首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transdiaphragmatic pressure (Pdi) and the rate of relaxation of the diaphragm (tau) were measured at functional residual capacity (FRC) in six normal seated subjects during single-twitch stimulation of both phrenic nerves. The latter were stimulated supramaximally with needle electrodes with square-wave impulses of 0.1-ms duration at 1 Hz before and after diaphragmatic fatigue produced by resistive loaded breathing. Constancy of chest wall configuration was achieved by monitoring the diameter of the abdomen and the rib cage with a respiratory inductive plethysmograph system. During control the peak Pdi generated during the phrenic stimulation amounted to 34.4 +/- 4.2 (SE) cmH2O and represented in each subject a fixed fraction (17%) of its maximal transdiaphragmatic pressure. After diaphragmatic fatigue the peak Pdi decreased by an average of 45%, amounting to 18.1 +/- 2.7 cmH2O 5 min after the fatigue run, and tau increased from 55.2 +/- 9 ms during control to 77 +/- 8 ms 5 min after the fatigue run. The decrease in peak Pdi and the increase in tau observed after the fatigue run persisted throughout the 30 min of the recovery period studied, the peak Pdi amounting to 18.4 +/- 2.8 and 18.9 +/- 3.3 cmH2O and tau to 81.3 +/- 5.7 and 88.7 +/- 10 ms at 15 and 30 min after the end of the fatigue run, respectively. It is concluded that diaphragmatic fatigue can be detected in man by bilateral phrenic stimulation with needle electrodes without any discomfort for the subject and that the decrease in diaphragmatic strength after fatigue is long lasting.  相似文献   

2.
Aminophylline and human diaphragm strength in vivo   总被引:4,自引:0,他引:4  
The transdiaphragmatic pressure (Pdi) twitch response to single shocks from supramaximal bilateral phrenic nerve stimulation was studied before and after acute intravenous infusions of aminophylline [14.9 +/- 3.1 (SD) micrograms/ml] in nine normal subjects. Stimulation was performed with subjects in the sitting position against an occluded airway from end expiration. Baseline gastric pressure and abdominal and rib cage configuration were kept constant. There was no significant difference in peak twitch Pdi from the relaxed diaphragm between control (38.8 +/- 3.3 cmH2O) and aminophylline (40.2 +/- 5.2 cmH2O) experiments. Other twitch characteristics including contraction time, half-relaxation time, and maximum relaxation rate were also unchanged. The Pdi-twitch amplitude at different levels of voluntary Pdi was measured with the twitch occlusion technique, and this relationship was found to be similar under control conditions and after aminophylline. With this technique, maximum Pdi (Pdimax) was calculated as the Pdi at which stimulation would result in no Pdi twitch because all motor units are already maximally activated. No significant change was found in mean calculated Pdimax between control (146.9 +/- 27.0 cmH2O) and aminophylline (149.2 +/- 26.0 cmH2O) experiments. We conclude from this study that the acute administration of aminophylline at therapeutic concentrations does not significantly affect contractility or maximum strength of the normal human diaphragm in vivo.  相似文献   

3.
To assess respiratory neuromuscular function and load compensating ability in patients with chronic airway obstruction (CAO), we studied eight stable patients with irreversible airway obstruction during hyperoxic CO2 rebreathing with and without a 17 cmH2O X l-1 X s flow-resistive inspiratory load (IRL). Minute ventilation (VE), transdiaphragmatic pressure (Pdi), and diaphragmatic electromyogram (EMGdi) were monitored. Pdi and EMGdi were obtained via a single gastroesophageal catheter with EMGdi being quantitated as the average rate of rise of inspiratory (moving average) activity. Based on the effects of IRL on the Pdi response to CO2 [delta Pdi/delta arterial CO2 tension (PaCO2)] and the change in Pdi for a given change in EMGdi (delta Pdi/delta EMGdi) during rebreathing, two groups could be clearly identified. Four patients (group A) were able to increase delta Pdi/delta PaCO2 and delta Pdi/delta EMGdi, whereas in the other four (group B) the IRL responses decreased. All group B patients were hyperinflated having significantly greater functional residual capacity (FRC) and residual volume than group A. In addition the IRL induced percent change in delta Pdi/delta PaCO2, and delta VE/delta PaCO2 was negatively correlated with lung volume so that in the hyperinflated group B the higher the FRC the greater was the decrease in Pdi response due to IRL. In both groups the greater the FRC the greater was the decrease in the ventilatory response to loading. Patients with CAO, even with severe airways obstruction, can effect load compensation by increasing diaphragmatic force output, but the presence of increased lung volume with the associated shortened diaphragm prevents such load compensation.  相似文献   

