首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Lipochitooligosaccharide nodulation factors (Nod factors) produced by rhizobia are a major host range determinant. These factors play a pivotal role in the molecular signal exchange, infection and induction of symbiotic developmental responses in legumes leading to the formation of a nodule in which rhizobia carry out N2 fixation. Determining whether rice ( Oryza sativa ) can respond to Nod factors could lead to strategies that would make rice amenable to develop a nitrogen-fixing endosymbiotic association with rhizobia. We introduced into rice the promoter of the infection-related gene MtENOD12 (from Medicago truncatula ) fused to the β-glucuronidase (GUS) reporter gene to serve as a molecular marker to aid in the detection of Nod factor signal perception by rice cells. Treatment of the transgenic rice roots with Nod factors (10–6–10–9 m ) under nitrogen-limiting conditions induced MtENOD12 -GUS expression in cortical parenchyma, endodermis and pericycle. In contrast, chitooligosaccharide backbone alone failed to elicit such a response in the root tissues. These findings demonstrate that rice roots perceive Nod factors and that these lipochitooligosaccharides, but not simple chitin oligomers, act as signal molecules in activating MtENOD12 in cortical parenchyma as in legumes. Exogenous application of N -naphthaleneacetic acid mimicked the Nod factor-elicited tissue-specific expression of MtENOD12 in roots while cytokinins inhibited it, thus evidencing that Nod factors, auxin and cytokinins probably act on similar signaling elements responsible for the regulation of MtENOD12 activation in rice. Taken together, these results suggest that at least a portion of the signal transduction machinery important for legume nodulation is likely to exist in rice.   相似文献   

4.
5.
Endosymbiotic infection of legume plants by Rhizobium bacteria is initiated through infection threads (ITs) which are initiated within and penetrate from root hairs and deliver the endosymbionts into nodule cells. Despite recent progress in understanding the mutual recognition and early symbiotic signaling cascades in host legumes, the molecular mechanisms underlying bacterial infection processes and successive nodule organogenesis are still poorly understood. We isolated a novel symbiotic mutant of Lotus japonicus , cerberus , which shows defects in IT formation and nodule organogenesis. Map-based cloning of the causal gene allowed us to identify the CERBERUS gene, which encodes a novel protein containing a U-box domain and WD-40 repeats. CERBERUS expression was detected in the roots and nodules, and was enhanced after inoculation of Mesorhizobium loti . Strong expression was detected in developing nodule primordia and the infected zone of mature nodules. In cerberus mutants, Rhizobium colonized curled root hair tips, but hardly penetrated into root hair cells. The occasional ITs that were formed inside the root hair cells were mostly arrested within the epidermal cell layer. Nodule organogenesis was aborted prematurely, resulting in the formation of a large number of small bumps which contained no endosymbiotic bacteria. These phenotypic and genetic analyses, together with comparisons with other legume mutants with defects in IT formation, indicate that CERBERUS plays a critical role in the very early steps of IT formation as well as in growth and differentiation of nodules.  相似文献   

6.
7.
Legumes form a symbiotic interaction with bacteria of the Rhizobiaceae family to produce nitrogen-fixing root nodules under nitrogen-limiting conditions. This process involves the recognition of the bacterial Nod factors by the plant which mediates the entry of the bacteria into the root and nodule organogenesis. We have examined the importance of the low molecular weight thiols, glutathione (GSH) and homoglutathione (hGSH), during the nodulation process in the model legume Medicago truncatula. Using both buthionine sulfoximine, a specific inhibitor of GSH and hGSH synthesis, and transgenic roots expressing GSH synthetase and hGSH synthetase in an antisense orientation, we showed that deficiency in GSH and hGSH synthesis inhibited the formation of the root nodules. This inhibition was not correlated to a modification in the number of infection events or to a change in the expression of the Rhizobium sp.-induced peroxidase rip1, indicating that the low level of GSH or hGSH did not alter the first steps of the infection process. In contrast, a strong diminution in the number of nascent nodules and in the expression of the early nodulin genes, Mtenod12 and Mtenod40, were observed in GSH and hGSH-depleted plants. In conclusion, GSH and hGSH appear to be essential for proper development of the root nodules during the symbiotic interaction.  相似文献   

