首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
In order to investigate the flexibility of the ternary complex consisting of myosin subfragment-1 (S1), ADP, and orthovanadate (Vi), i.e., S1.ADP.Vi, the exchangeability of the bound ADP was examined. After isolation of the ternary complex of S1.ADP.Vi by gel filtration, 3'-O-(N-methylanthraniloyl)-ADP (Mant-ADP), a fluorescent analogue of ADP, was added at 0.5 degrees C. The added Mant-ADP was incorporated into the ternary complex very slowly by replacing the bound ADP. The nucleotide exchange occurred without regeneration of the ATPase activity of S1. Similarly, the ternary complex of S1.Mant-ADP.Vi prepared and isolated by gel filtration according to Hiratsuka (3, 4), was incubated with ADP (2.4 mM) at 4.5 degrees C. The nucleotide exchange of S1.Mant-ADP.Vi with ADP occurred in two phases with the apparent rates of 4.5 x 10(-4) s-1 (the fast phase) and 6.7 x 10(-6) s-1 (the slow phase). Biphasic exchange of the bound nucleotide was also observed with S1(A1) isozyme, indicating that the biphasic exchange did not correspond to two S1 isozymes. The apparent rates of the fast and the slow phases increased with the concentration of the added ADP, but they became saturated at an ADP concentration of the order of 2 mM, indicating that the nucleotide exchange reaction involves a step (or steps) which is insensitive to the concentration of free ADP in the solution. This step might be a reversible isomerization.  相似文献   

2.
3.
Hiratsuka T 《Biochemistry》2006,45(4):1234-1241
The fluorescent probe 3-[4-(3-phenyl-2-pyrazolin-1-yl)benzene-1-sulfonyl amido]phenylboronic acid (PPBA) acts as a fluorescent inhibitor for the ATPases of skeletal [Hiratsuka (1994) J. Biol. Chem. 269, 27251-27257] and Dictyostelium discoideum [Bobkov et al. (1997) J. Muscle Res. Cell Motil. 18, 563-571] myosins. The former paper suggested that, upon addition of excess nucleotides to the binary complex of subfragment-1 from skeletal myosin (S1) with PPBA, a stable ternary complex of S1 with PPBA and nucleotide is formed. Useful fluorescence properties of PPBA enable us to distinguish the conformation of the myosin ATPase at the ATP state from that at the ADP state. In the present paper, to determine the PPBA-binding site in the complexes, enzymatic and fluorescence properties of the S1.PPBA.nucleotide complexes were investigated. Upon formation of the ternary complex with ATP, a new peak appeared at 398 nm in the PPBA fluorescence spectrum. Experiments using model compounds of aromatic amino acid suggested that this fluorescence peak at 398 nm is originated from PPBA interacting with Phe residue(s). Taking into account differences in fluorescence spectra between complexes of S1 and those of subfragment-1 from D. discoideum myosin (S1dC), in the ternary complex of S1 formed with ATP, PPBA was suggested to interact with Phe residue(s) that is absent in S1dC. Docking simulation of PPBA on the S1.nucleotide complex revealed that Phe472 interacts with PPBA. Binding sites of PPBA and blebbistatin, an inhibitor showing high affinity and selectivity toward myosin II [Kovács et al. (2004) J. Biol. Chem. 279, 35557-35563], seem to overlap at least partly.  相似文献   

4.
The esterification reagent 9-anthroylnitrile (ANN) reacts with a serine residue in the NH2-terminal 23-kDa peptide segment of myosin subfragment-1 heavy chain to yield a fluorescent S1 derivative labeled by the anthroyl group (Hiratsuka, T. (1989) J. Biol. Chem. 264, 18188-18194). The labeling was highly selective and accelerated by nucleotides. In the present study, to determine the exact location of the labeled serine residue, the labeled 23-kDa peptide fragment was isolated. The subsequent extensive proteolytic digestion of the peptide fragment yielded two labeled peptides, a pentapeptide and its precursor nonapeptide. Amino acid sequence and composition analyses of both labeled peptides revealed that the anthroyl group is attached to Ser-181 involved in the phosphate binding loop for ATP (Smith, C. A., and Rayment, I. (1996) Biochemistry 35, 5404-5417). We concluded that ANN can esterify Ser-181 selectively out of over 40 serine residues in the subfragment 1 heavy chain. Thus ANN is proved to be a valuable fluorescent tool to identify peptides containing the phosphate binding loop of S1 and to detect the conformational changes around this loop.  相似文献   