4.
To understand how externally applied expiratory flow limitation (EFL) leads to impaired exercise performance and dyspnea, we studied six healthy males during control incremental exercise to exhaustion (C) and with EFL at approximately 1. We measured volume at the mouth (Vm), esophageal, gastric and transdiaphragmatic (Pdi) pressures, maximal exercise power (W(max)) and the difference (Delta) in Borg scale ratings of breathlessness between C and EFL exercise. Optoelectronic plethysmography measured chest wall and lung volume (VL). From Campbell diagrams, we measured alveolar (PA) and expiratory muscle (Pmus) pressures, and from Pdi and abdominal motion, an index of diaphragmatic power (W(di)). Four subjects hyperinflated and two did not. EFL limited performance equally to 65% W(max) with Borg = 9-10 in both. At EFL W(max), inspiratory time (TI) was 0.66s +/- 0.08, expiratory time (TE) 2.12 +/- 0.26 s, Pmus approximately 40 cmH2O and DeltaVL-DeltaVm = 488.7 +/- 74.1 ml. From PA and VL, we calculated compressed gas volume (VC) = 163.0 +/- 4.6 ml. The difference, DeltaVL-DeltaVm-VC (estimated blood volume shift) was 326 ml +/- 66 or 7.2 ml/cmH2O PA. The high Pmus and long TE mimicked a Valsalva maneuver from which the short TI did not allow recovery. Multiple stepwise linear regression revealed that the difference between C and EFL Pmus accounted for 70.3% of the variance in DeltaBorg. DeltaW(di) added 12.5%. We conclude that high expiratory pressures cause severe dyspnea and the possibility of adverse circulatory events, both of which would impair exercise performance.  相似文献   

5.
We investigated the respiratory muscle contribution to inspiratory load compensation by measuring diaphragmatic and intercostal electromyograms (EMGdi and EMGic), transdiaphragmatic pressure (Pdi), and thoracoabdominal motion during CO2 rebreathing with and without 15 cmH2O X l-1 X s inspiratory flow resistance (IRL) in normal sitting volunteers. During IRL compared with control, Pdi measured during airflow and during airway occlusion increased for a given change in CO2 partial pressure and EMGdi, and there was a greater decrease in abdominal (AB) end expiratory anteroposterior dimensions with increased expiratory gastric pressure (Pga), this leading to an inspiratory decline in Pga with outward AB movement, indicating a passive component to the descent of the abdomen-diaphragm. The response of EMGic to IRL was similar to that of EMGdi, though rib cage (RC)-Pga plots did infer intercostal muscle contribution. We conclude that during CO2 rebreathing with IRL there is improved diaphragmatic neuromuscular coupling, the prolongation of inspiration promoting a force-velocity advantage, and increased AB action serving to optimize diaphragm length and configuration, as well as to provide its own passive inspiratory action. Intercostal action provides increased assistance also. Therefore, compensation for inspiratory resistive loads results from the combined and integrated effort of all respiratory muscle groups.  相似文献   

