首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyamines (PAs) are biologically ubiquitous aliphatic amines that are implicated in many aspects of growth, development, sex differentiation, ripeness and senescence of plants[1―6]. It has been well documented that PAs are closely associated with plant …  相似文献   

2.
采用营养液水培法,研究了根际低氧胁迫下D-精氨酸(D-Arg)对两个抗低氧能力不同的黄瓜品种根系中多胺含量和无氧呼吸代谢的影响.结果表明,低氧处理下,黄瓜幼苗根系中多胺含量显著增加,无氧呼吸代谢能力提高;与抗低氧能力弱的‘中农八号’相比,抗低氧能力强的‘绿霸春四号’根系中乙醇发酵活性较高,乳酸发酵活性较低;低氧胁迫下,D-精氨酸能显著降低黄瓜幼苗根系中腐胺、亚精胺和精胺含量,根系中乙醇脱氢酶(ADH)和乳酸脱氢酶(LDH)活性增加,乙醇和乳酸含量升高,植株生长受到抑制,而外源腐胺能缓解D-精氨酸的这种作用.说明黄瓜幼苗根系中较高的多胺含量可能有利于缓解低氧胁迫对植株造成的伤害.  相似文献   

3.
The contents of covalently conjugated polyamines (CC-PAs) and noncovalently conjugated polyamines (NCC-PAs) to deoxyribonucleic acid-protein (DNP) isolated from wheat (Triticum aestivum L.) seedling roots under osmotic stress were detected. Results showed that after osmotic stress treatment for 7 d, the levels in NCC-spermine (NCC-Spm) and NCC-spermidine (NCC-Spd) of drought-tolerant Yumai No. 18 cv. increased more markedly than that of drought-sensitive Yangmai No. 9 cv., while the NCC-putrescine (NCC-Put) could not be statistically detected in two cultivars. Exogenous Spm treatment alleviated osmotic stress injury to Yangmai No. 9 cv. seedlings, coupled with marked increases of NCC-Spm and NCC-Spd levels of this cultivar. Under PEG osmotic stress, the concomitant treatment of drought-tolerant Yumai No. 18 cv.seedlings with methylglyoxyl-bis (guanylhydrazone) (MGBG), an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), aggravated osmotic stress injury to this cultivar, coupled with market decreases of the NCC-Spm and NCC-Spd levels. The levels in CC-Put and CC-Spd of drought-tolerant Yumai No. 18 cv. increased more markedly than that of drought-sensitive Yangmai No. 9 cv. Under osmotic stress. The treatment of drought-tolerant Yumai No. 18 cv. seedlings with phenanthrolin (o-Phen), an inhibitor of transglutaminase (TGase), aggravated osmotic stress injury to this cultivar, coupled with a reduction of sum contents of CC-Put+CC-Spd. These results suggested that NCC-Spm and NCC-Spd, together with CC-Put and CC-Spd, in DNP of roots could enhance tolerance of the wheat seedlings to osmotic stress.  相似文献   

4.
The effects of exogenous spermidine (Spd) application to hypoxic nutrient solution on the contents of endogenous polyamines (PAs) and respiratory metabolism in the roots of cucumber (Cucumis sativus L.) seedlings were investigated. Cucumber seedlings were grown hydroponically in control and hypoxic nutrient solutions with and without addition of Spd at a concentration of 0.05 mM. The activities of key enzymes involved in the tricarboxylic acid cycle (TCAC), such as succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH), were significantly inhibited under root-zone hypoxia with dissolved oxygen (DO) at 1 mg/l. In contrast, the activities of enzymes involved in the process of fermentation, such as pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH), and alanine aminotransferase (AlaAT), were significantly increased. Thus, aerobic respiration was inhibited and fermentation was enhanced in the roots of cucumber seedlings as a result of decreasing ATP content to inhibit the dry weight of seedlings under hypoxic stress. Moreover, the contents of free, soluble conjugated, and insoluble bound putrescine (Put), Spd, and spermine (Spm) in the roots of cucumber seedlings were significantly increased under hypoxia stress. Interestingly, application of Spd to hypoxic roots markedly suppressed the accumulation of free Put and, in contrast, promoted an increase in free Spd and Spm, as well as soluble conjugated and insoluble bound Put, Spd, and Spm contents. From these data, we deduced that exogenous Spd promotes the conversion of free Put into free Spd and Spm, and soluble conjugated and insoluble bound PAs under hypoxia stress. Furthermore, the activities of LDH, PDC, and ADH were suppressed and, in contrast, the activities of SDH and IDH were enhanced by application of exogenous Spd to hypoxic roots. As a result, aerobic respiration was enhanced but fermentation metabolism was inhibited in the roots of cucumber seedlings, leading to an increase in ATP content to alleviate the inhibited dry weight of seedlings due to hypoxia stress. These results suggest that application of Spd to hypoxic nutrient solution promoted conversion of free Put into free Spd and Spm as well as soluble conjugated and insoluble bound PAs, further enhanced IDH and SDH activities, and inhibited ethanol fermentation and lactate fermentation, resulting in increased ATP content and eventually enhanced tolerance of cucumber plants to root-zone hypoxia.  相似文献   

