability can be attributed to the combined effect of the changes in membrane thickness and surface charge density, due to the ethanol-induced lipid interdigitation. The possible effects of the increased proton permeability caused by ingested ethanol on gastric mucosal membranes are discussed.  相似文献   

9.
Effects of walnut oil (WO) on dynamic and thermodynamic properties of 0–50 wt% cholesterol (CH) containing dimyristoylphosphatidylcholine (DMPC) and 10 wt% CH containing dipalmitoylphosphatidylcholine (DPPC) membrane dispersions were studied by electron paramagnetic resonance (EPR), using 5-doxyl stearic acid (5-DSA) and 16-doxyl stearic acid (16-DSA). Incorporation of 10 wt% WO alone decreased the phase transition temperature and created depth-dependent effects at the gel phase. The order increased close to the head region and decreased in the hydrocarbon core of the DMPC bilayer. For DPPC, the order decreased both close to head region and in the hydrocarbon core. Ten weight percent WO did not have considerable effect at the fluid phase for both DMPC and DPPC. Incorporation of 40 wt% WO into DMPC created an abrupt decrease in the maximum hyperfine splitting values after 305 K. The effect of 10 wt% WO in CH containing DMPC dispersions was dependent on the CH concentration. An increase and a decrease in the order were observed at low and high CH concentrations, respectively. Incorporation of WO created different effects on fluidity of 10 wt% CH containing DMPC and DPPC dispersions. Close to the head group region, the order in DMPC increased both in the gel and fluid phases; but for DPPC, an opposite effect was observed in both of the phases. In the hydrocarbon core of the bilayer, addition of 10 wt% WO into 10 wt% CH containing DMPC decreased the order in the gel phase and WO did not affect the order in the fluid phase. For DPPC, WO effects were observed to alter with temperature. In the studied temperature range, order parameters, diffusion constants and effective tilt angles were obtained from simulations of the spectra using Microscopic Order Macroscopic Disorder (MOMD) and Vary Anisotropic Reorientation (VAR) models. For 16-DSA, spectra were also simulated using two domains with EPRSIM.  相似文献   

10.
The phases and transition sequences for aqueous dispersions of mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycerol (1,2-DPG) have been studied by differential scanning calorimetry, dynamic x-ray diffraction, freeze-fracture electron microscopy, 31P-nuclear magnetic resonance spectroscopy, and Fourier-transform infrared spectroscopy. The results have been used to construct a dynamic phase diagram of the binary mixture as a function of temperature over the range 20 degrees-90 degrees C. It is concluded that DPPC and 1,2-DPG form two complexes in the gel phase, the first one with a DPPC/1,2-DPG molar ratio of 55:45 and the second one at a molar ratio of approximately 1:2, defining three different regions in the phase diagram. Two eutectic points are postulated to occur: one at a very low 1,2-DPG concentration and the other at a 1,2-DPG concentration slightly higher than 66 mol%. At temperatures higher than the transition temperature, lamellar phases were predominant at low 1,2-DPG concentrations, but nonlamellar phases were found to be predominant at high proportions of 1,2-DPG. A very important aspect of these DPPC/1,2-DPG mixtures was that, in the gel phase, they showed a ripple structure, as seen by freeze-fracture electron microscopy and consistent with the high lamellar repeat spacings seen by x-ray diffraction. Ripple phase characteristics were also found in the fluid lamellar phases occurring at concentrations up to 35.6 mol% of 1,2-DPG. Evidence was obtained by Fourier transform infrared spectroscopy of the dehydration of the lipid-water interface induced by the presence of 1,2-DPG. The biological significance of the presence of diacylglycerol in membrane lipid domains is discussed.  相似文献   

11.
The calorimetric properties and morphological structures of dispersed mixtures of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and highly purified human brain gangliosides, GM2, GM1, GD1a, GD1b, and GT1b, were studied using a high-sensitivity differential scanning calorimeter and an electron-microscope, as a function of the ganglioside molar fraction. No thermal phase transitions of pure gangliosides in aqueous dispersions could be detected. In the mixtures of DPPC and gangliosides, the gel to liquid crystalline phase transition occurred at a higher temperature than in pure DPPC dispersions and progressed over a wide temperature range. As increasing amounts of the pure ganglioside species were added to DPPC, the temperature for the main transition gradually increased. The phase transition progressed differently among different gangliosides/DPPC mixtures. The enthalpy values were found to decrease linearly as the number of sialic acid residues increased. Electron-microscopically the ganglioside/DPPC mixtures formed multilamellar structures at lower concentrations of the gangliosides, and the structures changed to cylindrical and spherical micelles as the ganglioside concentration was increased. The polysialoganglioside/DPPC mixtures showed the micellar form even at lower ganglioside concentrations, contrary to the case of the monosialoganglioside/DPPC mixtures. The morphological changes of gangliosides/DPPC mixtures corresponded with changes in the calorimetric properties. These results show that individual gangliosides have different physicochemical effects on model membranes, possibly because of the interaction of their negatively charged head groups.  相似文献   