8.
9.
Legumes host their Rhizobium spp. symbiont in novel root organs called nodules. Nodules originate from differentiated root cortical cells that dedifferentiate and subsequently form nodule primordia, a process controlled by cytokinin. A whole-genome duplication has occurred at the root of the legume Papilionoideae subfamily. We hypothesize that gene pairs originating from this duplication event and are conserved in distinct Papilionoideae lineages have evolved symbiotic functions. A phylogenetic strategy was applied to search for such gene pairs to identify novel regulators of nodulation, using the cytokinin phosphorelay pathway as a test case. In this way, two paralogous type-A cytokinin response regulators were identified that are involved in root nodule symbiosis. Response Regulator9 (MtRR9) and MtRR11 in medicago (Medicago truncatula) and an ortholog in lotus (Lotus japonicus) are rapidly induced upon Rhizobium spp. Nod factor signaling. Constitutive expression of MtRR9 results in arrested primordia that have emerged from cortical, endodermal, and pericycle cells. In legumes, lateral root primordia are not exclusively formed from pericycle cells but also require the involvement of the root cortical cell layer. Therefore, the MtRR9-induced foci of cell divisions show a strong resemblance to lateral root primordia, suggesting an ancestral function of MtRR9 in this process. Together, these findings provide a proof of principle for the applied phylogenetic strategy to identify genes with a symbiotic function in legumes.  相似文献   

10.
Several purine auxotrophs were isolated inRhizobium meliloti and characterized for their nutritional requirements. They were found to produce small, irregular nodules lacking any detectable nitrogenase activity onMedicago sativa. The symbiotic aberration manifests itself only in the late developmental stage, for, (i) these purine auxotrophs infect theMedicago sativa root hairs by forming normal infection threads, and (ii) the mutants are recovered from the root nodules induced by them. External supplementation of the plant growth substrate with purines or their biosynthetic intermediates fails to restore symbiosis. This, and the failure of complementation of these auxotrophs with the known symbiotic genes, demonstrates that these mutants perhaps define a new set of genes influencing the symbiotic process inRhizobium meliloti.  相似文献   

11.
Symbiotic nitrogen fixation occurs in nodules, specialized organs on the roots of legumes. Within nodules, host plant cells are infected with rhizobia that are encapsulated by a plant-derived membrane forming a novel organelle, the symbiosome. In Medicago truncatula, the symbiosome consists of the symbiosome membrane, a single rhizobium, and the soluble space between them, called the symbiosome space. The symbiosome space is enriched with plant-derived proteins, including the M. truncatula EARLY NODULIN8 (MtENOD8) protein. Here, we present evidence from green fluorescent protein (GFP) fusion experiments that the MtENOD8 protein contains at least three symbiosome targeting domains, including its N-terminal signal peptide (SP). When ectopically expressed in nonnodulated root tissue, the MtENOD8 SP delivers GFP to the vacuole. During the course of nodulation, there is a nodule-specific redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates and subsequently to symbiosomes, with redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates preceding intracellular rhizobial infection. Experiments with M. truncatula mutants having defects in rhizobial infection and symbiosome development demonstrated that the MtNIP/LATD gene is required for redirection of the MtENOD8-SP-GFP from the vacuoles to punctate intermediates in nodules. Our evidence shows that MtENOD8 has evolved redundant targeting sequences for symbiosome targeting and that intracellular localization of ectopically expressed MtENOD8-SP-GFP is useful as a marker for monitoring the extent of development in mutant nodules.  相似文献   

12.
13.
The symbiotic infection of the model legume Medicago truncatula by Sinorhizobium meliloti involves marked root hair curling, a stage where entrapment of the microsymbiont occurs in a chamber from which infection thread formation is initiated within the root hair. We have genetically dissected these early symbiotic interactions using both plant and rhizobial mutants and have identified a M. truncatula gene, HCL, which controls root hair curling. S. meliloti Nod factors, which are required for the infection process, induced wild-type epidermal nodulin gene expression and root hair deformation in hcl mutants, while Nod factor induction of cortical cell division foci was reduced compared to wild-type plants. Studies of the position of nuclei and of the microtubule cytoskeleton network of hcl mutants revealed that root hair, as well as cortical cells, were activated in response to S. meliloti. However, the asymmetric microtubule network that is typical of curled root hairs, did not form in the mutants, and activated cortical cells did not become polarised and did not exhibit the microtubular cytoplasmic bridges characteristic of the pre-infection threads induced by rhizobia in M. truncatula. These data suggest that hcl mutations alter the formation of signalling centres that normally provide positional information for the reorganisation of the microtubular cytoskeleton in epidermal and cortical cells.  相似文献   

