首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The c-abl proto-oncogene, which encodes a cytoplasmic protein-tyrosine kinase, is expressed throughout murine gestation and ubiquitously in adult mouse tissues. However, its levels are highest in thymus, spleen, and testes. To examine the in vivo role of c-abl, the gene was disrupted in embryonic stem cells, and the resulting genetically modified cells were used to establish a mouse strain carrying the mutation. Most mice homozygous for the c-abl mutation became runted and died 1 to 2 weeks after birth. In addition, many showed thymic and splenic atrophy and a T and B cell lymphopenia.  相似文献   

2.
Perturbation of the oxidative balance in biological systems plays an important role in numerous pathological states as well as in many physiological processes such as receptor activity. In order to evaluate if oxidative stress induced by menadione influences membrane receptor processes, a study was conducted on the transferrin receptor. Consequently, biochemical, biophysical and ultrastructural studies were carried out on different cell lines. The results obtained seem to indicate that oxidative stress is able of inducing a rapid and specific down-modulation of membrane transferrin receptor due to a block of receptor recycling on the cell surface without affecting binding affinity.  相似文献   

3.
Perturbation of the oxidative balance in biological systems plays an important role in numerous pathological states as well as in many physiological processes such as receptor activity. In order to evaluate if oxidative stress induced by menadione influences membrane receptor processes, a study was conducted on the transferrin receptor. Consequently, biochemical, biophysical and ultrastructural studies were carried out on different cell lines. The results obtained seem to indicate that oxidative stress is able of inducing a rapid and specific down-modulation of membrane transferrin receptor due to a block of receptor recycling on the cell surface without affecting binding affinity.  相似文献   

4.
At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.  相似文献   

5.
The release of regulated secretory granules is known to be calcium dependent. To examine the Ca2+-dependence of other exocytic fusion events, transferrin recycling in bovine chromaffin cells was examined. Internalised 125I-transferrin was released constitutively from cells with a half-time of about 7 min. Secretagogues that triggered catecholamine secretion doubled the rate of 125I-transferrin release, the time courses of the two triggered secretory responses being similar. The triggered 125I-transferrin release came from recycling endosomes rather than from sorting endosomes or a triggered secretory vesicle pool. Triggered 125I-transferrin release, like catecholamine secretion from the same cells, was calcium dependent but the affinities for calcium were very different. The extracellular calcium concentrations that gave rise to half-maximal evoked secretion were 0.1 m m for 125I-transferrin and 1.0 m m for catecholamine, and the intracellular concentrations were 0.1 μ m and 1 μ m , respectively. There was significant 125I-transferrin recycling in the virtual absence of intracellular Ca2+, but the rate increased when Ca2+ was raised above 1 n m , and peaked at 1 μ m when the rate had doubled. Botulinum toxin type D blocked both transferrin recycling and catecholamine secretion. These results indicate that a major component of the vesicular transport required for the constitutive recycling of transferrin in quiescent cells is calcium dependent and thus under physiological control, and also that some of the molecular machinery involved in transferrin recycling/fusion processes is shared with that for triggered neurosecretion.  相似文献   

6.
We found that phoshatidylinositol-3 kinase (PI3-K) markedly contributes to the increased surface expression of bovine transferrin receptor (TfR) on Theileria-infected lymphocytes. We observed that all aspects of TfR turnover are upregulated in parasitized B cells and we were able to detect TfR colocalizing with EEA1 (early endosome antigen 1) and Rab11 at the ultrastructure level in Theileria-infected B cells. We demonstrated recycling of TfR through Rab5- and Rab11-positive compartments by transfection of dominant negative guanosine diphosphate (GDP)-on mutants of the GTPases. Therefore, in Theileria-transformed B cells constitutive PI3-K activity leads to accelerated TfR recycling through Rab5- and Rab11-positive compartments.  相似文献   

7.
DNA polymerase beta (Polbeta) has been implicated in base excision repair in mammalian cells. However, the physiological significance of this enzyme in the body remains unclear. Here, we demonstrate that mice carrying a targeted disruption of the Polbeta gene showed growth retardation and died of a respiratory failure immediately after the birth. Histological examination of the embryos revealed defective neurogenesis characterized by apoptotic cell death in the developing central and peripheral nervous systems. Extensive cell death occurred in newly generated post-mitotic neuronal cells and was closely associated with the period between onset and cessation of neurogenesis. These findings indicate that Polbeta plays an essential role in neural development.  相似文献   

