首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we have demonstrated that cadmium acetate significantly induces hprt mutation frequency in Chinese hamster ovary (CHO)-K1 and that 3-amino-1,2,4-triazole (3AT), a catalase inhibitor, potentiates the mutagenicity of cadmium [Chem. Res. Toxicol. 9 (1996) 1360-1367]. In this study, we investigate the role of intracellular peroxide in the molecular nature of mutations induced by cadmium. Using 2',7'-dichlorofluorescin diacetate and fluorescence spectrophotometry, we have shown that cadmium dose-dependently increased the amounts of intracellular peroxide and the levels were significantly enhanced by 3AT. Furthermore, we have characterized and compared the hprt mutation spectra in 6-thioguanine-resistant mutants derived from CHO-K1 cells exposed to 4 microM of cadmium acetate for 4h in the absence and presence of 3AT. The mutation frequency induced by cadmium and cadmium plus 3AT was 11- and 16-fold higher than that observed in untreated populations (2.2 x 10(-6)), respectively. A total of 40 and 51 independent hprt mutants were isolated from cadmium and cadmium plus 3AT treatments for mRNA-polymerase chain reaction (PCR), genomic DNA-PCR and DNA sequencing analyses. 3AT co-administration significantly enhanced the frequency of deletions induced by cadmium. Cadmium induced more transversions than transitions. In contrast, 3AT co-administration increased the frequency of GC-->AT transitions and decreased the frequencies of TA-->AT and TA-->GC transversions. Together, the results suggest that intracellular catalase is important to prevent the formation of oxidative DNA damage as well as deletions and GC-->AT transitions upon cadmium exposure.  相似文献   

2.
DNA damage caused by oxygen alkylation of bases (mainly at O6-G, O4-T and O2-T positions in DNA) has been correlated with the mutagenic and carcinogenic potency of monofunctional alkylating agents. In all kinds of organisms, repair of O6-alkylG is carried out mainly by the enzyme O6-methyl guanine-DNA methyltransferase (MGMT). However, little is known about the repair of the O-alkylT adducts or about the contribution of nucleotide excision repair (NER) to this process, especially in higher eukaryotes. To study the influence of the NER system on the repair of O-alkylation damage, the molecular mutation spectrum induced by N-ethyl-N-nitrosourea (ENU) in an NER-deficient Drosophila strain, carrying a mutation at the mus201 locus, was obtained and compared with a previously published spectrum for NER-proficient conditions. This comparison reveals a clear increase in the frequency of base pair changes, including GC --> AT and AT --> GC transitions and AT --> TA transversions. In addition, one deletion and two frameshift mutations, not found under NER-proficient conditions, were isolated in the NER-deficient mutant. The results demonstrate that: (1) N-alkylation damage contributes considerably (more than 20%) to the mutagenic activity of ENU under NER-deficient conditions, confirming that the NER system repairs this kind of damage; and (2) that in germ cells of Drosophila in vivo, NER seems to repair O6-ethylguanine and/or O2-ethylcytosine, O4-ethylthymine, and possibly also O2-ethylthymine.  相似文献   

3.
We used the LYS2 gene mutational system to study mutation specificity of the base analog 6-N-hydroxylaminopurine (HAP) in yeast. We characterized phenotypes of mutations using codon-specific nonsense suppressors and the test employing inactivation of the release factor Sup35 due to overexpression and formation of prion-like derivative [PSI]. We have shown that HAP induces predominantly nonsense mutations. While the tests using codon-specific nonsense-suppressors allowed to identify only about 50% of nonsense-mutations, all the nonsense-mutations were identified in the test with defective Sup35. We determined and analyzed the spectrum of HAP-induced nucleotide changes in two regions of the gene. HAP induces predominantly GC-->AT transitions in a hotspots of a central position of trinucleotide GGA or AGG. Directionality of these transitions is consistent with the idea that initial dHAPMP incorporation in the leading strand is more genetically dangerous than in lagging DNA strand. We revealed a specific context inhibitory for HAP mutagenesis, a "T" in -1 position to mutation site.  相似文献   