5.
Recent crystallographic studies of motor proteins showed that the structure of the motor domains of myosin and kinesin are highly conserved. Thus, these motor proteins, which are important for motility, may share a common mechanism for generating energy from ATP hydrolysis. We have previously demonstrated that, in the presence of ADP, myosin forms stable ternary complexes with new phosphate analogues of aluminum fluoride (AlF(4)(-)) and beryllium fluoride (BeF(n)), and these stable complexes mimic the transient state along the ATPase kinetic pathway [Maruta et al. (1993) J. Biol. Chem. 268, 7093-7100]. In this study, we examined the formation of kinesin.ADP.fluorometals ternary complexes and analyzed their characteristics using the fluorescent ATP analogue NBD-ATP (2'(3')-O-[6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl]-ADP). Our results suggest that these ternary complexes may mimic transient state intermediates in the kinesin ATPase cycle. Thus, the kinesin.ADP.AlF(4)(-) complex resembles the kinesin.ADP state, and the kinesin.ADP.BeF(n) complex mimics the kinesin.ADP.P(i) state.  相似文献   

6.
Ribose-modified fluorescent nucleotide analogs, 3'-O-anthraniloyl and 3'-O-(N-methylanthraniloyl) derivatives of AT(D)P, dAT(D)P, CT(D)P, UT(D)P, IT(D)P, and GT(D)P, were synthesized for use as substrates and affinity labels for the myosin ATPase [Hiratsuka, T. (1983) Biochim. Biophys. Acta 742, 496-508]. None of the fluorescent nucleoside triphosphate (NTP) analogs was significantly different from the corresponding natural NTP in its ability to support superprecipitation of actomyosin. When fluorescent and natural NTPs were used as substrates for the myosin subfragment-1(S-1) ATPase in the presence of 1mM vanadate ion (V1), a slight initial inhibition of the S-1 NTPase was followed by progressive inhibition to more than 60% over a period of 1 h. The apparent second-order rate constants were 0.14-0.44M-1 . s-1, suggesting the formation of the inactive fluorescent NDP-labeled S-1. After incubation of S-1 with the nucleoside diphosphate (NDP) analog in the presence of Vi, the resultant fluorescent NDP-labeled S-1 was isolated free of unbound Vi and the analog by gel filtration. The isolated complexes had stoichiometries of 0.6-1.1 NDP analog per S-1 active site. Native polyacrylamide gel electrophoresis revealed conveniently that the NDP analog is associated with S-1 as indicated by two intense fluorescent bands corresponding to S-1 isozymes. On dissociating gels, the analog was released from S-1, suggesting that the labeled S-1 is held together by strong secondary forces rather than covalent bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Myosin forms stable ternary complexes with ADP and phosphate analogues of fluorometals that mimic different ATPase reaction intermediates corresponding to each step of the cross-bridge cycle. In the present study, we monitored the formation of ternary complexes of myosin.ADP.fluorometal using the fluorescence probe prodan. It has been reported that the fluorescence changes of the probe reflect the formation of intermediates in the ATPase reaction [Hiratsuka (1998) Biochemistry 37, 7167-7176]. Prodan bound to skeletal muscle heavy-mero-myosin (HMM).ADP.fluorometal, with each complex showing different fluorescence spectra. Prodan bound to the HMM.ADP.BeFn complex showed a slightly smaller red-shift than other complexes in the presence of ATP, suggesting a difference in the localized conformation or a difference in the population of BeFn species of global shape. We also examined directly the global structure of the HMM.ADP.fluorometal complexes using quick-freeze deep-etch replica electron microscopy. The HMM heads in the absence of nucleotides were mostly straight and elongated. In contrast, the HMM heads of ternary complexes showed sharply kinked or rounded configurations as seen in the presence of ATP. This is the first report of the direct observation of myosin-ADP-fluorometal ternary complexes, and the results suggest that these complexes indeed mimic the shape of the myosin head during ATP hydrolysis.  相似文献   