5.
The effects of osmotic stress on H+-ATPase and H+-PPase activities and the levels of covalently conjugated polyamines (CC-PAs) and noncovalently conjugated polyamines (NCC-PAs) were investigated using tonoplast vesicles isolated from the roots of wheat (Triticum aestivum L.) seedlings differing in drought-tolerance. The results showed that after polyethylene glycol (PEG) 6,000 (–0.55MPa) treatment for 7 days, seedling leaf relative water content (LRWC), relative dry weight increase rate (RDWIR) and root H+-ATPase and H+-PPase activities from the drought-sensitive cultivar Yangmai No. 9 decreased more markedly than those from the drought-tolerant cultivar Yumai No. 18. At the same time, the increase of the NCC-spermidine (NCC-Spd) and CC-putrescine (CC-Put) levels in root tonoplast vesicles from Yumai No. 18 was more obvious than that from Yangmai No. 9. Exogenous Spd treatment alleviated osmotic stress injury to Yangmai No. 9 seedlings, coupled with marked increases of tonoplast NCC-Spd levels and H+-ATPase and H+-PPase activities. Treatments with methylglyoxyl bis (guanyl hydrazone) (MGBG), an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), and phenanthrolin, an inhibitor of transglutaminase (TGase), significantly inhibited the osmotically induced increases of NCC-Spd and CC-Put levels, respectively, in root tonoplast vesicles from Yumai No. 18 seedlings. Both MGBG and phenanthrolin treatments markedly promoted osmotically induced decreases of tonoplast H+-ATPase and H+-PPase activities and osmotic stress tolerance of seedlings of this cultivar. These results suggest that the NCC-Spd and CC-Put present in tonoplast vesicles isolated from wheat seedling roots might enhance the adaptation of seedlings to osmotic stress via maintenance of tonoplast H+-ATPase and H+-PPase activities.  相似文献   

6.
渗透胁迫对小麦胚芽鞘内多胺的种类、形态和含量的影响   总被引:6,自引:0,他引:6  
用高压液相色谱法研究了豫麦18(抗旱性较强)和扬麦9号(抗旱性较弱)小麦胚芽鞘中三种不同形态的多胺(polyamine,PA):游离态多胺(PA)、高氯酸可溶性结合态多胺(ps结合态PA)和高氯酸不溶性结合态多胺(PIS结合态PA)与渗透胁迫的关系。结果发现:渗透胁迫2d,豫麦18胚芽鞘中的游离态Spd和游离态Spm的含量明显上升,而扬麦9号的游离态Put的上升明显。S-腺苷蛋氨酸脱羧酶(S—AMDC)的抑制剂——甲基乙二醛-双(鸟嘌呤腙)(MGBG)处理豫麦18,明显抑制了渗透胁迫诱导的游离态Spd和游离态Spm的增加,并且加重了渗透胁迫伤害,外源Spd处理扬麦9号明显促进了渗透胁迫诱导的游离态Spd和游离态Spm的增加,并且减缓了渗透胁迫的伤害。渗透胁迫下,豫麦18胚芽鞘中的PS结合态PA和PIS结合态PA的上升幅度都明显大于扬麦9号。菲咯啉(o—Phen)抑制渗透胁迫下PIS结合态PA的合成并加重了渗透胁迫对胚芽鞘的伤害。这些结果表明:小麦胚芽鞘中的游离态Spd、游离态Spm、PS结合态PA和PIS结合态PA的升高有利于增强渗透胁迫抗性。  相似文献   