6.
We have determined the mechanical effects of immersion to the neck on the passive chest wall of seated upright humans. Repeated measurements were made at relaxed end expiration on four subjects. Changes in relaxed chest wall configuration were measured using magnetometers. Gastric and esophageal pressures were measured with balloon-tipped catheters in three subjects; from these, transdiaphragmatic pressure was calculated. Transabdominal pressure was estimated using a fluid-filled, open-tipped catheter referenced to the abdomen's exterior vertical surface. We found that immersion progressively reduced mean transabdominal pressure to near zero and that the relaxed abdominal wall was moved inward 3-4 cm. The viscera were displaced upward into the thorax, gastric pressure increased by 20 cmH2O, and transdiaphragmatic pressure decreased by 10-15 cmH2O. This lengthened the diaphragm, elevating the diaphragmatic dome 3-4 cm. Esophageal pressure became progressively more positive throughout immersion, increasing by 8 cmH2O. The relaxed rib cage was elevated and expanded by raising water from hips to lower sternum; this passively shortened the inspiratory intercostals and the accessory muscles of inspiration. Deeper immersion distorted the thorax markedly: the upper rib cage was forced inward while lower rib cage shape was not systematically altered and the rib cage remained elevated. Such distortion may have passively lengthened or shortened the inspiratory muscles of the rib cage, depending on their location. We conclude that the nonuniform forcing produced by immersion provides unique insights into the mechanical characteristics of the abdomen and rib cage, that immersion-induced length changes differ among the inspiratory muscles according to their locations and the depth of immersion, and that such length changes may have implications for patients with inspiratory muscle deficits.  相似文献   

7.
We present a model of chest wall mechanics that extends the model described previously by Macklem et al. (J. Appl. Physiol. 55: 547-557, 1983) and incorporates a two-compartment rib cage. We divide the rib cage into that apposed to the lung (RCpul) and that apposed to the diaphragm (RCab). We apply this model to determine rib cage distortability, the mechanical coupling between RCpul and RCab, the contribution of the rib cage muscles to the pressure change during spontaneous inspiration (Prcm), and the insertional component of transdiaphragmatic pressure in humans. We define distortability as the relationship between distortion and transdiaphragmatic pressure (Pdi) and mechanical coupling as the relationship between rib cage distortion and the pressure acting to restore the rib cage to its relaxed configuration (Plink), as assessed during bilateral transcutaneous phrenic nerve stimulation. Prcm was calculated at end inspiration as the component of the pressure displacing RCpul not accounted for by Plink or pleural pressure. Prcm and Plink were approximately equal during quiet breathing, contributing 3.7 and 3.3 cmH2O on average during breaths associated with a change in Pdi of 3.9 cmH2O. The insertional component of Pdi was measured as the pressure acting on RCab not accounted for by the change in abdominal pressure during an inspiration without rib cage distortion and was 40 +/- 12% (SD) of total Pdi. We conclude that there is substantial resistance of the human rib cage to distortion, that, along with rib cage muscles, contributes importantly to the fall in pleural pressure over the costal surface of the lung.  相似文献   

8.
To determine whether O2 availability limited diaphragmatic performance, we subjected unanesthetized sheep to severe (n = 11) and moderate (n = 3) inspiratory flow resistive loads and studied the phrenic venous effluent. We measured transdiaphragmatic pressure (Pdi), systemic arterial and phrenic venous blood gas tensions, and lactate and pyruvate concentrations. In four sheep with severe loads, we measured O2 saturation (SO2), O2 content, and hemoglobin. We found that with severe loads Pdi increased to 74.7 +/- 6.0 cmH2O by 40 min of loading, remained stable for 20-30 more min, then slowly decreased. In every sheep, arterial PCO2 increased when Pdi decreased. With moderate loads Pdi increased to and maintained levels of 40-55 cmH2O. With both loads, venous PO2, SO2, and O2 content decreased initially and then increased, so that the arteriovenous difference in O2 content decreased as loading continued. Hemoglobin increased slowly in three of four sheep. There were no appreciable changes in arterial or venous lactate and pyruvate during loading or recovery. We conclude that the changes in venous PO2, SO2, and O2 content may be the result of changes in hemoglobin, blood flow to the diaphragm, or limitation of O2 diffusion. Our data do not support the hypothesis that in sheep subjected to inspiratory flow resistive loads O2 availability limits diaphragmatic performance.  相似文献   

