首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The observed response of [131I]metaiodobenzylguanidine (131I-MIBG) therapy in advanced neuroblastoma after conventional therapy had failed, the noninvasiveness of the procedure, and the high metabolic activity of untreated tumors led to a new protocol to use 131I-MIBG therapy in newly diagnosed patients instead of combination chemotherapy prior to surgery. The objectives of this study are to improve the overall outcome of patients with neuroblastoma by introducing 131I-MIBG therapy as the first therapy in the treatment schedule, in order to reduce the tumor volume, enabling adequate surgical resection and avoiding toxicity and the induction of early drug resistance. The advantages of this approach are that the child's general condition is unaffected before surgical resection is performed and that chemotherapy is reserved to treat minimal residual disease. So far, 13 patients with inoperable neuroblastoma (stage III and IV) were treated with 131I-MIBG initially and then submitted to surgery. More than 50% decrease of the volume of the primary tumor was noted in 7 of 10 evaluable patients; 8 patients have so far been operated with complete resection in 2, greater than 95% resection in 5 and 80% resection in one patient. Three patients are still undergoing 131I-MIBG treatment. The toxicity of 131I-MIBG de novo is in contrast with the previous experience of 131I-MIBG therapy after conventional therapy: only 4 patients had thrombocytopenia and only 1 of 7 patients with bone marrow involvement developed bone marrow depression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.

Background

Accurate outcome prediction in neuroblastoma, which is necessary to enable the optimal choice of risk-related therapy, remains a challenge. To improve neuroblastoma patient stratification, this study aimed to identify prognostic tumor DNA methylation biomarkers.

Results

To identify genes silenced by promoter methylation, we first applied two independent genome-wide methylation screening methodologies to eight neuroblastoma cell lines. Specifically, we used re-expression profiling upon 5-aza-2''-deoxycytidine (DAC) treatment and massively parallel sequencing after capturing with a methyl-CpG-binding domain (MBD-seq). Putative methylation markers were selected from DAC-upregulated genes through a literature search and an upfront methylation-specific PCR on 20 primary neuroblastoma tumors, as well as through MBD- seq in combination with publicly available neuroblastoma tumor gene expression data. This yielded 43 candidate biomarkers that were subsequently tested by high-throughput methylation-specific PCR on an independent cohort of 89 primary neuroblastoma tumors that had been selected for risk classification and survival. Based on this analysis, methylation of KRT19, FAS, PRPH, CNR1, QPCT, HIST1H3C, ACSS3 and GRB10 was found to be associated with at least one of the classical risk factors, namely age, stage or MYCN status. Importantly, HIST1H3C and GNAS methylation was associated with overall and/or event-free survival.

Conclusions

This study combines two genome-wide methylation discovery methodologies and is the most extensive validation study in neuroblastoma performed thus far. We identified several novel prognostic DNA methylation markers and provide a basis for the development of a DNA methylation-based prognostic classifier in neuroblastoma.  相似文献   

6.
《Molecular medicine today》1998,4(11):485-493
Gene therapy has generated enormous scientific, medical and public interest over the last decade. Clinical trials involving approximately 2000 patients worldwide have targeted simple genetic diseases such as cystic fibrosis, muscular dystrophy, adenosine deaminase deficiency, Gaucher's disease and familial hypercholesterolemia, as well as complex acquired diseases such as cancer and AIDS. The central nervous system is a new and particularly exciting target for gene therapy because its unique properties prevent the successful treatment of many neurological disorders by conventional means. This review discusses the potential applications of in vivo gene therapy to neurological disorders that have the greatest potential for genetic treatments.  相似文献   

7.
Buruli ulcer is a skin disease caused by Mycobacterium ulcerans that is spreading in tropical countries, with major public health and economic implications in West Africa. Multi-analyte profiling of serum proteins in patients and endemic controls revealed that Buruli ulcer disease down-regulates the circulating levels of a large array of inflammatory mediators, without impacting on the leukocyte composition of peripheral blood. Notably, several proteins contributing to acute phase reaction, lipid metabolism, coagulation and tissue remodelling were also impacted. Their down-regulation was selective and persisted after the elimination of bacteria with antibiotic therapy. It involved proteins with various functions and origins, suggesting that M. ulcerans infection causes global and chronic defects in the host''s protein metabolism. Accordingly, patients had reduced levels of total serum proteins and blood urea, in the absence of signs of malnutrition, or functional failure of liver or kidney. Interestingly, slow healers had deeper metabolic and coagulation defects at the start of antibiotic therapy. In addition to providing novel insight into Buruli ulcer pathogenesis, our study therefore identifies a unique proteomic signature for this disease.  相似文献   

