首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epidermal growth factor (EGF) receptor is a tyrosine kinase that dimerizes in response to ligand binding. Ligand-induced dimerization of the extracellular domain of the receptor promotes formation of an asymmetric dimer of the intracellular kinase domains, leading to stimulation of the tyrosine kinase activity of the receptor. We recently monitored ligand-promoted conformational changes within the EGF receptor in real time using luciferase fragment complementation imaging and showed that there was significant movement of the C-terminal tail of the EGF receptor following EGF binding (Yang, K. S., Ilagan, M. X. G., Piwnica-Worms, D., and Pike, L. J. (2009) J. Biol. Chem. 284, 7474–7482). To investigate the structural basis for this conformational change, we analyzed the effect of several mutations on the kinase activity and luciferase fragment complementation activity of the EGF receptor. Mutation of Asp-960 and Glu-961, two residues at the beginning of the C-terminal tail, to alanine resulted in a marked enhancement of EGF-stimulated kinase activity as well as enhanced downstream signaling. The side chain of Asp-960 interacts with that of Ser-787. Mutation of Ser-787 to Phe, which precludes this interaction, also leads to enhanced receptor kinase activity. Our data are consistent with the hypothesis that Asp-960/Glu-961 represents a hinge or fulcrum for the movement of the C-terminal tail of the EGF receptor. Mutation of these residues destabilizes this hinge, facilitating the formation of the activating asymmetric dimer and leading to enhanced receptor signaling.  相似文献   

2.
Wang Q  Villeneuve G  Wang Z 《EMBO reports》2005,6(10):942-948
Given that ligand binding is essential for the rapid internalization of epidermal growth factor receptor (EGFR), the events induced by ligand binding probably contribute to the regulation of EGFR internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. Whereas the initial results are controversial regarding the role of EGFR kinase activity in EGFR internalization, more recent data suggest that EGFR kinase activation is essential for EGFR internalization. However, we have shown here that inhibition of EGFR kinase activation by mutation or by chemical inhibitors did not block EGF-induced EGFR internalization. Instead, proper EGFR dimerization is necessary and sufficient to stimulate EGFR internalization. We conclude that EGFR internalization is controlled by EGFR dimerization, rather than EGFR kinase activation. Our results also define a new role for EGFR dimerization: by itself it can drive EGFR internalization, independent of its role in the activation of EGFR kinase.  相似文献   

3.
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased.  相似文献   

4.
The EGF receptor (EGFR) family comprises four homologs in humans collectively known as the ErbB or HER proteins. ErbB proteins are receptor tyrosine kinases that become activated when ligands bind to their extracellular regions and promote formation of specific homo- and heterodimers with enhanced tyrosine kinase activity. An essential feature of ErbB activation is formation of an asymmetric kinase dimer in which the C-terminal lobe of one kinase serves as the activator or donor kinase by binding the N-terminal lobe of a receiver or acceptor kinase and stabilizing its active conformation. ErbB extracellular regions are also thought to form active asymmetric dimers in which only one subunit binds ligand. The observation that the unliganded ErbB2 kinase preferentially serves as the activator kinase when paired with EGFR/ErbB1 implied that extracellular asymmetry in ErbB proteins might be coupled to intracellular asymmetry with unliganded partners favoring the activator kinase position. Using cell-based stimulation assays and chimeric ErbB proteins, we show that extracellular asymmetry is not coupled to intracellular asymmetry and that ErbB intracellular regions are sufficient to determine relative kinase activator-receiver orientation. We further show a hierarchy of activator-receiver preferences among ErbB proteins, with EGFR/ErbB1 being the strongest receiver, followed by ErbB2 and then ErbB4, and that cis-phosphorylation of EGFR and ErbB2 appears to be negligible. This hierarchy shapes the nature of signaling responses to different ligands in cells expressing multiple ErbB proteins.  相似文献   