14.
In situ immunolocalization of tubulin revealed that important rearrangements occur during all the early symbiotic steps in the Medicago/R. meliloti symbiotic interaction. Microtubular cytoskeleton (MtC) reorganizations were observed in inner tissues, first in the pericycle and then in the inner cortex where the nodule primordium forms. Subsequently, major MtC changes occurred in outer tissues, associated with root hair activation and curling, the formation of preinfection threads (PITs) and the initiation and the growth of an infection network. From the observed sequence of MtC changes, we propose a model which aims to better define, at the histological level, the timing of the early symbiotic stages. This model suggests the existence of two opposite gradients of cell differentiation controlling respectively the formation of division centers in the inner cortex and plant preparation for infection. It implies that (i) MtC rearrangements occur in pericycle and inner cortex earlier than in the root hair, (ii) the infection process proceeds prior to the formation of the nodule meristem, (iii) the initial primordium prefigures the future zone II of the mature nodule and (iv) the nodule meristem derives from the nodule primordium. Finally, our data also strongly suggest that in alfalfa PIT differentiation, a stage essential for successful infection, requires complementary signaling additional to Nod factors.  相似文献   

15.
16.
Rhizobium nodulation (Nod) factors are specific lipochito-oligosaccharide signals essential for initiating in root hairs of the host legume developmental responses that are required for controlled entry of the microsymbiont. In this article, we focus on the Nod factor signal transduction pathway leading to specific and cell autonomous gene activation in Medicago truncatula cv Jemalong in a study making use of the Nod factor-inducible MtENOD11 gene. First, we show that pharmacological antagonists that interfere with intracellular ion channel and Ca2+ pump activities are efficient blockers of Nod factor-elicited pMtENOD11-beta-glucuronidase (GUS) expression in root hairs of transgenic M. truncatula. These results indicate that intracellular Ca2+ release and recycling activities, essential for Ca2+ spiking, are also required for specific gene activation. Second, pharmacological effectors that inhibit phospholipase D and phosphoinositide-dependent phospholipase C activities are also able to block pMtENOD11-GUS activation, thus underlining a central role for multiple phospholipid signaling pathways in Nod factor signal transduction. Finally, pMtENOD11-GUS was introduced into all three Nod-/Myc- dmi M. truncatula mutant backgrounds, and gene expression was evaluated in response to the mastoparan peptide agonist Mas7. We found that Mas7 elicits root hair MtENOD11 expression in dmi1 and dmi2 mutants, but not in the dmi3 mutant, suggesting that the agonist acts downstream of DMI1/DMI2 and upstream of DMI3. In light of these results and the recently discovered identities of the DMI gene products, we propose an integrated cellular model for Nod factor signaling in legume root hairs in which phospholipids play a key role in linking the Nod factor perception apparatus to downstream components such as Ca2+ spiking and ENOD gene expression.  相似文献   

17.
18.
Previous grafting experiments have demonstrated that legume shoots play a critical role in symbiotic development of nitrogen-fixing root nodules by regulating nodule number. Here, reciprocal grafting experiments between the model legumes Lotus japonicus and Medicago truncatula were carried out to investigate the role of the shoot in the host-specificity of legume-rhizobia symbiosis and nodule type. Lotus japonicus is nodulated by Mesorhizobium loti and makes determinate nodules, whereas M. truncatula is nodulated by Sinorhizobium meliloti and makes indeterminate nodules. When inoculated with M. loti, L. japonicus roots grafted on M. truncatula shoots produced determinate nodules identical in appearance to those produced on L. japonicus self-grafted roots. Moreover, the hypernodulation phenotype of L. japonicus har1-1 roots grafted on wild-type M. truncatula shoots was restored to wild type when nodulated with M. loti. Thus, L. japonicus shoots appeared to be interchangeable with M. truncatula shoots in the L. japonicus root/M. loti symbiosis. However, M. truncatula roots grafted on L. japonicus shoots failed to induce nodules after inoculation with S. meliloti or a mixture of S. meliloti and M. loti. Instead, only early responses to S. meliloti such as root hair tip swelling and deformation, plus induction of the early nodulation reporter gene MtENOD11:GUS were observed. The results indicate that the L. japonicus shoot does not support normal symbiosis between the M. truncatula root and its microsymbiont S. meliloti, suggesting that an unidentified shoot-derived factor may be required for symbiotic progression in indeterminate nodules.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号