8.
9.
10.
Several unique biological features of HIV-1 Vpr make it a potentially powerful agent for anti-cancer therapy. First, Vpr inhibits cell proliferation by induction of cell cycle G2 arrest. Second, it induces apoptosis through multiple mechanisms, which could be significant as it may be able to overcome apoptotic resistance exhibited by many cancerous cells, and, finally, Vpr selectively kills fast growing cells in a p53-independent manner. To demonstrate the potential utility of Vpr as an anti-cancer agent, we carried out proof-of-concept studies in vitro and in vivo. Results of our preliminary studies demonstrated that Vpr induces cell cycle G2 arrest and apoptosis in a variety of cancer types. Moreover, the same Vpr effects could also be detected in some cancer cells that are resistant to anti-cancer drugs such as doxorubicin (DOX). To further illustrate the potential value of Vpr in tumor growth inhibition, we adopted a DOX-resistant neuroblastoma model by injecting SK-N-SH cells into C57BL/6N and C57BL/6J-scid/scid mice. We hypothesized that Vpr is able to block cell proliferation and induce apoptosis regardless of the drug resistance status of the tumors. Indeed, production of Vpr via adenoviral delivery to neuroblastoma cells caused G2 arrest and apoptosis in both drug naïve and DOX-resistant cells. In addition, pre-infection or intratumoral injection of vpr-expressing adenoviral particles into neuroblastoma tumors in SCID mice markedly inhibited tumor growth. Therefore, Vpr could possibly be used as a supplemental viral therapeutic agent for selective inhibition of tumor growth in anti-cancer therapy especially when other therapies stop working.  相似文献   

11.
A study was undertaken to determine whether there are any features of retroperitoneal tumors in children that might be demonstrated on roentgenograms to aid in identifying them preoperatively. Study was limited to Wilms'' tumor of the kidney and neuroblastoma.Calcification was found in 57 per cent of the neuroblastomas and in only 12 per cent of Wilms'' tumors. Calcifications in neuroblastomas differed from those in Wilms'' tumors. Calcification in neuroblastoma was more frequent in older children than in the younger ones.The kidney was frequently displaced by both types of tumor. However, the neuroblastoma always displaced the kidney downward, or downward and slightly outward.In most instances, the Wilms'' tumor also displaced the kidney downward and outward, but in some instances upward and medially. This, of course, depended upon the site of origin of the tumor.There was a distortion of the intrarenal structures in 75 per cent of the cases of neuroblastoma and in 71 per cent of the cases of Wilms'' tumor.  相似文献   

12.
《Translational oncology》2020,13(10):100823
High-risk neuroblastoma, which is associated with regional and systemic metastasis, is a leading cause of cancer-related mortality in children. Responding to this need for novel therapies for high-risk patients, we have developed a “nanoimmunotherapy,” which combines photothermal therapy (PTT) using CpG oligodeoxynucleotide-coated Prussian blue nanoparticles (CpG-PBNPs) combined with anti-CTLA-4 (aCTLA-4) immunotherapy. Our in vitro studies demonstrate that in addition to causing ablative tumor cell death, our nanoimmunotherapy alters the surface levels of co-stimulatory, antigen-presenting, and co-inhibitory molecules on neuroblastoma tumor cells. When administered in a syngeneic, murine model of neuroblastoma bearing synchronous Neuro2a tumors, the CpG-PBNP-PTT plus aCTLA-4 nanoimmunotherapy elicits complete tumor regression in both primary (CpG-PBNP-PTT-treated) and secondary tumors, and long-term survival in a significantly higher proportion (55.5%) of treated-mice compared with the controls. Furthermore, the surviving, nanoimmunotherapy-treated animals reject Neuro2a rechallenge, suggesting that the therapy generates immunological memory. Additionally, the depletion of CD4+, CD8+, and NK+ populations abrogate the observed therapeutic responses of the nanoimmunotherapy. These findings demonstrate the importance of concurrent PTT-based cytotoxicity and the antitumor immune effects of PTT, CpG, and aCTLA-4 in generating a robust abscopal effect against neuroblastoma.  相似文献   