5.
Wang Q  Zhu F  Wang Z 《Experimental cell research》2007,313(15):3349-3363
Most studies regarding the role of epidermal growth factor (EGF) receptor (EGFR) C-terminal domain in EGFR internalization are done in the context of EGFR kinase activation. We recently showed that EGF-induced EGFR internalization is directly controlled by receptor dimerization, rather than kinase activation. Here we studied the role of EGFR C-terminus in EGF-induced EGFR internalization with or without EGFR kinase activation. We showed that graduate truncation of EGFR from C-terminus to 1044 did not affect EGF-induced EGFR endocytosis with or without kinase activation. However, truncation to 991 or further completely inhibited EGFR endocytosis. Graduate truncation within 991-1044 progressively lower EGF-induced EGFR endocytosis with most significant effects observed for residues 1005-1017. The endocytosis patterns of mutant EGFRs are independent of EGFR kinase activation. The residues 1005-1017 were also required for EGFR internalization triggered by non-ligand-induced receptor dimerization. This indicates that residues 1005-1017 function as an internalization motif, rather than a dimerization motif, to mediate EGFR internalization. Furthermore, we showed that the di-leucine motif 1010LL1011 within this region is essential in mediating EGF-induced rapid EGFR internalization independent of kinase activation. We conclude that EGFR C-terminal sequences 1005-1017 and the 1010LL1011 motif are essential for EGF-induced EGFR endoytosis independent of EGFR kinase activation and autophosphorylation.  相似文献   

6.
MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells. High expression of MUC1 is closely associated with cancer progression and metastasis, leading to poor prognosis. We previously reported that MUC1 is internalized by the binding of the anti-MUC1 antibody, from the cell surface to the intracellular region via the macropinocytotic pathway. Since MUC1 is closely associated with ErbBs, such as EGF receptor (EGFR) in cancer cells, we examined the effect of the anti-MUC1 antibody on EGFR trafficking. Our results show that: (1) anti-MUC1 antibody GP1.4, but not another anti-MUC1 antibody C595, triggered the internalization of EGFR in pancreatic cancer cells; (2) internalization of EGFR by GP1.4 resulted in the inhibition of ERK phosphorylation by EGF stimulation, in a MUC1 dependent manner; (3) inhibition of ERK phosphorylation by GP1.4 resulted in the suppression of proliferation and migration of pancreatic cancer cells. We conclude that the internalization of EGFR by anti-MUC1 antibody GP1.4 inhibits the progression of cancer cells via the inhibition of EGFR signaling.  相似文献   

7.
Like many other receptor tyrosine kinases (RTKs), platelet-derived growth factor (PDGF) receptor β (PDGFR-β) is internalized and degraded in lysosomes in response to PDGF stimulation, which regulates many aspects of cell signalling. However, little is known about the regulation of PDGFR-β endocytosis. Given that ligand binding is essential for the rapid internalization of RTKs, the events induced by the ligand binding likely contribute to the regulation of ligand-induced RTK internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. In this communication, we examined the role of PDGFR-β kinase activity, PDGFR-β dimerization and PDGFR-β C-terminal motifs in PDGF-induced PDGFR-β internalization. We showed that inhibition of PDGFR-β kinase activity by chemical inhibitor or mutation did not block PDGF-induced PDGFR-β endocytosis, suggesting that the kinase activity is not essential. We further showed that dimerization of PDGFR-β is essential and sufficient to drive PDGFR-β internalization independent of PDGFR-β kinase activation. Moreover, we showed that the previously reported 14 amino acid sequence 952-965 is required for PDGF-induced PDGFR-β internalization. Most importantly, we showed that this PDGFR-β internalization motif is exchangeable with the EGFR internalization motif (1005-1017) in mediating ligand-induced internalization of both PDGFR-β and EGFR. This indicates a common mechanism for the internalization of both PDGFR-β and EGFR.  相似文献   

8.
The epidermal growth factor (EGF) receptor is a member of the ErbB family of receptors that also includes ErbB2, ErbB3, and ErbB4. These receptors form homo- and heterodimers in response to ligand with ErbB2 being the preferred dimerization partner. Here we use (125)I-EGF binding to quantitate the interaction of the EGF receptor with ErbB2. We show that the EGFR/ErbB2 heterodimer binds EGF with a 7-fold higher affinity than the EGFR homodimer. Because it cannot bind a second ligand, the EGFR/ErbB2 heterodimer is not subject to ligand-induced dissociation caused by the negatively cooperative binding of EGF to the second site on the EGFR homodimer. This increases the stability of the heterodimer relative to the homodimer and is associated with enhanced and prolonged EGF receptor autophosphorylation. These effects are independent of the kinase activity of ErbB2 but require back-to-back dimerization of the EGF receptor with ErbB2. Back-to-back dimerization is also required for phosphorylation of ErbB2. These findings provide a molecular explanation for the apparent preference of the EGF receptor for dimerizing with ErbB2 and suggest that the phosphorylation of ErbB2 occurs largely in the context of the EGFR/ErbB2 heterodimer, rather than through lateral phosphorylation of isolated ErbB2 subunits.  相似文献   