12.
A study on the interactions between tryptophan (Trp) and dipalmitoylphosphatidyl choline (DPPC) liposomes conducted with the NMR technique and taking turbidity measurements is reported. Trp is shown to be incorporated into the bilayer only when interaction occurs above gel-liquid transition. Disappearance of turbidity changes at the phase transition temperatures are shown to occur with Trp incorporation. 1H and 13C NMR relaxation times T1 of DPPC are seen to be reduced. Acyl chain signal intensity is shown to decrease and the corresponding line-width to increase as a function of Trp concentration. DPPC 31P [1H] Nuclear Overhauser Effect (NOE) is depressed by the presence of Trp above gel-liquid transition temperature whereas NOE remains high below phase transition temperature when Trp is present in the bilayer. Effects are shown to be the same in both H2O and in 2H2O. A membrane modification that may account for the previously observed inhibition of polysaccharide induced cell aggregation is hypothesized.  相似文献   

13.
The effects of tumour promoters, namely phorbol esters and teleocidin, on the activity of porcine pancreatic phospholipase A2 (PLA2) was investigated by using a system of small unilamellar vesicles composed of dipalmitoyl-phosphatidylcholine (DPPC). DPPC vesicles encapsulating Quin 2 (Quin 2/DPPC vesicles) were suspended in a medium containing Ca2+. The addition of PLA2 to Quin 2/DPPC vesicles increased the fluorescence intensity of Quin 2. This increase was due to chelation of Quin 2 with Ca2+, which resulted from an increase in the permeability of the phospholipid bilayer caused by the hydrolytic activity of PLA2. The tumour promoters phorbol 12-myristate 13-acetate (PMA) and teleocidin, at low concentrations, enhanced PLA2 activity at temperatures below the phase-transition temperature of the membrane, but, in contrast, high concentrations of the tumour promoters suppressed PLA2 activity. Phorbol 12-myristate (PM) also had a similar effect on PLA2 activity. PMA and PM disturbed the membrane structure markedly, which was indicated by the enhanced leakage of carboxyfluorescein (CF) from DPPC vesicles encapsulating CF. On the other hand, phorbol 12,13-didecanoate and 4 alpha-phorbol 12,13-didecanoate, which did not disturb the membrane structure to the same extent, had an insignificant effect on PLA2 activity. It is therefore concluded that PLA2 catalyses the hydrolysis of phospholipids in bilayer vesicles which contain a moderate degree of structural defects. However, the effects of tumour promoters on PLA2 activity was not related to their potencies as inflammatory and tumour-promoting agents.  相似文献   

14.
We performed differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopic measurements to study the effects of lathosterol (Lath) on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes and compared our results with those previously reported for cholesterol (Chol)/DPPC binary mixtures. Lath is the penultimate intermediate in the biosynthesis of Chol in the Kandutsch-Russell pathway and differs from Chol only in the double bond position in ring B, which is between C7 and C8 in Lath and between C5 and C6 in Chol. Our DSC studies indicate that the incorporation of Lath is more effective than Chol in reducing the temperature and enthalpy of the DPPC pretransition. At lower sterol concentrations (≤10 mol %), incorporation of both Lath and Chol decreases the temperature, enthalpy, and cooperativity of the sharp component of the main phase transition of DPPC to a similar extent, but at higher sterol concentrations, Lath is more effective at decreasing the phase transition temperature, enthalpy, and cooperativity than Chol. These results indicate that at higher concentrations, Lath is more disruptive of DPPC gel-state bilayer packing than Chol is. Moreover, incorporation of Lath decreases the temperature of the broad component of the main phase transition of DPPC, whereas Chol increases it; this difference in the direction and magnitude of the temperature shift is accentuated at higher sterol concentrations. Although at sterol concentrations of ≤20 mol % Lath and Chol are almost equally effective at reducing the enthalpy and cooperativity of the broad component of the main phase transition, at higher sterol levels Lath is less effective than Chol in these regards and does not completely abolish the cooperative hydrocarbon chain melting phase transition at 50 mol %, as does Chol. These latter results indicate that Lath both is more disruptive with respect to the low-temperature state of the sterol-enriched domains of DPPC bilayers and has a lower lateral miscibility in DPPC bilayers than Chol. Our FTIR spectroscopic studies suggest that Lath incorporation produces a less tightly packed bilayer than does Chol at both low (gel state) and high (liquid-crystalline state) temperatures, which is characterized by increased H-bonding between water and the carbonyl groups of the fatty acyl chains in the DPPC bilayer. Overall, our studies indicate that Lath and Chol incorporation can have rather different effects on the thermotropic phase behavior and organization of DPPC bilayers and thus that the position of the double bond in ring B of a sterol molecule can have an appreciable effect on the physical properties of sterol molecules.  相似文献   