13.
It is well established that the bone marrow microenvironment provides a unique site of sanctuary for hematopoietic diseases that both initiate and progress in this site. The model presented in the current report utilizes human primary bone marrow stromal cells and osteoblasts as two representative cell types from the marrow niche that influence tumor cell phenotype. The in vitro co-culture conditions described for human leukemic cells with these primary niche components support the generation of a chemoresistant subpopulation of tumor cells that can be efficiently recovered from culture for analysis by diverse techniques. A strict feeding schedule to prevent nutrient fluxes followed by gel type 10 cross-linked dextran (G10) particles recovery of the population of tumor cells that have migrated beneath the adherent bone marrow stromal cells (BMSC) or osteoblasts (OB) generating a "phase dim" (PD) population of tumor cells, provides a consistent source of purified therapy resistant leukemic cells. This clinically relevant population of tumor cells can be evaluated by standard methods to investigate apoptotic, metabolic, and cell cycle regulatory pathways as well as providing a more rigorous target in which to test novel therapeutic strategies prior to pre-clinical investigations targeted at minimal residual disease.  相似文献   

14.
[131I]Metaiodobenzylguanidine (131I-MIBG) is used for diagnostic scintigraphy and targeted therapy in a range of neural crest tumors, which exhibit an active uptake-1 mechanism at the cell membrane and cytoplasmatic storage in neurosecretory granules. A good and selective concentration and a long retention in the tumor, as is generally the case in neuroblastoma, are the basis for successful 131I-MIBG treatment. At The Netherlands Cancer Institute a phase II study was carried out in 53 patients with progressive recurrent disease after conventional therapy had failed. Despite the unfavorable basis for treatment, 131I-MIBG therapy induced 7 complete remissions, 23 partial remissions and arrest of disease (no change) in 10. Nine patients had progressive disease and one patient was lost to follow-up. The palliative effect of the treatment under these conditions was impressive. The duration of remissions varied from 2 to 38 months. The best results were obtained in patients with voluminous soft tissue disease. In general the treatment was well tolerated by children and the toxicity was mild, provided the bone marrow was not invaded by the disease. It is concluded that 131I-MIBG therapy has a definitive place in the treatment of neuroblastoma after conventional treatment has failed. As the invasiveness and toxicity of this therapy compare favorably with that of chemotherapy, immunotherapy and external beam radiotherapy, 131I-MIBG therapy is the best palliative treatment for patients with advanced recurrent neuroblastoma.  相似文献   

15.
The high incidence of adrenocortical tumors and choroid plexus carcinoma in children from South and Southeastern regions of Brazil is associated with the germline p.R337H mutation of TP53 gene. The concomitant occurrence of neuroblastoma and adrenocortical tumors in pediatric patients harboring the p.R337H mutation at our institution prompted us to investigate the putative association between p.R337H and pediatric neuroblastoma. Genomic DNA samples from 83 neuroblastoma patients referred to a single institution during the period of 2000–2014 were screened for the p.R337H mutation. Available samples from carriers were investigated for both nuclear p53 accumulation and loss of heterozigosity in tumor. Clinical data were obtained from medical records in order to assess the impact of 337H allele on manifestation of the disease. Seven out 83 neuroblastoma patients (8.4%) were carriers of the TP53 p.R337H mutation in our cohort. Immunohistochemical analysis of p.R337H-positive tumors revealed nuclear p53 accumulation. Loss of heterozigosity was not found among available samples. The presence of 337H allele was associated with increased proportion of stage I tumors. Our data indicate that in addition to adrenocortical tumors, choroid plexus carcinoma, breast cancer and osteosarcoma, genetic counseling and clinical surveillance should consider neuroblastoma as a potential neoplasia affecting p.R337H carriers.  相似文献   