4.
5.
Benzene, a ubiquitous environmental pollutant and occupational hazardous chemical, is a recognised human leukaemogen and rodent carcinogen. The mechanism by which benzene exerts its carcinogenic effects is to date unknown but it is considered that mutations induced by benzene-DNA adducts may play a role. The benzene metabolite, para-benzoquinone (p-BQ) following reaction in vitro with DNA, forms four major adducts, which include two adducts on 2'-deoxyguanosine 3'-monophosphate (dGp). Reaction of DNA with the benzene metabolite hydroquinone (HQ) results in only one major DNA adduct, which corresponds to one of the dGp adducts formed following reaction with p-BQ. The mutagenicity of the adducts formed from these two benzene metabolites was investigated using the supF forward mutation assay. Metabolite-treated plasmid (pSP189) containing the supF gene was replicated in human Ad293 cells before being screened in indicator bacteria. Treatment with 5-20 mM p-BQ gave a 12 to 40-fold increase in mutation rate compared to 5-20 mM HQ treatment, a result reflected in the level of DNA modification observed (8 to 26-fold increase compared to HQ treatment). Treatment with p-BQ gave equal numbers of GC --> TA transversions and GC --> AT transitions, whereas treatment with HQ gave predominantly GC-->AT transitions. The spectra of mutations achieved for the two individual treatments were shown to be significantly different (P = 0.004). A combination of both treatments also resulted in a high level of GC --> AT transitions and a synergistic increase in the number of multiple mutations, which again predominated as GC --> AT transitions. Sites of mutational hotspots were observed for both individual treatments and one mutational hotspot was observed in the multiple mutations for the combined treatment. These results suggest that the dGp adducts formed from benzene metabolite treatment may play an important role in the mutagenicity and myelotoxicity of benzene.  相似文献   

6.
Tamoxifen elevates the risk of endometrial tumours in women and alpha-(N(2)-deoxyguanosinyl)-tamoxifen adducts are reportedly present in endometrial tissue of patients undergoing therapy. Given the widespread use of tamoxifen there is considerable interest in elucidating the mechanisms underlying treatment-associated cancer. Using a combined experimental and multivariate statistical approach we have examined the mutagenicity and potential consequences of adduct formation by reactive intermediates in target uterine cells. pSP189 plasmid containing the supF gene was incubated with alpha-acetoxytamoxifen or 4-hydroxytamoxifen quinone methide (4-OHtamQM) to generate dG-N(2)-tamoxifen and dG-N(2)-4-hydroxytamoxifen, respectively. Plasmids were replicated in Ishikawa cells then screened in Escherichia coli. Treatment with both alpha-acetoxytamoxifen and 4-OHtamQM caused a dose-related increase in adduct levels, resulting in a damage-dependent increase in mutation frequency for alpha-acetoxytamoxifen; 4-OHtamQM had no apparent effect. Only alpha-acetoxytamoxifen generated statistically different supF mutation spectra relative to the spontaneous pattern, with most mutations being GC-->TA transversions. Application of the LwPy53 algorithm to the alpha-acetoxytamoxifen spectrum predicted strong GC-->TA hotspots at codons 244 and 273. These signature alterations do not correlate with current reports of the mutations observed in endometrial carcinomas from treated women, suggesting that dG-N(2)-tam adduct formation in the p53 gene is not a prerequisite for endometrial cancer initiation in women.  相似文献   

7.
Gene mutations were studied on human cells SL68, XP12BE and chinese hamster cells Blld-ii-FAF28C1237. All the cells were sensitive to purine base analogs and were characterized by a high rate of O6-alkylguanine-DNA-transferase (AGT) activity. Inhibiting AGT activity by O6-benzylguanine considerably increases the frequency of mutants induced by the alkylating agent MNNG. Transitions of the GC-->AT type are the dominant mutations in the coding region of the hprt gene. The mechanism of DNA lesion repair by the AGT enzyme differs significantly from the excision repair.  相似文献   