8.
T E Garabedian  R G Yount 《Biochemistry》1991,30(42):10126-10132
The active-site topology of smooth muscle myosin has been investigated by direct photoaffinity-labeling studies with [3H]ADP. Addition of vanadate (Vi) and Co2+ enabled [3H]ADP to be stably trapped at the active site (t1/2 greater than 5 days at 0 degrees C). The extraordinary stability of the myosin.Co2+.[3H]ADP.Vi complex allowed it to be purified free of excess [3H]ADP before irradiation began and ensured that only active-site residues became labeled. Following UV irradiation, approximately 10% of the trapped [3H]ADP became covalently attached at the active site. All of the [3H]ADP incorporated into the 200-kDa heavy chain, confirming earlier results using untrapped [alpha-32P]ATP [Maruta, H., & Korn, E. (1981) J. Biol. Chem. 256, 499-502]. After extensive trypsin digestion of labeled subfragment 1, HPLC separation methods combined with alkaline phosphatase treatment allowed two labeled peptides to be isolated. Sequence analysis of both labeled peptides indicated that Glu-185 was the labeled residue. Since Glu-185 has been previously identified as a residue at the active site of smooth myosin using [3H]UDP as a photolabel [Garabedian, T. E., & Yount, R. G. (1990) J. Biol. Chem. 265, 22547-22553], these results provide further evidence that Glu-185, located immediately adjacent to the glycine-rich loop, is located in the purine binding pocket of the active site of smooth muscle myosin.  相似文献   

9.
Conformational changes of the beta chain of the outer-arm dynein from sea urchin sperm flagella in relation to ATP hydrolysis was examined by tryptic digestion. Tryptic digestion of the beta chain in the presence of 2 mM ATP (ADP) and 100 microM vanadate (Vi) or in the presence of 4 mM ATP gamma S produced different polypeptides from in the case of no addition. The difference was similar to the result previously reported for 21S outer-arm dynein heavy chains [Inaba, K. & Mohri, H. (1989) J. Biol. Chem. 264, 8384-8388]. Unlike the tryptic digestion pattern of 21S dynein heavy chains, however, the 135-kDa polypeptide was consistently produced from the beta chain, even in the presence of ATP (ADP) and Vi. The tryptic digestion pattern of the 21S particle reconstituted from the separated a chain, the beta/IC1 complex and the IC2/IC3 complex [Tang, W.-J.Y., Bell, C.W., Sale, W.S., & Gibbons, I.R. (1982) J. Biol. Chem. 257, 508-515] was similar to that of intact 21S dynein; the 135-kDa polypeptide was only slightly produced in the presence of ATP and Vi. The digestion rate constant of the 135-kDa polypeptide from the beta chain in the presence of ATP and Vi was significantly decreased as compared with in the case of 21S dynein or that of the reconstituted 21S particle. These results suggest that the trypsin sensitivity of the 135-kDa region of the beta chain changes with the association of the beta/ICI complex with the alpha chain and the IC2/IC3 complex in the presence of ATP and Vi.  相似文献   

10.
J C Grammer  C R Cremo  R G Yount 《Biochemistry》1988,27(22):8408-8415
Ultraviolet irradiation above 300 nm of the stable MgADP-orthovanadate (Vi)-myosin subfragment 1 (S1) complex resulted in covalent modification of the S1 and in the rapid release of trapped MgADP and Vi. This photomodified S1 had Ca2+ATPase activity 4-5-fold higher than that of the non-irradiated control S1, while the K+EDTA-ATPase activity was below 10% of controls. There was a linear correlation between the activation of the Ca2+ATPase and the release of both ADP and Vi with irradiation time. Analysis of the total number of thiols and the ability of photomodified S1 to retrap MgADP by cross-linking SH1 and SH2 with various bifunctional thiol reagents indicated that the photomodification did not involve these reactive thiols. Irradiation of the S1-MgADP-Vi complex caused a large increase in absorbance of the enzyme at 270 nm which was correlated with the release of Vi from the active site, suggesting an aromatic amino acid(s) was (were) involved. However, analysis by three different methods showed no loss of tryptophan. All the irradiation-dependent phenomena could be prevented by replacing Mg2+ with either Co2+, Mn2+, or Ni2+. Unlike previous irradiation studies of Vi-dynein complexes [Lee-Eiford, A., Ow, R. A., & Gibbons, I. R. (1986) J. Biol. Chem. 261, 2337-2342], no peptide bonds were cleaved in photomodified S1. Photomodified S1 was able to retrap MgADP-Vi at levels similar to unmodified S1. Upon irradiation of the photomodified S1-MgADP-Vi complex, MgADP and Vi were again released from the active site, resulting in heavy chain cleavage to form NH2-terminal 21-kDa and COOH-terminal 74-kDa peptides. All evidence indicates that this new photomodification and subsequent chain cleavage occur specifically at the active site.  相似文献   