16.
Pituitary adenomas are associated with a variety of clinical manifestations resulting from excessive hormone secretion and tumor mass effects, and require a multidisciplinary management approach. This article discusses the treatment modalities for the management of patients with a prolactinoma, Cushing's disease and acromegaly, and summarizes the options for medical therapy in these patients. First-line treatment of prolactinomas is pharmacotherapy with dopamine agonists; recent reports of cardiac valve abnormalities associated with this class of medication in Parkinson's disease has prompted study in hyperprolactinemic populations. Patients with resistance to dopamine agonists may require other treatment. First-line treatment of Cushing's disease is pituitary surgery by a surgeon with experience in this condition. Current medical options for Cushing's disease block adrenal cortisol production, but do not treat the underlying disease. Pituitary-directed medical therapies are now being explored. In several small studies, the dopamine agonist cabergoline normalized urinary free cortisol in some patients. The multi-receptor targeted somatostatin analogue pasireotide (SOM230) shows promise as a pituitary-directed medical therapy in Cushing's disease; further studies will determine its efficacy and safety. Radiation therapy, with medical adrenal blockade while awaiting the effects of radiation, and bilateral adrenalectomy remain standard treatment options for patients not cured with pituitary surgery. In patients with acromegaly, surgery remains the first-line treatment option when the tumor is likely to be completely resected, or for debulking, especially when the tumor is compressing neurovisual structures. Primary therapy with somatostatin analogues has been used in some patients with large extrasellar tumors not amenable to surgical cure, patients at high surgical risk and patients who decline surgery. Pegvisomant is indicated in patients who have not responded to surgery and other medical therapy, although there are regional differences in when it is prescribed. In conclusion, the treatment of patients with pituitary adenomas requires a multidisciplinary approach. Dopamine agonists are an effective first-line medical therapy in most patients with a prolactinoma, and somatostatin analogues can be used as first-line therapy in selected patients with acromegaly. Current medical therapies for Cushing's disease primarily focus on adrenal blockade of cortisol production, although pasireotide and cabergoline show promise as pituitary-directed medical therapy for Cushing's disease; further long-term evaluation of efficacy and safety is important.  相似文献   

17.
Metaiodobenzylguanidine (MIBG) is a guanethidine derivative that is selectively concentrated in sympathetic nervous tissue. MIBG labeled with 123I or 131I has proven to be a specific and sensitive tool for detection of primary and metastatic pheochromocytoma and neuroblastoma. Eleven patients, with refractory stage IV neuroblastoma were treated with a total of 23 courses of 131I-MIBG, 100-400 mCi/m2/course. Total activity administered per course ranged from 90-550 mCi; maximum cumulative radioactivity per patient was 1356 mCi. The 131I-MIBG was given as a 2 hour infusion. Total body dose was calculated from whole body activity measurements, ranging from 73-250 cGy. The main toxicity was thrombocytopenia, with platelet nadirs to less than 25,000/microL in 5/23 courses (5 patients), all occurring in patients with greater than 25% replacement by tumor in the bone marrow. Neutropenia to a nadir of less than 500/microL was seen in only 2 patients, both with greater than 50% bone marrow replacement after 2 and 4 courses of 131I-MIBG, respectively. Tumor doses were calculated in patients with an evaluable measurable lesion, and ranged from 312-6329 cGy per course. Two of the eleven patients had partial responses, with one long-term survivor with stage IV neuroblastoma with no evidence of active disease now 4 years off treatment. Two other patients survive with stable disease after 3 treatments, at 3+ and 5+ months. Seven patients died with progressive disease. This study shows that treatment with 131I-MIBG is safe and can be effective in refractory neuroblastoma, particularly in patients who do not have extensive bone and bone marrow involvement.  相似文献   