8.
1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) is an important cause of pulmonary toxicity. BCNU alkylates DNA at the O(6) position of guanine. O(6)-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that removes alkyl groups from the O(6) position of guanine. To determine whether overexpression of MGMT in a lung cell reduces BCNU toxicity, the MGMT gene was transfected into A549 cells, a lung epithelial cell line. Transfected A549 cell populations demonstrated high levels of MGMT RNA, MGMT protein, and DNA repair activity. The overexpression of MGMT in lung epithelial cells provided protection from the cytotoxic effects of BCNU. Control A549 cells incubated with 100 microM BCNU had a cell survival rate of 12.5 +/- 1.2%; however, A549 cells overexpressing MGMT had a survival rate of 71.8 +/- 2.7% (P < 0.001). We also demonstrated successful transfection of MGMT into human pulmonary artery endothelial cells and a primary culture of rat type II alveolar epithelial cells with overexpression of MGMT, resulting in significant protection from BCNU toxicity. These data suggest that overexpression of DNA repair proteins such as MGMT in lung cells may protect the lung cells from cytotoxic effects of cancer chemotherapy drugs such as BCNU.  相似文献   

9.
The Escherichia coli AlkB protein encoded by alkB gene was recently found to repair cytotoxic DNA lesions 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) by using a novel iron-catalysed oxidative demethylation mechanism that protects the cell from the toxic effects of methylating agents. Mutation in alkB results in increased sensitivity to MMS and elevated level of MMS-induced mutations. The aim of this study was to analyse the mutational specificity of alkB117 in a system developed by J.H. Miller involving two sets of E. coli lacZ mutants, CC101-106 allowing the identification of base pair substitutions, and CC107-CC111 indicating frameshift mutations. Of the six possible base substitutions, the presence of alkB117 allele led to an increased level of GC-->AT transitions and GC-->TA and AT-->TA transversions. After MMS treatment the level of GC-->AT transitions increased the most, 22-fold. Among frameshift mutations, the most numerous were -2CG, -1G, and -1A deletions and +1G insertion. MMS treatment appreciably increased all of the above types of frameshifts, with additional appearance of the +1A insertion.  相似文献   

10.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant and a potent carcinogen in laboratory rodents. When combined with other environmental toxins, it has been shown to increase the (geno)toxicity of some compounds. In this study, the effect of TCDD on the mutagenicity of aflatoxin-B1 (AFB1) was examined in the rat liver using a lacI transgenic rodent mutation assay. AFB1 induces GC-->TA transversions. Since TCDD is known to have a differential effect in male and female rodents, both sexes were studied. The data showed that a 6-week pre-exposure to TCDD had no significant effect on the frequency of aflatoxin-induced mutation in the liver of male rats. However, the TCDD treatment completely prevented the aflatoxin-induced transversion mutations in female animals.  相似文献   

11.
MGMT hypermethylation: a prognostic foe, a predictive friend   总被引:2,自引:0,他引:2  
Jacinto FV  Esteller M 《DNA Repair》2007,6(8):1155-1160
Alkylation of DNA at the O(6)-position of guanine is one of the most critical events leading to mutation, cancer, and cell death. O(6)-alkylguanine-DNA alkyltransferase (AGT), also known as O(6)-methylguanine-DNA methyltransferase (MGMT), is the DNA repair protein responsible for removing alkylation adducts from the O(6)-position of guanine in DNA. The promoter CpG island hypermethylation-associated gene silencing of MGMT is associated with a wide spectrum of human tumors. This epigenetic inactivation of MGMT has two main consequences in human cancer. First, it uncovers a new mutator pathway that causes the accumulation of G-to-A transition mutations that can affect genes required for genomic stability. Second, there is a strong and significant positive correlation between MGMT promoter hypermethylation and increased tumor sensitivity to alkylating drugs. These findings underline the importance of MGMT promoter hypermethylation in basic and translational cancer research.  相似文献   