9.
The binding of EGF induces dimerization of its receptor, leading to the stimulation of its intracellular tyrosine kinase activity. Kinase activation occurs within the context of an asymmetric dimer in which one kinase domain serves as the activator for the other kinase domain but is not itself activated. How ligand binding is related to the formation and dynamics of this asymmetric dimer is not known. The binding of EGF to its receptor is negatively cooperative--that is, EGF binds with lower affinity to the second site on the dimer than to the first site on the dimer. In this study, we analyzed the binding of (125)I-EGF to a series of EGF receptor mutants in the intracellular juxtamembrane domain and demonstrate that the most membrane-proximal portion of this region plays a significant role in the genesis of negative cooperativity in the EGF receptor. The data are consistent with a model in which the binding of EGF to the first site on the dimer induces the formation of one asymmetric kinase dimer. The binding of EGF to the second site is required to disrupt the initial asymmetric dimer and allow the formation of the reciprocal asymmetric dimer. Thus, some of the energy of binding to the second site is used to reorient the first asymmetric dimer, leading to a lower binding affinity and the observed negative cooperativity.  相似文献   

10.
Mi LZ  Grey MJ  Nishida N  Walz T  Lu C  Springer TA 《Biochemistry》2008,47(39):10314-10323
Cellular signaling mediated by the epidermal growth factor receptor (EGFR or ErbB) family of receptor tyrosine kinases plays an important role in regulating normal and oncogenic cellular physiology. While structures of isolated EGFR extracellular domains and intracellular protein tyrosine kinase domains have suggested mechanisms for growth factor-mediated receptor dimerization and allosteric kinase domain activation, understanding how the transmembrane and juxtamembrane domains contribute to transmembrane signaling requires structural studies on intact receptor molecules. In this report, recombinant EGFR constructs containing the extracellular, transmembrane, juxtamembrane, and kinase domains are overexpressed and purified from human embryonic kidney 293 cell cultures. The oligomerization state, overall structure, and functional stability of the purified EGF-bound receptor are characterized in detergent micelles and phospholipid bilayers. In the presence of EGF, catalytically active EGFR dimers can be isolated by gel filtration in dodecyl maltoside. Visualization of the dimeric species by negative stain electron microscopy and single particle averaging reveals an overall structure of the extracellular domain that is similar to previously published crystal structures and is consistent with the C-termini of domain IV being juxtaposed against one another as they enter the transmembrane domain. Although detergent-soluble preparations of EGFR are stable as dimers in the presence of EGF, they exhibit differential functional stability in Triton X-100 versus dodecyl maltoside. Furthermore, the kinase activity can be significantly stabilized by reconstituting purified EGF-bound EGFR dimers in phospholipid nanodiscs or vesicles, suggesting that the environment around the hydrophobic transmembrane and amphipathic juxtamembrane domains is important for stabilizing the tyrosine kinase activity in vitro.  相似文献   

11.
The epidermal growth factor receptor (EGFR) is a well-studied receptor tyrosine kinase and an important anticancer therapeutic target. The activity of EGFR autophosphorylation and transphosphorylation, which induces several cell signaling pathways, has been suggested to be related to its oligomeric state. However, the oligomeric states of EGFRs induced by EGF binding and the receptor–ligand stoichiometry required for its activation are still controversial. In the present study, we performed Förster resonance energy transfer (FRET) measurements by combining the coiled-coil tag–probe labeling method and spectral imaging to quantitatively analyze EGFR oligomerization on living CHO-K1 cell membranes at physiological expression levels. In the absence of its ligands, EGFRs mainly existed as monomers with a small fraction of predimers (~ 10%), whereas ~ 70% of the EGFRs formed dimers after being stimulated with the ligand EGF. Ligand-induced dimerization was not significantly affected by the perturbation of membrane components (cholesterol or monosialoganglioside GM3). We also investigated both dose and time dependences of EGF-dependent EGFR dimerization and autophosphorylation. The formation of dimers occurred within 20 s of the ligand stimulation and preceded its autophosphorylation, which reached a plateau 90 s after the stimulation. The EGF concentration needed to evoke half-maximum dimerization (~ 1 nM) was lower than that for half-maximum autophosphorylation (~ 8 nM), which suggested the presence of an inactive dimer binding a single EGF molecule.  相似文献   