9.
Diaphragmatic contractility after upper abdominal surgery   总被引:5,自引:0,他引:5  
Postoperative dysfunction of the diaphragm has been reported after upper abdominal surgery. This study was designed to determine whether an impairment in diaphragmatic contractility was involved in the genesis of the diaphragmatic dysfunction observed after upper abdominal surgery. Five patients undergoing upper abdominal surgery were studied. The following measurements were performed before and 4 h after surgery: vital capacity (VC), functional residual capacity (FRC), and forced expiratory volume in 1 s. Diaphragmatic function was also assessed using the ratio of changes in gastric pressure (delta Pga) over changes in transdiaphragmatic pressure (delta Pdi). Finally contractility of the diaphragm was determined by measuring the change in delta Pdi generated during bilateral electrical stimulation of the phrenic nerves (Pdi stim). Diaphragmatic dysfunction occurred in all the patients after upper abdominal surgery as assessed by a marked decrease in delta Pga/delta Pdi from 0.480 +/- 0.040 to -0.097 +/- 0.152 (P less than 0.01) 4 h after surgery compared with preoperative values. VC also markedly decreased after upper abdominal surgery from 3,900 +/- 630 to 2,060 +/- 520 ml (P less than 0.01) 4 h after surgery. In contrast, no change in FRC and Pdi stim was observed 4 h after surgery. In contrast, no change in FRC and Pdi stim was observed 4 h after upper abdominal surgery compared with the preoperative values. We conclude that contractility of the diaphragm is not altered after upper abdominal surgery, and diaphragmatic dysfunction is secondary to other mechanisms such as possible reflexes arising from the periphery (chest wall and/or peritoneum), which could inhibit the phrenic nerve output.  相似文献   

10.
The zone of apposition of diaphragm to rib cage provides a theoretical mechanism that may, in part, contribute to rib cage expansion during inspiration. Increases in intra-abdominal pressure (Pab) that are generated by diaphragmatic contraction are indirectly applied to the inner rib cage wall in the zone of apposition. We explored this mechanism, with the expectation that pleural pressure in this zone (Pap) would increase during inspiration and that local transdiaphragmatic pressure in this zone (Pdiap) must be different from conventionally determined transdiaphragmatic pressure (Pdi) during inspiration. Direct measurements of Pap, as well as measurements of pleural pressure (Ppl) cephalad to the zone of apposition, were made during tidal inspiration, during phrenic stimulation, and during inspiratory efforts in anesthetized dogs. Pab and esophageal pressure (Pes) were measured simultaneously. By measuring Ppl's with cannulas placed through ribs, we found that Pap consistently increased during both maneuvers, whereas Ppl and Pes decreased. Whereas changes in Pdi of up to -19 cmH2O were measured, Pdiap never departed from zero by greater than -4.5 cmH2O. We conclude that there can be marked regional differences in Ppl and Pdi between the zone of apposition and regions cephalad to the zone. Our results support the concept of the zone of apposition as an anatomic region where Pab is transmitted to the interior surface of the lower rib cage.  相似文献   