7.
Winter wheat (Triticum aestivum L.) cultivars Yangmai 9 (water-logging tolerant) and Yumai 34 (water-logging sensitive) were subjected to water-logging (WL) from 7 d after anthesis to determine the responses of photosynthesis and anti-oxidative enzyme activities in flag leaf. At 15 d after treatment (DAT), net photosynthetic rate under WL was only 3.7 and 8.9 μmol(CO2) m−2 s−1 in Yumai 34 and Yangmai 9, respectively, which was much lower than in the control. Ratios of variable to maximum and variable to initial fluorescence, actual photosynthetic efficiency, and photochemical quenching were much lower, while initial fluorescence and non-photochemical quenching were much higher under WL than in control, indicating damage to photosystem 2. WL decreased activities of superoxide dismutase and catalase in both cultivars, and activity of peroxidase (POD) in Yumai 34, while POD activity in Yangmai 9 was mostly increased. The obvious decrease in the amount of post-anthesis accumulated dry matter, which was redistributed to grains, also contributed to the grain yield loss under WL.  相似文献   

8.
水分胁迫对小麦幼苗叶片多胺含量的影响   总被引:9,自引:0,他引:9  
水分胁迫下小麦幼苗叶片多胺含量变化的研究表明,聚乙二醇(PEG)的渗透胁迫明显提高了抗旱性强的周麦系列幼苗叶片游离态Put、Spd和Spm的含量和抗旱性弱的温麦6号的Put含量。外源Spd显著提高了水分胁迫下温麦6号的Spd的含量,对其抗性也有所改善。外源MGBG(Spd和Spm生物合成抑制剂)可提高水分胁迫下周麦12号Put的含量,但降低了Spd和Spm的含量和幼苗的抗性。  相似文献   

9.
淹水对两种甜樱桃砧木根系无氧呼吸酶及发酵产物的影响   总被引:1,自引:0,他引:1  
以美早/东北山樱桃、美早/马哈利为试材,研究了淹水过程中两种甜樱桃砧木生长根、褐色木质根中无氧呼吸酶——丙酮酸脱羧酶(PDC)、乙醇脱氢酶(ADH)和乳酸脱氢酶(LDH)活性及褐色木质根的发酵产物——乙醛、乙醇和乳酸含量变化,结果表明:两类根系PDC、LDH活性均呈先升后降趋势,ADH活性变化在生长根中亦先升后降,而在褐色木质根中为上升趋势,三种酶活性变化幅度表现为生长根大于褐色木质根;美早/东北山樱桃两类根系中ADH和LDH活性增加幅度大于美早/马哈利,PDC则相反;两种砧木褐色木质根乙醛、乙醇含量呈升高趋势,乳酸含量先升后降;最终美早/东北山樱桃褐色木质根中乙醛含量低于美早/马哈利,乙醇含量则相反,而乳酸含量前者较早达峰值且高于后者峰值。  相似文献   

10.
采用1/2 Hoagland营养液培养,研究了低氧胁迫下24-表油菜素内酯(EBR)对黄瓜幼苗叶片光合特性及多胺含量的影响.结果表明:低氧胁迫下黄瓜幼苗的净光合速率(Pn)、气孔导度(gs)、蒸腾速率(Tr)、胞间CO2浓度(Ci)显著下降,而叶绿素含量显著提高,幼苗生长受抑;低氧胁迫显著提高了黄瓜幼苗叶片的腐胺(Put)、亚精胺(Spd)、精胺(Spm)、多胺(PAs)含量和Put/PAs,但降低了(Spd+Spm) /Put.低氧胁迫下,外源EBR不仅显著提高了黄瓜幼苗的Pn、gs、Tr及叶绿素含量,也显著提高了黄瓜幼苗叶片的游离态Spm、结合态Spd、Spm及束缚态Put、Spd、Spm含量,促进了PAs的进一步积累,且降低了Put/PAs,提高了(Spd+Spm)/Put.可见,外源EBR调节了黄瓜幼苗内源多胺含量及形态的变化,维持了较高的光合性能,促进了叶面积和干物质量的显著增加,缓解了低氧胁迫对黄瓜幼苗的伤害.  相似文献   