12.
The mutation spectrum induced by UV light has been determined at the hprt locus for both cultured normal (AA8) and UV-sensitive (UV-5) Chinese hamster ovary cells to investigate the effect of DNA repair on the nature of induced mutations. DNA base-pair changes of 23 hprt mutants of AA8 and of 28 hprt mutants of UV-5 were determined by sequence analysis of in vitro amplified hprt cDNA. Almost all mutants in AA8 carried single-base substitutions, transitions and transversions accounting for 38% and 62% of the base changes, respectively. In contrast, in repair-deficient cells (UV-5) tandem and nontandem double mutations represented a considerable portion of the mutations observed (30%), whereas the vast majority of base-pair substitutions were GC greater than AT transitions (87%). Moreover, 5 splice mutants and 2 frameshift mutations were found in the UV-5 collection. In almost all mutants analyzed base changes were located at dipyrimidine sites where UV photoproducts could have been formed. In AA8 the photolesions causing mutations were predominantly located in the nontranscribed strand whereas a strong bias for mutation induction towards photolesions in the transcribed strand was found in UV-5. We hypothesize that preferential removal of lesions from the transcribed strand of the hprt gene accounts for the observed DNA strand specificity of mutations in repair-proficient cells. Furthermore, differences in the degree of misincorporation opposite a lesion for lagging and leading strand DNA synthesis may dictate the pattern of UV-induced mutations in the absence of DNA repair.  相似文献   

13.
We have analysed five mutation hotspots within the p53 gene (codons 175, 213, 248, 249, and 282) for mutations induced by hydrogen peroxide (H(2)O(2)), employing the restriction site mutation (RSM) assay. In addition, four other restriction sites covering non-hotspot codons of exons 5-9 of the p53 gene (codons 126, 153/54, 189 and the 3' splice site of exon 9) were analysed by the RSM assay for H(2)O(2)-induced mutations. Two cell types were concurrently analysed in this study, i.e. primary fibroblast cells and a gastric cancer cell line. Using the RSM assay, H(2)O(2)-induced mutations were only detected in exon 7 of the p53 gene. This was true for both cell types. These mutations were mainly induced in the Msp I restriction site (codon 247/248) and were predominantly GC to AT transitions (71%). Hence these GC to AT mutations were presumably due to H(2)O(2) exposure, possibly implicating the 5OHdC adduct, which is known to induce C to T mutations upon misreplication. Importantly, this study demonstrates that the RSM methodology is capable of detecting rare oxidative mutations within the hotspot codons of the p53 tumour suppressor gene. Hence, this methodology may allow the detection of early p53 mutations in pre-malignant tissues.  相似文献   

14.
Lai JC  Cheng YW  Goan YG  Chang JT  Wu TC  Chen CY  Lee H 《DNA Repair》2008,7(8):1352-1363
Methylation of the O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter is associated with G:C to A:T transitions in the p53 gene in various human cancers, including lung cancer. In tumors with p53 mutation, MGMT promoter methylation is more common in advanced tumors than in early tumors. However, in tumors with wild-type p53, MGMT promoter methylation is independent of tumor stage. To elucidate whether p53 participates in MGMT promoter methylation, we engineered three cell models: A549 cells with RNA interference (RNAi)-mediated knockdown of p53, and p53 null H1299 cells transfected with either wild-type p53 (WT-p53) or mutant-p53 (L194R, and R249S-p53). Knockdown of endogenous p53 increased MGMT promoter methylation in A549 cells, and transient expression of WT-p53 in p53 null H1299 cells diminished MGMT promoter methylation, whereas the MGMT promoter methylation status were unchanged by expression of mutant-p53. Previous work showed that p53 modulates DNA-methyltransferase 1 (DNMT1) expression; we additionally examined chromatin remodeling proteins expression levels of histone deacetylase 1 (HDAC1). We found that p53 knockdown elevated expression of both DNMT1 and HDAC1 in A549 cells. Conversely, expressing WT-p53 in p53 null H1299 cells reduced DNMT1 and HDAC1 expression, but the reduction of both proteins was not observed in expressing mutant-p53 H1299 cells. CHIP analysis further showed that DNMT1 and HDAC1 binding to the MGMT promoter was increased by MGMT promoter methylation and decreased by MGMT promoter demethylation. In conclusion, MGMT promoter methylation modulated by p53 status could partially promote p53 mutation occurrence in advanced lung tumors.  相似文献   