11.
Resonance energy transfer from Trp-314 to ionized Tyr-286 was proposed (Laws, W. R., and Shore, J. D. (1978) J. Biol. Chem. 253, 8593-8597) as the mechanism for the observed decrease in protein fluorescence of liver alcohol dehydrogenase seen with alkaline pH, or with the formation of a ternary complex with NAD+ and trifluoroethanol. In the present study, ultraviolet difference spectra confirm the presence of ionized tyrosine not only in these two cases but also in the ternary complex with NADH and isobutyramide. Our results indicate that ternary complex formation, with either oxidized or reduced coenzyme, causes a conformational change leading to partial ionization of tyrosine residues in regions of the enzyme far from the active site.  相似文献   

12.
We have used a fluorescent analogue of ATP, mantATP [2'(3')-O-(N-methylanthraniloyl)-adenosine 5'-triphosphate; Hiratsuka T. (1983) Biochim. Biophys. Acta 742, 496-508], and made a detailed kinetic study of the interaction of mantATP and mantADP with S1 and acto-S1. We have shown that these analogues behave like ATP and ADP, respectively. In addition, we have demonstrated that this analogue can distinguish between two acto-S1 complexes, the A-M.N (attached) and A.M.N (rigor-like) states [Geeves, M. A., Good, R. S., & Gutfreund, H. (1984) J. Muscle Res. Cell Motil. 5, 351-361]. Previously, these two states were observed with a pyrene label on Cys 374 of actin. This isomerization can now be monitored at two spatially distinct sites on the ternary complex, indicative of a major conformational change in the ternary complex. Also, we have measured the rate of ADP dissociation from both A-M.N and A.M.N directly and shown these to differ by a factor of 1000. Thus the results presented here support the model of Geeves et al. and are consistent with the A-M.N to A.M.N transition being coupled to the force-generating event of the crossbridge cycle.  相似文献   

13.
The interaction of adenyl-5'-yl imidodiphosphate and PPi with actomyosin   总被引:1,自引:0,他引:1  
We previously studied the equilibrium binding of ADP, adenyl-5'-yl imidodiphosphate (AMP-PNP), and inorganic pyrophosphate (PPi) to actomyosin-subfragment 1 (acto.S-1) and found that AMP-PNP and PPi bind considerably more weakly to acto.S-1 than does ADP. In this study, we investigated the pre-steady-state kinetics of the binding of AMP-PNP and PPi to acto.S-1 and of S-1.AMP-PNP and S-1.PPi to actin to determine if the pre-steady-state kinetic data are consistent with our previous equilibrium data. We find that the kinetic data are consistent with the equilibrium data and agree with a model in which acto.S-1 forms a collision intermediate with the ATP analog, followed by a slower conformational change to a ternary complex that rapidly dissociates into actin and the S-1.ATP analog. Although this scheme fits the AMP-PNP as well as the PPi data, we find that the isomerization of the collision intermediate to the ternary complex is approximately 10 times faster in the presence of PPi than in the presence of AMP-PNP, which is consistent with previous physiological studies (Schoenberg, M., and Eisenberg, E. (1985) Biophys. J. 48, 863-872).  相似文献   

14.
Boronic acid derivatives of good peptide substrates of the serine proteases cause slow-binding inhibition, manifested as biphasic binding (Kettner and Shenvi: J. Biol Chem. 259:15106-15114, 1984). These inhibitors are thought to act as reaction-intermediate analogs. Three peptide boronic acids--Ac-Pro-boro-Val-OH, DNS-Ala-Pro-boro-Val-OH, and Ac-Ala-Ala-Pro-boro-Val-OH--were chosen for far-ultraviolet circular dichroism (CD) studies in order to determine whether the second phase involves a conformational change of pancreatic elastase. The dipeptide is a simple competitive inhibitor (Ki = 0.27 microM) and the latter are slow-binding inhibitors (Ki = 16.4 and 0.25 nM, respectively). Spectral deconvolution and correction for the formation of antiparallel beta-sheet by the peptide inhibitor itself indicate that there is no significant change in the secondary structure of the enzyme in either the initial or final inhibitor complex. A kinetic experiment confirmed that the slow-binding step was not associated with a CD spectral change, and that therefore a protein conformational change was not responsible for the slow binding.  相似文献   