18.
Neuroblastoma is one of the most common solid tumors and accounts for ∼15% of all the cancer related deaths in the children. Despite the standard therapy for advanced disease including chemotherapy, surgery, and radiation, the mortality rate remains high for these patients. Hence, novel therapeutic agents are desperately needed. Here we examined the anticancer activity of a novel plant-derived compound, sparstolonin B (SsnB; 8,5′-dihydroxy-4-phenyl-5,2′-oxidoisocoumarin) using neuroblastoma cell lines of different genetics. SsnB was recently isolated from an aquatic Chinese herb, Sparganium stoloniferum, and tubers of this herb have been used in traditional Chinese medicine for the treatment of several inflammatory diseases and cancers. Our cell viability and morphological analysis indicated that SsnB at 10 µM concentration significantly inhibited the growth of both N-myc amplified (SK-N-BE(2), NGP, and IMR-32 cells) and N-myc nonamplified (SH-SY5Y and SKNF-1 cells) neuroblastoma cells. The flow cytometric analyses suggested that SsnB arrests the cell cycle progression at G2-M phase in all neuroblastoma cell lines tested. Exposure of SsnB inhibited the compact spheroid formation and reduced the tumorigenicity of SH-SY5Y cells and SK-N-BE(2) cells in in vitro 3-D cell culture assays (anchorage-independent colony formation assay and hanging drop assay). SsnB lowers the cellular level of glutathione (GSH), increases generation of reactive oxygen species and activates the cleavage of caspase-3 whereas co-incubation of a GSH precursor, N-acetylcysteine, along with SsnB attenuates the inhibitory effects of SsnB and increases the neuroblastoma cell viability. Our results for the first time demonstrate that SsnB possesses anticancer activity indicating that SsnB-induced reactive oxygen species generation promotes apoptotic cell death in neuroblastoma cells of different genetic background. Thus these data suggest that SsnB can be a promising drug candidate in neuroblastoma therapy.  相似文献   

19.

Background

Recognizing EGFR as key orchestrator of the metastatic process in colorectal cancer, but also the substantial heterogeneity of responses to anti-EGFR therapy, we examined the pattern of composite tumor kinase activities governed by EGFR-mediated signaling that might be implicated in development of metastatic disease.

Patients and Methods

Point mutations in KRAS, BRAF, and PIK3CA and ERBB2 amplification were determined in primary tumors from 63 patients with locally advanced rectal cancer scheduled for radical treatment. Using peptide arrays with tyrosine kinase substrates, ex vivo phosphopeptide profiles were generated from the same baseline tumor samples and correlated to metastasis-free survival.

Results

Unsupervised clustering analysis of the resulting phosphorylation of 102 array substrates defined two tumor classes, both consisting of cases with and without KRAS/BRAF mutations. The smaller cluster group of patients, with tumors generating high ex vivo phosphorylation of phosphatidylinositol-3-kinase-related substrates, had a particularly aggressive disease course, with almost a half of patients developing metastatic disease within one year of follow-up.

Conclusion

High phosphatidylinositol-3-kinase-mediated signaling activity of the primary tumor, rather than KRAS/BRAF mutation status, was identified as a hallmark of poor metastasis-free survival in patients with locally advanced rectal cancer undergoing radical treatment of the pelvic cavity.  相似文献   

20.
Neuroblastoma is an embryonal tumor of childhood with a heterogenous clinical presentation that reflects differences in activation of complex biological signaling pathways. Protein phosphorylation is a key component of cellular signal transduction and plays a critical role in processes that control cancer cell growth and survival. We used shotgun LC/MS to compare phosphorylation between a human MYCN amplified neuroblastoma cell line (NB10), modeling a resistant tumor, and a human neural precursor cell line (NPC), modeling a normal baseline neural crest cell. 2181 unique phosphorylation sites representing 1171 proteins and 2598 phosphopeptides were found. Protein kinases accounted for 6% of the proteome, with a predominance of tyrosine kinases, supporting their prominent role in oncogenic signaling pathways. Highly abundant receptor tyrosine kinase (RTK) phosphopeptides in the NB10 cell line relative to the NPC cell line included RET, insulin-like growth factor 1 receptor/insulin receptor (IGF-1R/IR), and fibroblast growth factor receptor 1 (FGFR1). Multiple phosphorylated peptides from downstream mediators of the PI3K/AKT/mTOR and RAS pathways were also highly abundant in NB10 relative to NPC. Our analysis highlights the importance of RET, IGF-1R/IR and FGFR1 as RTKs in neuroblastoma and suggests a methodology that can be used to identify potential novel biological therapeutic targets. Furthermore, application of this previously unexploited technology in the clinic opens the possibility of providing a new wide-scale molecular signature to assess disease progression and prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号