15.
16.
Types and frequencies of in vivo mutation in the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) gene was studied in 142 T cell mutants from 78 healthy nonsmoking and smoking adults with a mean of 65 years. The HPRT mutant frequency in the nonsmokers was 18.7±12.0×10−6, and in the smokers 26.6±18.5×10−6 (mean±S.D., P<0.01). Among 107 single base pair substitutions (SBS) in the coding region of the HPRT gene, one new mutable site, one novel nonsense mutation and three not previously reported SBS were identified. Transitions accounted for 59% of the SBS and transversions for 41%. GC>AT transitions were the predominant type of mutation, with 50% of all SBS. The mutations showed a nonrandom distribution along the coding sequence, with three significant hotspots at positions 143, 197 and 617 (13, 14 and 7 mutations, respectively). There was no difference between smokers and nonsmokers with regard to the distribution of mutations at these hotspot positions. However, 85% of the mutations at GC base pairs and 88% of the mutations at AT base pairs in smokers occurred at sites with guanine or thymine, respectively, in the nontranscribed DNA strand. Moreover, smokers had a higher frequency of transversions and lower frequency of transitions than nonsmokers did. Particularly, GC>TA transversions were increased in smokers (11%) compared to nonsmokers (2%), which suggests that tobacco-smoke induced adducts at guanine bases in the nontranscribed DNA strand contributes to the increase of HPRT mutation in smokers. Overall, these results were very similar to the mutational spectra in two younger study populations reported previously [K.J. Burkhart-Schultz, C.L. Thompson, I.M. Jones, Spectrum of somatic mutation at the hypoxanthine phosphoribosyltransferase (HPRT) gene of healthy people, Carcinogenesis 17 (1996) 1871–1883; A. Podlutsky, A.-M. Österholm, S.-M. Hou, A. Hofmaier, B. Lambert, Spectrum of point mutations in the coding region of the hypoxanthine-guanine phosphoribosyltransferase, Carcinogenesis 19 (1998) 557–566]. With the possible exception of an increase of mutations at hotspot position 143, and a decrease of 5-methylcytosine deamination mediated transitions at CpG-sites in the older individuals, there were no differences between the mutational spectra of old and young adults. In conclusion, both smoking and ageing seem to have minor influences on the spectrum of HPRT mutation in T cells.  相似文献   

17.
We have used an oriP-tk shuttle vector t determine the types of mutations induced in human cells by ethyl methanesulfonate (EMS), 1'-acetoxysafrole (AcOS), and N-benzoyloxy-N-methyl-4-aminoazobenzene (BzOMAB). Plasmid DNA was treated in vitro with mutagen and electroporated into human lymphoblastoid cells. After replication of the vector in human cells, plasmids were analyzed for mutations in the herpes simplex virus type 1 thymidine kinase gene. Ethyl methanesulfonate induced predominantly GC → AT transition mutations. Treatment of the shuttle vector with AcOS induced 5 of the 6 possible base substitution mutations, including GC → AT (32%) and AT → GC (14%) transition mutations, GC → TA (%), GC → CG (18%), and AT → TA (14%) transversion mutations, as well as a low frequency (9%) of −1 frameshift mutations at GC base pairs. Replication in human cells of DNA modified with BzOMAB yielded a significant increase (17-fold) in the frequency of deletion mutations relative to solvent-treated DNA. A majority (94%) of the point mutations induced by BzOMAB occurred at GC base pairs and were predomianntly GC → AT transitions (33%) and −1 frameshift (22%) mutations, with the remainder consisting mainly of transversions at GC base pairs (28%). The broad spectrum of base substitution mutations observed for AcOS and BzOMAB may indicate the frequent insertion of a variety of bases during replicative bypass of aralkylated bases in human cells.  相似文献   