15.
J Botts  A Muhlrad  R Takashi  M F Morales 《Biochemistry》1982,21(26):6903-6905
Myosin subfragment 1 (S-1) was fluorescently labeled at its rapidly reacting thiol ("SH1"). Short exposure to trypsin cuts the S-1 heavy chain into three still-associated fragments (20K, 50K, and 27K) [Balint, M., Wolf, L., Tarcsafalvi, A., Gergely, J., & Sreter, F.A. (1978) Arch. Biochem. Biophys. 190, 793-799] which bind F-actin to the same extent as does the uncut labeled S-1, as indicated by time-resolved fluorescence anisotropy decay (at 4 degrees C, pH 7, in 0.15 M KC1 and 5 mM MgC12, +/- 1 mM ADP). These results are thus in agreement with turbidity measurements on similar systems as reported by Mornet et al. [Mornet, D., Pantel, P., Audemard, E., & Kassab, R. (1979) Biochem. Biophys. Res. Commun. 89, 925-932]. The excited-state lifetime of the fluorescent label on cut S-1 is indistinguishable from that on normal S-1 (+/- ADP, +/- F-actin). F-Actin activation of MgATPase of cut S-1 is lower than that for normal S-1 at moderate concentrations of F-actin, as reported by Mornet et al. (1979). But as the F-actin concentration is increased, the MgATPase activities for cut S-1 approach those for uncut S-1. In terms of an eight-species steady-state kinetics scheme involving actin binding to free S-1, S-1 . ATP, S-1. ADP X P, and S-1 . ADP, actin affinity for the species S-1 . ADP X P was found to be 13.4 times greater for uncut S-1 than for cut S-1 [at 24 degrees C, pH 7.0, in 3 mM KC1, 1 mM ATP, 1 mM MgCl2, and 20 mM N-[tris(hydroxymethyl)methyl]-2-aminoethanesulfonic acid].  相似文献   

16.
Khaitlina S  Walloscheck M  Hinssen H 《Biochemistry》2004,43(40):12838-12845
The basic mechanism for the nucleating effect of gelsolin on actin polymerization is the formation of a complex of gelsolin with two actin monomers. Probably due to changes in the C-terminal part of gelsolin, a stable ternary complex is only formed at [Ca(2+)] >10(-5) M [Khaitlina, S., and Hinssen, H. (2002) FEBS Lett. 521, 14-18]. Therefore, we have studied the binding of actin monomer to the isolated C-terminal half of gelsolin (segments 4-6) over a wide range of calcium ion concentrations to correlate the conformational changes to the complex formation. With increasing [Ca(2+)], the apparent size of the C-terminal half as determined by gel filtration was reduced, indicating a transition into a more compact conformation. Moreover, Ca(2+) inhibited the cleavage by trypsin at Lys 634 within the loop connecting segments 5 and 6. Though the inhibitory effect was observed already at [Ca(2+)] of 10(-7) M, it was enhanced with increasing [Ca(2+)], attaining saturation only at >10(-4) M Ca(2+). This indicates that the initial conformational changes are followed by additional molecular transitions in the range of 10(-5)-10(-4) M [Ca(2+)]. Consistently, preformed complexes of actin with the C-terminal part of gelsolin became unstable upon lowering the calcium ion concentrations. These data provide experimental support for the role of the type 2 Ca-binding sites in gelsolin segment 5 proposed by structural studies [Choe et al. (2002) J. Mol. Biol. 324, 691]. We assume that the observed structural transitions contribute to the stable binding of the second actin monomer in the ternary gelsolin-actin complex.  相似文献   