11.
Costal strips of diaphragmatic muscle obtained from animals with elastase-induced emphysema generate maximum tension at significantly shorter muscle fiber lengths than muscle strips from control animals. The present study examined the consequences of alterations in the length-tension relationship assessed in vitro on the pressure generated by the diaphragm in vivo. Transdiaphragmatic pressure (Pdi) and functional residual capacity (FRC) were measured in 22 emphysematous and 22 control hamsters 4-5 mo after intratracheal injection of pancreatic elastase or saline, respectively. In 12 emphysematous and 12 control hamsters Pdi was also measured during spontaneous contractions against an occluded airway. To allow greater control over muscle excitation, Pdi was measured during bilateral tetanic (50 Hz) electrical stimulation of the phrenic nerves in 10 emphysematous and 10 control hamsters. Mean FRC in the emphysematous hamsters was 183% of the value in control hamsters (P less than 0.01). During spontaneous inspiratory efforts against a closed airway the highest Pdi generated at FRC tended to be greater in control than emphysematous hamsters. When control hamsters were inflated to a lung volume approximating the FRC of emphysematous animals, however, peak Pdi was significantly greater in emphysematous animals (70 +/- 6 and 41 +/- 8 cmH2O; P less than 0.05). With electrophrenic stimulation, the Pdi-lung volume curve was shifted toward higher lung volumes in emphysematous hamsters. Pdi at all absolute lung volumes at and above the FRC of emphysematous hamsters was significantly greater in emphysematous compared with control animals. Moreover, Pdi continued to be generated by emphysematous hamsters at levels of lung volume where Pdi of control subjects was zero.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In a canine model, we investigated the effects of severe hypotension on the indexes of diaphragmatic failure. We measured 1) the transdiaphragmatic pressure obtained in response to 20- and 100-Hz stimulation of phrenic nerves (Pdi20 and Pdi100), 2) the power spectrum of diaphragmatic electromyogram (EMG), 3) the ratio of integrated diaphragmatic EMG to Pdi (Edi/Pdi), and 4) the rate of relaxation of Pdi100 and Pdi20. Arterial blood pressure (Pa) was reduced to 40-50 mmHg by a balloon inflated in the inferior vena cava and was maintained at this level until Pdi100 declined to 75% of the control value (100% shock time, ST). A recovery period of 60 min at normal Pa was allowed. During hypotension, Pdi100 and Pdi20 declined only at 100% ST [95.0 +/- 13.0 (SE) min]; however, only Pdi100 recovered within 15 min. The power spectrum shifted to low frequencies early and progressively during shock period. Edi/Pdi rose significantly at 80 and 100% ST and recovered within 15 min. The relaxation rate of Pdi20 and Pdi100 increased significantly at 100% ST only. We conclude that 1) diaphragmatic contractility is depressed during severe hypotension, 2) changes in the power spectrum occurred first in the shock state, followed by alterations in Edi/Pdi, and subsequently both changes in the frequency-pressure curve and relaxation rate occurred last.  相似文献   

13.
Assessing diaphragmatic contractility is a common goal in various situations. This assessment is mainly based on static or dynamic maximal voluntary maneuvers and twitch transdiaphragmatic pressures (Pdi) obtained by stimulation of the phrenic nerves (PS). PS eliminates the central components of diaphragmatic activation, but the available techniques of PS remain subject to some limitations. Transcutaneous PS is painful, and needle PS is potentially dangerous. Time-varying magnetic fields can stimulate nervous structures without pain and without adverse effects. In six subjects, we have studied cervical magnetic stimulation (CMS) as a method of PS. We have compared the stimulated Pdi (Pdistim) with the maximal Pdi obtained during static combined expulsive-Mueller maneuver (Pdimax) and with the Pdi generated during a sniff test (Pdisniff). CMS produced twitch Pdi averaging 33.4 +/- 9.7 cmH2O. Pdistim/Pdimax and Pdistim/Pdisniff were 24 +/- 6 and 41 +/- 14%, respectively. These values are comparable to those obtained in other studies with transcutaneous PS. They were highly reproducible in all the subjects. Electromyographic data provided evidence of bilateral maximal stimulation. CMS is a nonspecific method and may stimulate various nervous structures. However, diaphragmatic contraction was elicited by stimulation of the phrenic trunk, since the phrenicodiaphragmatic latencies (less than 7 ms) were in the range of values reported with direct stimulation of the trunk. Cocontraction of neck muscles, including the sternomastoid, was present, but its influence in the CMS-induced Pdi seems minimal. We conclude that magnetic stimulation is an easy, well-tolerated, reproducible safe, and valuable method to assess phrenic conduction and diaphragmatic twitch response.  相似文献   

14.
The rate of relaxation of the diaphragm after stimulated (4 subjects) and voluntary (8 subjects) contractions was compared in normal young men. Stimulated contractions were induced by supramaximal unilateral phrenic nerve stimulation and voluntary contractions by short, sharp sniffs of varying tensions against an occluded airway. The rate of relaxation of the diaphragm was calculated from the rate of decline of transdiaphragmatic pressure (Pdi). In both conditions the maximum relaxation rate (MRR) was proportional to the peak transdiaphragmatic pressure (Pdi), whereas the time constant (tau) of the later exponential decline in Pdi was independent of Pdi. The mean +/- SE rate constant of relaxation (MRR/Pdi) was 0.0078 +/- 0.0002 ms-1 and the mean tau was 57 +/- 3.8 ms for stimulated contractions. The rate of relaxation after sniffs was not different, and it was not affected by either the lung volume at which occluded sniffs were performed (in the range of residual volume to functional residual capacity + 1 liter) or by the relative contribution gastric pressure made to Pdi. After diaphragmatic fatigue was induced by inspiring against a high alinear resistance there was a decrease in relaxation rate. In the 1st min postfatigue MRR/Pdi decreased (0.0063 +/- 0.0003 ms-1; P less than 0.005) and tau increased (83 +/- 5 ms; P less than 0.005). Both values returned to prefatigue levels within 5 min of the end of the studies. We conclude that the sniff may prove to be clinically useful in the detection of diaphragmatic fatigue.  相似文献   