18.
Peroxyacetyl nitrate (PAN) is a ubiquitous air pollutant formed from NO(2) reacting with acetoxy radicals generated from ambient aldehydes in the presence of sunlight and ozone. It contributes to eye irritation associated with photochemical smog and is present in most urban air. PAN was generated in a chamber containing open petri dishes of Salmonella TA100 (gas-phase exposure). After subtraction of the background mutation spectrum, the spectrum of PAN-induced mutants selected at 3.1-fold above the background mutant yield was 59% GC-->TA, 29% GC-->AT, 2% GC-->CG, and 10% multiple mutations - primarily GG-->TT tandem-base substitutions. Using computational molecular modeling methods, a mechanism was developed for producing this unusual tandem-base substitution. The mechanism depends on the protonation of PAN near the polyanionic DNA to release NO(2)(+) resulting in intrastrand dimer formation. Insertion of AA opposite the dimerized GG would account for the tandem GG-->TT transversions. Nose-only exposure of Big Blue((R)) mice to PAN at 78ppm (near the MTD) was mutagenic at the lacI gene in the lung (mutant frequency +/-S.E. of 6.16+/-0.58/10(5) for controls versus 8.24+/-0.30/10(5) for PAN, P=0.016). No tandem-base mutations were detected among the 40 lacI mutants sequenced. Dosimetry with 3H-PAN showed that 24h after exposure, 3.9% of the radiolabel was in the nasal tissue, and only 0.3% was in the lung. However, based on the molecular modeling considerations, the labeled portion of the molecule would not have been expected to have been bound covalently to DNA. Our results indicate that PAN is weakly mutagenic in the lungs of mice and in Salmonella and that PAN produces a unique signature mutation (a tandem GG-->TT transversion) in Salmonella that is likely due to a GG intrastrand cross-link. Thus, PAN may pose a mutagenic and possible carcinogenic risk to humans, especially at the high concentrations at which it is present in some urban environments.  相似文献   

19.
The deleterious effect of defective alkB allele encoding 1meA/3meC dioxygenase on reactivation of MMS-treated phage DNA has been frequently studied. Here, it is shown that: (i) AlkB protects the cells not only against the genotoxic but also against the potent mutagenic activity of MMS; (ii) mutations arising in alkB-defected strains are umuDC-dependent, and deletion of umuDC dramatically reduce MMS-induced mutations resulting from the presence of 1meA/3meC in DNA; (iii) specificity of MMS-induced argE3-->Arg+ reversions in AB1157 alkB-defective cells are predominantly AT-->TA transversions and GC-->AT transitions; (iv) overproduction of AlkA and the resultant decrease in 3meA residues in DNA dramatically reduce MMS-induced mutations. This reduction is most probably a secondary effect of AlkA due to a decrease in 3meA residues in DNA and, in consequence, suppression of SOS induction and Pol V expression. Overproduction of UmuD'C proteins reverses this effect.  相似文献   

20.
Transgenic mutation assays utilizing bacterial target genes display a high frequency of spontaneous mutation at CpG sequences. This is believed to result from the fact that: (1) the prokaryotic genes currently being used as transgenic mutation targets have a high CpG content and (2) these sequences are methylated by mammalian cells to produce 5-methylcytosine (5MC), a known promutagenic base. To study the effect of CpG content on the frequency and type of spontaneous mutation, we have synthesized an analogue of the bacterial lacI target gene (mrkII) that contains a reduced number of CpG sequences. This gene was inserted into a lambda vector and used to construct trangenic mice that undergo vector rescue from genomic DNA upon in vitro packaging. Results on spontaneous mutation frequency and spectrum have been collected and compared to those observed at the lacI gene in Big Blue™ transgenic mice. Spontaneous mutations at the mrkII gene occurred at a frequency in the mid-10−5 range and were predominantly base pair substitutions, similar to results seen in Big Blue™. However, mrkII mutations were distributed toward the carboxyl end of the gene instead of the bias toward the amino terminus seen in lacI. Unexpectedly, 23% of the spontaneous mrkII mutations were GC → AT transitions at CpG sequences (compared to 32% in lacI), despite the reduction in CpG number from 95 in lacI to only 13 in mrkII. Nine of the CpG bases undergoing transition mutations in mrkII have not been recorded previously as spontaneous sites in Big Blue™. Therefore, substantial reduction of the number of CpG sequences in the lacI transgene did not significantly reduce the rate of spontaneous mutation or alter the contribution of CpG-related events. This suggests that other factors are also operating to establish frequency and composition of spontaneous mutations in transgenic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号