8.
Kinetic analysis of transferrin receptor properties in 6-8 day rat reticulocytes showed the existence of a single class of high-affinity receptors (Kd 3-10 nM), of which 20-25% were located at the cell surface and the remainder within an intracellular pool. Total transferrin receptor cycling time was 3.9 min. These studies examined the effects of various inhibitors on receptor-mediated transferrin iron delivery in order to define critical steps and events necessary to maintain the functional integrity of the pathway. Dansylcadaverine inhibited iron uptake by blocking exocytic release of transferrin and return of receptors to the cell surface, but did not affect transferrin endocytosis; this action served to deplete the surface pool of transferrin receptors, leading to shutdown of iron uptake. Calmidazolium and other putative calmodulin antagonists exerted an identical action on iron uptake and receptor recycling. The inhibitory effects of these agents on receptor recycling were overcome by the timely addition of Ca2+/ionomycin. From correlative analyses of the effects of these and other inhibitors, it was concluded that: (1) dansylcadaverine and calmodulin antagonists inhibit iron uptake by suppression of receptor recycling and exocytic transferrin release, (2) protein kinase C, transglutaminase, protein synthesis and release of transferrin-bound iron are not necessary for the functional integrity of the iron delivery pathway, (3) exocytic transferrin release and concomitant receptor recycling in rat reticulocytes is dependent upon Ca2+/calmodulin, (4) dansylcadaverine, dimethyldansylcadaverine and calmidazolium act on iron uptake by interfering with calmodulin function, and (5) the endocytotic and exocytotic arms of the iron delivery pathway are under separate regulatory control.  相似文献   

9.
Elastic fibers provide tissues with elasticity which is critical to the function of arteries, lungs, skin, and other dynamic organs. Loss of elasticity is a major contributing factor in aging and diseases. However, the mechanism of elastic fiber development and assembly is poorly understood. Here, we show that lack of fibulin-4, an extracellular matrix molecule, abolishes elastogenesis. fibulin-4-/- mice generated by gene targeting exhibited severe lung and vascular defects including emphysema, artery tortuosity, irregularity, aneurysm, rupture, and resulting hemorrhages. All the homozygous mice died perinatally. The earliest abnormality noted was a uniformly narrowing of the descending aorta in fibulin-4-/- embryos at embryonic day 12.5 (E12.5). Aorta tortuosity and irregularity became noticeable at E15.5. Histological analysis demonstrated that fibulin-4-/- mice do not develop intact elastic fibers but contain irregular elastin aggregates. Electron microscopy revealed that the elastin aggregates are highly unusual in that they contain evenly distributed rod-like filaments, in contrast to the amorphous appearance of normal elastic fibers. Desmosine analysis indicated that elastin cross-links in fibulin-4-/- tissues were largely diminished. However, expression of tropoelastin or lysyl oxidase mRNA was unaffected in fibulin-4-/- mice. In addition, fibulin-4 strongly interacts with tropoelastin and colocalizes with elastic fibers in culture. These results demonstrate that fibulin-4 plays an irreplaceable role in elastogenesis.  相似文献   

10.
The hbd (hemoglobin deficit) mutation affects iron trafficking in murine reticulocytes. It is due to a deletion that eliminates exon 8 of Sec15l1, the homolog of a gene that encodes an exocyst component in yeast. We tested the hypothesis that the mutation causes defective slow or rapid receptor recycling by measuring endocytosis and exocytosis of transferrin by hbd reticulocytes. Endocytosis and initial iron incorporation were relatively unaffected, but exocytosis was unexpectedly slowed. These data indicate that rapid transferrin recycling is defective after pSec15l1 has mutated.  相似文献   

11.
The physiological role of an orphan G protein-coupled receptor, LGR5, was investigated by targeted deletion of this seven-transmembrane protein containing a large N-terminal extracellular domain with leucine-rich repeats. LGR5 null mice exhibited 100% neonatal lethality characterized by gastrointestinal tract dilation with air and an absence of milk in the stomach. Gross and histological examination revealed fusion of the tongue to the floor of oral cavity in the mutant newborns and immunostaining of LGR5 expression in the epithelium of the tongue and in the mandible of the wild-type embryos. The observed ankyloglossia phenotype provides a model for understanding the genetic basis of this craniofacial defect in humans and an opportunity to elucidate the physiological role of the LGR5 signaling system during embryonic development.  相似文献   