15.
Maximum relaxation rate (MRR) and the time constant of relaxation (tau) of transdiaphragmatic pressure (Pdi) was measured in four male subjects and compared with the high-to-low frequency ratio (H/L) of the diaphragmatic electromyogram (EMG) as a predictor of diaphragmatic fatigue. Pdi and inspiratory time-to-total breath duration ratios (TI/TT) were varied, and TT and tidal volume were held constant; inspiratory resistances were used to increase Pdi. Studies were performed at various tension-time indices (TTdi = Pdi/Pdimax X TI/TT). Base-line MRR/Pdi was 0.0100 +/- 0.0004 (SE) ms-1, and baseline tau was 53.2 +/- 3.2 ms. At TTdi greater than 0.20, MRR and H/L decreased and tau increased, with maximum changes at the highest TTdi. At TTdi less than 0.20, there was no change in H/L, MRR, or tau. The time course of changes in H/L correlated with those of MRR and tau under fatiguing conditions. In this experimental setting, change in relaxation rate was as useful a predictor of diaphragmatic fatigue as fall in H/L of the diaphragmatic EMG.  相似文献   

16.
Effect of abdominal compression on maximum transdiaphragmatic pressure   总被引:1,自引:0,他引:1  
Transdiaphragmatic pressure (Pdi) is lower during maximum inspiratory effort with the diaphragm alone than when maximum inspiratory and expulsive efforts are combined. The increase in Pdi with expulsive effort has been attributed to increased neural activation of the diaphragm. Alternatively, the increase could be due to stretching of the contracted diaphragm. If this were so, Pdi measured during a combined maximum effort would overestimate the capacity of the diaphragm to generate inspiratory force. This study determined the likely contribution of stretching of the contracted diaphragm to estimates of maximum Pdi (Pdimax) obtained during combined inspiratory and expulsive effort. Three healthy trained subjects were studied standing. Diaphragmatic Mueller maneuvers were performed at functional residual capacity and sustained during subsequent abdominal compression by either abdominal muscle expulsive effort or externally applied pressure. Measurements were made of changes in abdominal (Pab) and pleural (Ppl) pressure, Pdi, rib cage and abdominal dimensions and respiratory electromyograms. Three reproducible performances of each maneuver from each subject were analyzed. When expulsive effort was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 86 +/- 12 to 148 +/- 14 (SD) cmH2O within the 1st s and was 128 +/- 14 cmH2O 2 s later. When external compression was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 87 +/- 16 to 171 +/- 19 cmH2O within the 1st s and was 152 +/- 16 cmH2O 2 s later.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To study the effects of continuous positive airway pressure (CPAP) on lung volume, and upper airway and respiratory muscle activity, we quantitated the CPAP-induced changes in diaphragmatic and genioglossal electromyograms, esophageal and transdiaphragmatic pressures (Pes and Pdi), and functional residual capacity (FRC) in six normal awake subjects in the supine position. CPAP resulted in increased FRC, increased peak and rate of rise of diaphragmatic activity (EMGdi and EMGdi/TI), decreased peak genioglossal activity (EMGge), decreased inspiratory time and inspiratory duty cycle (P less than 0.001 for all comparisons). Inspiratory changes in Pes and Pdi, as well as Pes/EMGdi and Pdi/EMGdi also decreased (P less than 0.001 for all comparisons), but mean inspiratory airflow for a given Pes increased (P less than 0.001) on CPAP. The increase in mean inspiratory airflow for a given Pes despite the decrease in upper airway muscle activity suggests that CPAP mechanically splints the upper airway. The changes in EMGge and EMGdi after CPAP application most likely reflect the effects of CPAP and the associated changes in respiratory system mechanics on the afferent input from receptors distributed throughout the intact respiratory system.  相似文献   