15.
The outermost layer of the skin, the stratum corneum (SC), acts as the natural physical barrier. The SC consists of corneocytes embedded in a crystalline lipid matrix consisting of ceramides, free fatty acids and cholesterol.Although phospholipids are frequently present in topical formulations, no detailed information is reported on the interactions between phospholipids and SC lipids. The aim of this study was to examine the interactions between a model phospholipid, dipalmitoylphosphatidylcholine (DPPC) and synthetic ceramide-based mixtures (referred to as SC lipids).(Perdeuterated) DPPC was mixed with SC lipids and the lipid organization and mixing properties were examined. The studies revealed that DPPC participates in the same lattice as SC lipids thereby enhancing a hexagonal packing. Even at a high DPPC level, no phase separated pure DPPC was observed.When a DPPC containing formulation is applied to the skin surface it must partition into the SC lipid matrix prior to any mixing with the SC lipids. To mimic this, DPPC was applied on top of a SC lipid membrane. DPPC applied in a liquid crystalline state was able to mix with the SC lipids and participated in the same lattice as the SC lipids. However, when DPPC was applied in a rippled gel-state very limited partitioning of DPPC into the SC lipid matrix occurred. Thus, when applied to the skin, liquid crystalline DPPC will have very different interactions with SC lipids than DPPC in a (rippled-)gel phase.  相似文献   

16.
Perfluorinated acids are emerging as an important class of persistent environmental pollutant, thus raising human health concerns. To understand the behavior of these compounds in biological systems, the mixing behavior of two perfluorinated acids, perfluorododecanoic and perfluorotetradecanoic acid, with dipalmitoylphosphatidylcholine (DPPC) was studied in monolayers at the air-water interface and in fully hydrated DPPC bilayers. The mixing behavior of both acids was indicative of an attractive interaction and partial miscibility with DPPC at the air-water interface. In the bilayer studies, the fluorinated acids cause peak broadening and elimination of the pretransition of DPPC. The onset temperature of the main phase transition remains constant in the presence of the fluorinated acids suggesting immiscibilities in the gel phase. Below X(DPPC)=0.97 significant peak broadening of the main phase transition can be observed. These results suggest strong interaction between the respective acid and DPPC, and that both acids are able to partition into the lipid bilayer. However, their mixing behavior is far from ideal, thus suggesting the presence of domains or lipid aggregates with high acid concentrations which may (adversely) impact the function of biological mono- and bilayers.  相似文献   