17.
The fluorescence decay of 1,N6-ethenoadenosine diphosphate (epsilon ADP) bound to myosin subfragment 1 (S1) was studied as a function of temperature. The decay was biexponential, and the two lifetimes were quenched relative to the single lifetime of free epsilon ADP. The temperature dependence of the fractional intensities of the decay components showed two states of the S1.epsilon ADP complex. At pH 7.5 in 30 mM TES, 60 mM KCl, and 3 mM MgCl2, the equilibrium constant for the conversion of the low-temperature state (S1L.epsilon ADP) to the high-temperature state (S1H.epsilon ADP) was 40 at physiological temperatures, and delta H degrees = 13 kcal.mol-1 and delta S degrees = 49 cal.deg-1.mol-1. At 10 degrees C the equilibrium constant of S1 for epsilon ADP was 5, indicating that S1H.epsilon ADP was the dominant state, and that for the vanadate complex epsilon ADP.Vi was 0.7, suggesting that in S1.epsilon ADP.Vi the dominant state of the S1-nucleotide complex was converted from S1H.epsilon ADP to S1L.epsilon ADP. The single rotational correlation time of bound epsilon ADP at 10 degrees C decreased from 107 ns in S1.epsilon ADP to 74 ns in S1+.epsilon ADP.Vi. Conversion of the binary complex to the ternary vanadate complex resulted in a 3-A decrease in the energy transfer distance between bound epsilon ADP and N-[4-(dimethylamino)-3,5-dinitrophenyl]maleimide attached to SH1 and a decrease of the average distance between bound epsilon ADP and bound Co2+ from 12.6 to 8.3 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Native EcoRI DNA methyltransferase (Mtase, Mr 38,050) is proteolyzed by trypsin to generate an intermediate 36-kDa fragment (p36) followed by the formation of two polypeptides of Mr 23,000 and 13,000 (p23 and p13, respectively). Protein sequence analysis of the tryptic fragments indicates that p36 results from removal of the first 14 or 16 amino acids, p23 spans residues 15-216, and p13 spans residues 217-325. The relative resistance to further degradation of p23 and p13 suggests stable domain structures. This is further supported by the generation of similar fragments with SV8 endoprotease which has entirely different peptide specificities. Our results suggest the Mtase is a two-domain protein connected by a highly flexible interdomain hinge. The putative hinge region encompasses previously identified peptides implicated in AdoMet binding [Reich, N.O., & Everett, E. (1990) J. Biol. Chem. 265, 8929-8934] and catalysis [Everett et al. (1990) J. Biol. Chem. 265, 17713-17719]. Protection studies with DNA, S-adenosylmethionine (AdoMet), S-adenosylhomocysteine (AdoHcy), and sinefungin (AdoMet analogue) show that the Mtase undergoes significant conformational changes upon ligand binding. Trypsinolysis of the AdoMet-bound form of the Mtase generates different fragments, and the AdoMet-bound form is over 800 times more stable than unbound Mtase. The sequence-specific ternary complex (Mtase-DNA-sinefungin) is 2000 times more resistant to degradation by trypsin; cleavage eventually generates 26- and 12-kDa fragments which span residues 104-325 and 1-103, respectively (p26 and p12). The first 14 or 16 amino acids of the Mtase are not essential since p36 retains activity. Activity analysis of the p26 and p12 mixture also indicates retention of activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
C Frieden  K Patane 《Biochemistry》1985,24(15):4192-4196
The role of adenosine 5'-triphosphate (ATP) in the Mg2+-induced conformational change of rabbit skeletal muscle G-actin has been investigated by comparing actin containing bound ADP with actin containing bound ATP. As previously described [Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886], N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled G-actin containing ATP undergoes a time-dependent Mg2+-induced fluorescence change that reflects a conformational change in the actin. Addition of Mg2+ to labeled G-actin containing ADP gives no fluorescence change, suggesting that the conformational change does not occur. The fluorescence change can be restored on the addition of ATP. Examination of the time courses of these experiments suggests that ATP must replace ADP prior to the Mg2+-induced change. The Mg2+-induced polymerization of actin containing ADP is extraordinarily slow compared to that of actin containing ATP. The lack of the Mg2+-induced conformational change, which is an essential step in the Mg2+-induced polymerization, is probably the cause for the very slow polymerization of actin containing ADP. On the other hand, at 20 degrees C, at pH 8, and in 2 mM Mg2+, the elongation rate from the slow growing end of an actin filament, measured by using the protein brevin to block growth at the fast growing end, is only 4 times slower for actin containing ADP than for actin containing ATP.  相似文献   

20.
The fluorescent reagent 4-fluoro-7-nitrobenz-2-oxa-1,3-diazole (NBD-F) reacted specifically with 1.9 lysyl residues/mol of the myosin subfragment-1 (S-1) ATPase. When 1.9 lysyl residues were modified, the K+- and Ca2+-ATPase activities were almost completely inhibited, whereas the Mg2+-ATPase activity was increased to 180% of original activity. The actin-activated Mg2+-ATPase activity was decreased to 30% of original activity by this modification. However, affinity of S-1 for actin in the presence of ATP was unchanged. The NBD fluorescence of the modified S-1 was quenched on addition of ATP, suggesting that ATP induced conformational changes around the NBD groups attached to S-1. Tryptic digestion of the modified S-1 revealed that the NBD groups are attached mainly to the 50-kDa peptide of S-1, more precisely the 45-kDa peptide. These results confirm the recent reports that the 50-kDa peptide of S-1 is involved in the myosin ATPase reaction (K?rner, M., Thiem, N. V., Cardinaud, R., and Lacombe, G. (1983) Biochemistry 22, 5843-5847; Hiratsuka, T. (1986) Biochemistry 25, in press).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号