12.
After binding of epidermal growth factor (EGF), the EGF receptor (EGFR) becomes autophosphorylated via tyrosine. The ligand-activated receptor is internalized by endocytosis and subsequently degraded in the lysosomal pathway. To follow EGFR activation after EGF stimulation, we generated antisera to the EGFR phosphotyrosine sites pY992 and pY1173. The SH2 region of Shc binds to both these sites. Both antisera identified EGFR after EGF binding and did not crossreact with the unactivated receptor. The intracellular distribution of phosphorylated EGFR after ligand binding was traced by two-color immunofluorescence confocal microscopy and immunoelectron microscopy. Before EGF stimulation EGFR was primarily located along the cell surface. When internalization of activated EGFR was inhibited by incubation with EGF on ice, Y992- and Y1173-phosphorylated EGFR were located along the plasma membrane. Ten minutes after internalization at 37C, Y992- and Y1173-phosphorylated EGFR were almost exclusively located in early endosomes, as shown by co-localization with EEA1. Immunoelectron microscopy confirmed that phosphorylated EGFR was located in intracellular vesicles resembling early endosomes. After EGF stimulation, the adaptor protein Shc redistributed to EGFR-containing early endosomes. Our results indicate that EGFR activation of Shc via tyrosine-phosphorylated Y992 and Y1173 occurred in early endocytic compartments, and support a role for membrane trafficking in intracellular signaling.  相似文献   

13.
Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.  相似文献   

14.
G protein-coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR function. Here we demonstrate that activation of epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase family, stimulates GRK2 activity and transregulates the function of G protein-coupled opioid receptors. Our data showed that EGF treatment promoted DOR internalization induced by DOR agonist and this required the intactness of GRK2-phosphorylation sites in DOR. EGF stimulation induced the association of GRK2 with the activated EGFR and the translocation of GRK2 to the plasma membrane. After EGF treatment, GRK2 was phosphorylated at tyrosyl residues. Mutational analysis indicated that EGFR-mediated phosphorylation occurred at GRK2 N-terminal tyrosyl residues previously shown as c-Src phosphorylation sites. However, c-Src activity was not required for EGFR-mediated phosphorylation of GRK2. In vitro assays indicated that GRK2 was a direct interactor and a substrate of EGFR. EGF treatment remarkably elevated DOR phosphorylation in cells expressing the wild-type GRK2 in an EGFR tyrosine kinase activity-dependent manner, whereas EGF-stimulated DOR phosphorylation was greatly decreased in cells expressing mutant GRK2 lacking EGFR tyrosine kinase sites. We further showed that EGF also stimulated internalization of mu-opioid receptor, and this effect was inhibited by GRK2 siRNA. These data indicate that EGF transregulates opioid receptors through EGFR-mediated tyrosyl phosphorylation and activation of GRK2 and propose GRK2 as a mediator of cross-talk from RTK to GPCR signaling pathway.  相似文献   

15.
Epidermal growth factor receptor (EGFR) and its family members, ErbB2, ErbB3 and ErbB4, are receptor tyrosine kinases which send signals into the cell to regulate many critical processes including development, tissue homeostasis, and tumorigenesis. Central to the signaling of these receptors is their intracellular kinase domain, which is activated by ligand-induced dimerization of the receptor and phosphorylates several tyrosine residues in the C-terminal tail. The phosphorylated tail then recruits other signaling molecules and relays the signal to downstream pathways. A model of the autoinhibition, activation and feedback inhibition mechanisms for the ErbB kinase domain has emerged from a number of recent structural studies. Meanwhile, recent clinical studies have revealed the relationship between specific ErbB kinase mutations and the responsiveness to kinase inhibitor drugs. We will review these regulation mechanisms of the ErbB kinase domain, and discuss the binding specificity of kinase inhibitors and the effects of kinase domain mutations found in cancer patients from a structural perspective.  相似文献   

16.
We study a mechanism by which dimerization of the EGF receptor (EGFR) cytoplasmic domain is transmitted to the ectodomain. Therapeutic and other small molecule antagonists to the kinase domain that stabilize its active conformation, but not those that stabilize an inactive conformation, stabilize ectodomain dimerization. Inhibitor-induced dimerization requires an asymmetric kinase domain interface associated with activation. EGF and kinase inhibitors stimulate formation of identical dimer interfaces in the EGFR transmembrane domain, as shown by disulfide cross-linking. Disulfide cross-linking at an interface in domain IV in the ectodomain was also stimulated similarly; however, EGF but not inhibitors stimulated cross-linking in domain II. Inhibitors similarly induced noncovalent dimerization in nearly full-length, detergent-solubilized EGFR as shown by gel filtration. EGFR ectodomain deletion resulted in spontaneous dimerization, whereas deletion of exons 2–7, in which extracellular domains III and IV are retained, did not. In EM, kinase inhibitor-induced dimers lacked any well defined orientation between the ectodomain monomers. Fab of the therapeutic antibody cetuximab to domain III confirmed a variable position and orientation of this domain in inhibitor-induced dimers but suggested that the C termini of domain IV of the two monomers were in close proximity, consistent with dimerization in the transmembrane domains. The results provide insights into the relative energetics of intracellular and extracellular dimerization in EGFR and have significance for physiologic dimerization through the asymmetric kinase interface, bidirectional signal transmission in EGFR, and mechanism of action of therapeutics.  相似文献   