17.
The relation between the dynamic properties of the haptenic site of lipid haptens and the phase transition of the host lattice was investigated using head group spin-labeled phosphatidylethanolamines, that is, spin-label lipid haptens (Br?let, P., and H. M. McConnell, 1976, Proc. Natl. Acad. Sci. USA., 73:2977-2981; Br?let, P., and H. M. McConnell, 1977, Biochemistry, 16:1209-1217). The electron spin resonance (ESR) spectra of the lipid haptens in liposomal membranes showed three narrow resonance lines, whose widths and hyperfine splitting values suggested that the haptenic site, i.e., the spin-label moiety, should be exposed in the water phase. The line width of each peak depended on the host lipid species and on the incubation temperature. A temperature study using dipalmitoylphosphatidylcholine (DPPC) liposomes showed that the dynamic properties of the haptenic site were related to the main phase transition and the subphase transition of the host lattice but not to the prephase transition. The angular amplitudes of the tumbling motion of the haptenic site were estimated using oriented multibilayer systems. The angular amplitude of dipalmitoyl-phosphatidyl-N-[[N-(1-oxyl-2,2,6, 6-tetramethyl-4-piperidinyl)-carbamoyl]-methyl]-ethanolamine in DPPC membranes was 63 degrees at 2 degrees C, and it increased slightly with an increase in temperature regardless of the phase transition of the host lattice. The value for egg phosphatidylcholine (PC) at 25 degrees C was the same as for DPPC above its main phase transition temperature. Rotational correlation time analysis showed that the axial rotation of the haptenic site was preferable to the tumbling motion of the rotational axis, and the predominance depended on the phase transition, Lc----L beta' and P beta'----L alpha. Elongation of the spacer arm between the haptenic site and phosphate increased the angular amplitude of the tumbling motion but reduced the effect of the host lattice. Spin-label lipid haptens with unsaturated fatty acyl chains were distributed heterogeneously in DPPC membranes, whereas those with the same fatty acyl chain as the host lattice were distributed randomly. The ESR spectrum of a lipid hapten under its prephase transition temperature showed two components, broad and narrow. This suggests that at least two different domains, a hapten-rich domain and a hapten-poor one, may coexist in membranes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We have investigated the effect of two monosaccharides, glucose and fructose, and two disaccharides, sucrose and trehalose, on the thermotropic phase transition of unilamellar extruded vesicles of DPPC. All the sugars investigated raise the main transition temperature (Tm) of some fraction of the lipid, but there are differences between the effect of glucose and the other three sugars. At low concentrations of glucose, Tm is lowered. At high concentrations of glucose there are two transitions, one with a low Tm and one with a high Tm. The data suggest that at low concentrations, all of the glucose present may bind to the bilayer and increase headgroup spacing by physical intercalation or increased hydration. The appearance of a Tm above that of pure hydrated DPPC suggests the possibility of the dehydration of some other population of phospholipid molecules. The other three sugars increase Tm, but at high concentrations of trehalose, sucrose, and fructose a second peak occurs at a low Tm. The other sugars appear to dehydrate the bilayer at low concentrations, but may show some binding or increased hydration of some portion of the lipid at very high concentrations. The sugar effects on unilamellar vesicles are strikingly different from the effects of these sugars on multilamellar vesicles.  相似文献   

19.
Perfluorinated acids are emerging as an important class of persistent environmental pollutant, thus raising human health concerns. To understand the behavior of these compounds in biological systems, the mixing behavior of two perfluorinated acids, perfluorododecanoic and perfluorotetradecanoic acid, with dipalmitoylphosphatidylcholine (DPPC) was studied in monolayers at the air-water interface and in fully hydrated DPPC bilayers. The mixing behavior of both acids was indicative of an attractive interaction and partial miscibility with DPPC at the air-water interface. In the bilayer studies, the fluorinated acids cause peak broadening and elimination of the pretransition of DPPC. The onset temperature of the main phase transition remains constant in the presence of the fluorinated acids suggesting immiscibilities in the gel phase. Below X(DPPC) = 0.97 significant peak broadening of the main phase transition can be observed. These results suggest strong interaction between the respective acid and DPPC, and that both acids are able to partition into the lipid bilayer. However, their mixing behavior is far from ideal, thus suggesting the presence of domains or lipid aggregates with high acid concentrations which may (adversely) impact the function of biological mono- and bilayers.  相似文献   

20.
By encapsulating a pH-sensitive dye, phenol red, in multilamellar liposomes of DMPC, DPPC and DMPC/DPPC mixtures, the permeability of these phospholipid bilayers to dye as a function of temperature has been studied. For both DMPC and DPPC liposomes, dye release begins well below the main gel-to-liquid-crystalline phase transition (24°C and 42°C, respectively) at temperatures corresponding to the onset of the pretransition (about 14°C and 36°C, respectively) with DPPC liposomes exhibiting a permeability anomaly at the main phase transition (42°C). The perturbation occurring in the bilayer structure that allows the release of encapsulated phenol red (approx. 5 Å diameter) is not sufficient to permit the release of encapsulated haemoglobin (approx. 20 Å diameter, negatively charged). In liposomes composed of a range of DMPC/DPPC mixtures, dye release commences at the onset of the pretransition range (determined by optical absorbance measurements) and increases with increasing temperature until the first appearance of liquid crystalline phase after which no further dye release occurs. Interestingly, the dye retaining properties of DMPC and DPPC liposomes well below their respective pretransition temperature regions are very different: DMPC liposomes release much encapsulated dye at incubation temperatures of 5°C whilst DPPC liposomes do not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号