12.
When human erythroleukemic (K562) cells were incubated with 25 microM trifluoperazine (TFP), a drug that inhibits both calmodulin-dependent and calcium-activated phospholipid-dependent kinases, the number of transferrin receptors detected on the cell surface was reduced to approximately half with no change in the affinity of the remaining surface receptors. Removal of the TFP from the incubation medium reversed the loss of surface receptors and they returned to the cell surface in an apparently synchronous manner. As a result, the number of receptors detected on the cell surface exceeded the original level but later returned to normal. Measurements of the total number of receptors available to transferrin in TFP-treated cells suggested that the lost receptors were not participating in the internalization and recycling pathway but instead were probably trapped at an intracellular location. However, those receptors that remained on the cell surface continued to internalize transferrin and to recycle apotransferrin to the cell surface albeit more slowly than in cells that had not been treated with TFP. Using transferrin that had been labeled with iron-59, it was found that although iron uptake was reduced in line with the diminished number of surface receptors, iron still accumulated within TFP-treated cells, suggesting that in the presence of the drug, transferrin-transferrin receptor complexes continued to migrate through an intracellular compartment that contained a low pH.  相似文献   

13.
The endocytosis and recycling of the human transferrin receptor were evaluated by several experimental modalities in K562 cells perturbed with 10(-5) M monensin. The work presented is an extension of a previous study demonstrating both complete inhibition of release of internalized human transferrin and a 50% reduction in the number of cell surface transferrin binding sites in K562 cells treated with monensin (Stein, B. S., Bensch, K. G., and Sussman, H. H. (1984) J. Biol. Chem. 259, 14762-14772). The data directly reveal the existence of two distinct transferrin receptor recycling pathways. One pathway is monensin-sensitive and is felt to represent recycling of transferrin receptors through the Golgi apparatus, and the other pathway is monensin-resistant and most likely represents non-Golgi-mediated transferrin receptor recycling. A transferrin-free K562 cell culture system was developed and used to demonstrate that cell surface transferrin receptors can be endocytosed without antecedent ligand binding, indicating that there are factors other than transferrin binding which regulate receptor internalization. Evidence is presented suggesting that two transferrin receptor recycling pathways are also operant in K562 cells under ligand-free conditions, signifying that trafficking of receptor into either recycling pathway is not highly ligand-dependent.  相似文献   

14.
15.
To identify sequence domains important for the neurotoxic and neuroprotective activities of the prion protein (PrP), we have engineered transgenic mice that express a form of murine PrP deleted for a conserved block of 21 amino acids (residues 105-125) in the unstructured, N-terminal tail of the protein. These mice spontaneously developed a severe neurodegenerative illness that was lethal within 1 week of birth in the absence of endogenous PrP. This phenotype was reversed in a dose-dependent fashion by coexpression of wild-type PrP, with five-fold overexpression delaying death beyond 1 year. The phenotype of Tg(PrPDelta105-125) mice is reminiscent of, but much more severe than, those described in mice that express PrP harboring larger deletions of the N-terminus, and in mice that ectopically express Doppel, a PrP paralog, in the CNS. The dramatically increased toxicity of PrPDelta105-125 is most consistent with a model in which this protein has greatly enhanced affinity for a hypothetical receptor that serves to transduce the toxic signal. We speculate that altered binding interactions involving the 105-125 region of PrP may also play a role in generating neurotoxic signals during prion infection.  相似文献   

16.
Dmbx1 encodes a paired-like homeodomain protein that is expressed in developing neural tissues during mouse embryogenesis. To elucidate the in vivo role of Dmbx1, we generated two Dmbx1 mutant alleles. Dmbx1- lacks the homeobox and Dmbx1z is an insertion of a lacZ reporter gene. Dmbx1z appears to be a faithful reporter of Dmbx1 expression during embryogenesis and after birth. Dmbx1-lacZ expression was detected in the superior colliculus, cerebellar nuclei, and subpopulations of the medulla oblongata and spinal cord. Some Dmbx1 homozygous mutant mice died during the neonatal period, while others survived to adulthood; however, their growth was impaired. Both heterozygous and homozygous mutant offspring from Dmbx1 homozygous mutant females exhibited a low survival rate and poor growth. However, even wild-type pups fostered onto Dmbx1 homozygous mutant females grew poorly, suggesting a Dmbx1-dependent nursing defect. Dmbx1 mutant mice had an aberrant Dmbx1-lacZ expression pattern in the nervous system, indicating that they had abnormal brain development. These results demonstrate that Dmbx1 is required for postnatal survival, growth, and brain development.  相似文献   