17.
The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N‐glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF–EGFR binding takes place through a large‐scale induced‐fitting mechanism. Proteins 2017; 85:561–570. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Quantitative relationships between inputs and outputs of signaling systems are fundamental information for the understanding of the mechanism of signal transduction. Here we report the correlation between the number of epidermal growth factor (EGF) bindings and the response probability of intracellular calcium elevation. Binding of EGF molecules and changes of intracellular calcium concentration were measured for identical HeLa human epithelial cells. It was found that 300 molecules of EGF were enough to induce calcium response in half of the cells. This number is quite small compared to the number of EGF receptors (EGFR) expressed on the cell surface (50,000). There was a sigmoidal correlation between the response probability and the number of EGF bindings, meaning an ultrasensitive reaction. Analysis of the cluster size distribution of EGF demonstrated that dimerization of EGFR contributes to this switch-like ultrasensitive response. Single-molecule analysis revealed that EGF bound faster to clusters of EGFR than to monomers. This property should be important for effective formation of signaling dimers of EGFR under very small numbers of EGF bindings and suggests that the expression of excess amounts of EGFR on the cell surface is required to prepare predimers of EGFR with a large association rate constant to EGF.  相似文献   

19.
ErbB3 is a member of the ErbB family of receptor tyrosine kinases. It is unique because it is the only member of the family whose kinase domain is defective. As a result, it is obliged to form heterodimers with other ErbB receptors to signal. In this study, we characterized the interaction of ErbB3 with the EGF receptor and ErbB2 and assessed the effects of Food and Drug Administration-approved therapeutic agents on these interactions. Our findings support the concept that ErbB3 exists in preformed clusters that can be dissociated by NRG-1β and that it interacts with other ErbB receptors in a distinctly hierarchical fashion. Our study also shows that all pairings of the EGF receptor, ErbB2, and ErbB3 form ligand-independent dimers/oligomers. The small-molecule tyrosine kinase inhibitors erlotinib and lapatinib differentially enhance the dimerization of the various ErbB receptor pairings, with the EGFR/ErbB3 heterodimer being particularly sensitive to the effects of erlotinib. The data suggest that the physiological effects of these drugs may involve not only inhibition of tyrosine kinase activity but also a dynamic restructuring of the entire network of receptors.  相似文献   

20.
The EGF receptor is a classical receptor-tyrosine kinase. In the absence of ligand, the receptor adopts a closed conformation in which the dimerization arm of subdomain II interacts with the tethering arm in subdomain IV. Following the binding of EGF, the receptor opens to form a symmetric, back-to-back dimer. Although it is clear that the dimerization arm of subdomain II is central to the formation of receptor dimers, the role of the tethering arm of subdomain IV (residues 561-585) in this configuration is not known. Here we use (125)I-EGF binding studies to assess the functional role of the tethering arm in the EGF receptor dimer. Mutation of the three major residues that contribute to tethering (D563A,H566A,K585A-EGF receptor) did not significantly alter either the ligand binding properties or the signaling properties of the EGF receptor. By contrast, breaking the Cys(558)-Cys(567) disulfide bond through double alanine replacements or deleting the loop entirely led to a decrease in the negative cooperativity in EGF binding and was associated with small changes in downstream signaling. Deletion of the Cys(571)-Cys(593) disulfide bond abrogated cooperativity, resulting in a high affinity receptor and increased sensitivity of downstream signaling pathways to EGF. Releasing the Cys(571)-Cys(593) disulfide bond resulted in extreme negative cooperativity, ligand-independent kinase activity, and impaired downstream signaling. These data demonstrate that the tethering arm plays an important role in supporting cooperativity in ligand binding. Because cooperativity implies subunit-subunit interactions, these results also suggest that the tethering arm contributes to intersubunit interactions within the EGF receptor dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号