18.
We tested the hypothesis that the inspiratory pressure swings across the rib-cage pathway are the sum of transdiaphragmatic pressure (Pdi) and the pressures developed by the intercostal/accessory muscles (Pic). If correct, Pic can only contribute to lowering pleural pressure (Ppl), to the extent that it lowers abdominal pressure (Pab). To test this we measured Pab and Ppl during during Mueller maneuvers in which deltaPab = 0. Because there was no outward displacement of the rib cage, Pic must have contributed to deltaPpl, as did Pdi. Under these conditions the total pressure developed by the inspiratory muscles across the rib-cage pathway was less than Pdi + Pic. Therefore, we rejected the hypothesis. A plot of Pab vs. Ppl during relaxation allows partitioning of the diaphragmatic and intercostal/accessory muscle contributions to inspiratory pressure swings. The analysis indicates that the diaphragm can act both as a fixator, preventing transmission of Ppl to the abdomen and as an agonist. When abdominal muscles remain relaxed it only assumes the latter role to the extent that Pab increases.  相似文献   

19.
Respiratory muscle dysfunction limits exercise endurance in severe chronic airflow obstruction (CAO). To investigate whether inspiring O2 alters ventilatory muscle recruitment and improves exercise endurance, we recorded pleural (Ppl) and gastric (Pga) pressures while breathing air or 30% O2 during leg cycling in six patients with severe CAO, mild hypoxemia, and minimal arterial O2 desaturation with exercise. At rest, mean (+/- SD) transdiaphragmatic pressure (Pdi) was lower inspiring 30% O2 compared with air (23 +/- 4 vs. 26 +/- 7 cmH2O, P less than 0.05), but the pattern of Ppl and Pga contraction was identical while breathing either gas mixture. Maximal transdiaphragmatic pressure was similar breathing air or 30% O2 (84 +/- 30 vs. 77 +/- 30 cmH2O). During exercise, Pdi increased similarly while breathing air or 30% O2, but the latter was associated with a significant increase in peak inspiratory Pga and decreases in peak inspiratory Ppl and expiratory Pga. In five out of six patients, exercise endurance increased with O2 (671 +/- 365 vs. 362 +/- 227 s, P less than 0.05). We conclude that exercise with O2 alters ventilatory muscle recruitment and increases exercise endurance. During exercise inspiring O2, the diaphragm performs more ventilatory work which may prevent overloading the accessory muscles of respiration.  相似文献   

20.
Naloxone alters the early response to an inspiratory flow-resistive load   总被引:1,自引:0,他引:1  
In a previous study in unanesthetized goats, we demonstrated that cerebrospinal fluid levels of beta-endorphin were significantly elevated after 2.5 h of inspiratory flow-resistive loading. Naloxone (NLX) (0.1 mg/kg) administration partially and transiently reversed the tidal volume depression seen during loading. In the current study, we tested the hypothesis that endogenous opioid elaboration results in depression of respiratory output to the diaphragm. In six studies of five unanesthetized goats, tidal volume (VT), transdiaphragmatic pressure (Pdi), diaphragmatic electromyogram (EMGdi), and arterial blood gases were monitored. A continuous NLX (0.1 mg/kg) or saline (SAL) infusion was begun 5 min before an inspiratory flow-resistive load of 120 cmH2O.l-1.s was imposed. Our data show that the depression of VT induced by the load was prevented by NLX as early as 15 min and persisted for 2 h. At 2 h, Pdi was still 294 +/- 45% of the base-line value compared with 217 +/- 35% during SAL. There was no difference in EMGdi between the groups at any time. However, the augmentation of Pdi was associated with a greater increase in end-expiratory gastric pressure in the NLX group. We conclude that the reduction in VT and Pdi associated with endogenous opioid elaboration is not mediated by a decrease in neural output to the diaphragm, but it appears to be the result of a decrease in respiratory output to the abdominal muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号