17.
Neurochondrin/norbin is a cytoplasmic protein involved in dendrite outgrowth. The expression of the gene has been restricted to neural, bone, and chondral tissues. To identify the functions of the gene in vivo, we have generated mice with a disrupted mutation in the neurochondrin/norbin gene. Histological analysis of heterozygous mutant mice indicates the possibility of specific functions of neurochondrin/norbin in chondrocyte differentiation. We defined the expression patterns of neurochondrin/norbin-lacZ fusion protein in the central nervous system. In the developing olfactory bulb, beta-galactosidase activity was detected in the mantle layer at 12.5 dpc and the strongest activity was detected in the presumptive mitral or tufted cell layer at 15.5 dpc. beta-Galactosidase activity was also detected in the lateral choroid plexus. In homozygous (-/-) mutant mice, the disruption of the neurochondrin/norbin gene leads to early embryonic death between 3.5 and 6.5 dpc. This result indicates that neurochondrin/norbin gene function is essential for the early embryogenesis.  相似文献   

18.
Targeted disruption of the insulin receptor gene (Insr) in the mouse was achieved using the homologous recombination approach. Insr+/- mice were normal as shown by glucose tolerance tests. Normal Insr-/- pups were born at expected rates, indicating that Insr can be dispensable for intrauterine development, growth and metabolism. However, they rapidly developed diabetic ketoacidosis accompanied by a marked post-natal growth retardation (up to 30-40% of littermate size), skeletal muscle hypotrophy and fatty infiltration of the liver and they died within 7 days after birth. Total absence of the insulin receptor (IR), demonstrated in the homozygous mutant mice, also resulted in other metabolic disorders: plasma triglyceride level could increase 6-fold and hepatic glycogen content could be five times less as compared with normal littermates. The very pronounced hyperglycemia in Insr-/- mice could result in an increased plasma insulin level of up to approximately 300 microU/ml, as compared with approximately 25 microU/ml for normal littermates. However, this plasma level was still unexpectedly low when compared with human infants with leprechaunism, who lack IR but who could have extremely high insulinemia (up to > 4000 microU/ml). The pathogenesis resulting from a null mutation in Insr is discussed.  相似文献   

19.
The low-density lipoprotein receptor (LDLR) mediates the hepatic uptake of circulating low-density lipoproteins (LDLs), a process that modulates the development of atherosclerotic cardiovascular disease. We recently identified RAB10, encoding a small GTPase, as a positive regulator of LDL uptake in hepatocellular carcinoma cells (HuH7) in a genome-wide CRISPR screen, though the underlying molecular mechanism for this effect was unknown. We now report that RAB10 regulates hepatocyte LDL uptake by promoting the recycling of endocytosed LDLR from RAB11-positive endosomes to the plasma membrane. We also show that RAB10 similarly promotes the recycling of the transferrin receptor, which binds the transferrin protein that mediates the transport of iron in the blood, albeit from a distinct RAB4-positive compartment. Taken together, our findings suggest a model in which RAB10 regulates LDL and transferrin uptake by promoting both slow and rapid recycling routes for their respective receptor proteins.  相似文献   

20.
Growing HepG2 cells contain 50,000 functional surface transferrin-binding sites (Ciechanover, A., Schwartz, A.L., and Lodish, H.F. (1983) Cell 32,267-275) and 100,000 intracellular sites. At saturating concentrations of [59Fe]transferrin, and under conditions in which protein synthesis is blocked, iron uptake is linear for several hours at a rate of 9,500 transferrin molecules/cell/min. Thus, each receptor must recycle a ligand, on the average, each 15.8 min. Surface-bound transferrin is rapidly endocytosed (t1/2 = 3.5 min). All of the iron remains within the cell, while the apotransferrin is rapidly (t1/2 = 5.0 min) secreted into the medium. Previously, we showed (Dautry-Varsat, A., Ciechanover, A., and Lodish, H.F. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2258-2262) that exposure of a ferrotransferrin-receptor complex to medium of pH less than 5.0 results in dissociation of iron, but that apotransferrin remains bound to its receptor. If the pH is raised to 7.0, such as would occur when an acidic intracellular vesicle fuses with the plasma membrane, apotransferrin is very rapidly dissociated (t1/2 = 17 s at 37 degrees C) from its receptor. Taken together, these results indicate that transferrin remains bound to its receptor throughout the endocytic cycle. In the present study, we have directly measured all the kinetic parameters involved in the transferrin receptor cycle. They are similar to those of the asialoglycoprotein receptor in the same cell line, and can be described by a simple kinetic model. In the presence of lysosomotropic agents, ferrotransferrin binds to its surface receptor and is internalized normally. However, iron is not dissociated from transferrin, and ferrotransferrin recycles back to the cell surface and is secreted into the medium. We conclude that the low pH in endocytic vesicles is essential for the dissociation of iron from transferrin and its delivery to the cell, but is not required for recycling of transferrin, and presumably of its receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号