11.
Spring wheat plants (Triticum aestivum L. ) at 4-leaf stage were fumigated with 03 (0. 796± 0.04 mg/m3) in open-top chambes. The changes and regulation of stress ethylene production and polyamine metabolism in leaves were emphatically investigated. The results revealed that the stress ethylene production in leaves exposed to 03 increased at first and declined afterwards; and could be inhibited by COC12. During the initial stage of 03 stress, the activity of arginine decarboxylase (ADC) increased, but with the augment of leaf injury caused by 03, the ADC activity was correspondingly retarded. After leaves were sprayed with p-chloromercuri benzoie acid (PCMB), the ADC activity was inhibited and putamine content was reduced. However the Spd and Spm content rose slightly. After leaves were sprayed with CoC12, the ADC activity was not significantly altered, whereas the content of Spd and Spm accumulated greatly. Moreover, the high concentration of Spd and Spm maintained for a long time so as the leaf injury from 03 stress became less serious. These results indicate that the potyamine content can be accumulated by inhibiting stress ethylene production. The high concentration of Spd and Spm plays a major role in protection against 03 injury. Change of polyamine content in leaves is an adaptive regulatory mechanism against 03 stress.  相似文献   

12.
The effect of anaerobiosis of wheat seedling roots during 6 consecutive days on contents of ethanol, lactate and glucose in roots and shoots and on the exudation of ethanol from roots to the medium was examined. Activities of alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) were determined. After 36 h of anaerobiosis the concentration of ethanol in roots increased temporarily about 6 times and after 6 days it decreased to the level of control plants. The exudation of ethanol from roots to the medium showed similar pattern. The content of lactate was unaffected by anaerobiosis. In contrast, the content of glucose in roots of seedlings increased already after 1 day of anaerobiosis about 2 times and this higher level of glucose was noticed during consecutive 5 days. Anaerobiosis of roots caused an increase in the activity of ADH in both roots and shoots but the increase was not related to the content of ethanol in tissues, or exudated to the medium. The activity of LDH was unaffected by this factor. The results are discussed in relation to the limitation of energy supply of plants grown under root anaerobiosis.  相似文献   

13.
 以抗旱性不同的两个小麦品种(‘晋麦33’和‘温麦8’)(Triticum aestivum cv. Jinmai 33 and Wenmai 8)为材料,研究了干旱胁迫下多胺含量和多胺氧化酶活性的变化。结果表明:旱过程中,幼苗根、叶中腐胺(Put)、亚精胺(Spd)、精胺(Spm)3种多胺含量和多胺氧化酶(PAO)活性先迅速升高,而后下降。与抗旱性弱的‘晋麦33’相比,抗旱性强的品种‘温麦8’幼苗根、叶中Spd、Spm 含量初期升高幅度大,之后下降速率减慢;PAO活性的变化与之相反,‘晋麦33’的PAO活性提高的幅度大于‘温麦8号’。多胺含量和PAO活性在小麦幼苗的根与叶之间呈极显著正相关。干旱初期,小麦根、叶中多胺迅速积累可能是干旱胁迫反应的一个信号,随后较高的Spd、Spm 水平有利于增强小麦幼苗的抗旱性。  相似文献   

14.
用营养液水培,研究了根际低氧胁迫下24-表油菜素内酯(EBR)对2个抗低氧能力不同的黄瓜品种根系中抗氧化系统及无氧呼吸酶活性的影响。结果表明,在低氧胁迫下,EBR处理显著提高了低氧胁迫下2品种黄瓜幼苗根系SOD、POD及ADH活性,降低了O2-·、H2O2和MDA含量、LDH活性及‘中农八号’根系PDC活性,而对‘绿霸春四号’根系PDC及2个品种CAT活性无明显影响,表明外源EBR处理通过促进低氧胁迫下根系中抗氧化酶和ADH活性的提高,降低LDH活性及ROS含量,增强植株抗低氧胁迫的能力。  相似文献   

15.
Seedlings of lupine (Lupinus luteus L. cv. Juno) were exposed for up to 96 hours to 1 to 2 kPa partial pressure oxygen (hypoxic treatment) and activities of alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH) and their isoform profiles were determined. Roots of lupine seedlings were grown in a nitrogen flushed nutrient solution while their shoots were in air. Prolonged hypoxia led to a reduction of root elongation. This was accompanied by reduced increase in dry weight suggesting that insufficient carbohydrate supply was the cause of retarded growth of lupine roots. Hypoxically treated roots showed induction of ADH and LDH acivities. The maximum increase in LDH activity was low (2-fold) in contrast to ADH activity, which increased up to 7-fold. Hypoxic treatment of roots did not affect the activities of ADH and LDH in hypocotyls and cotyledons. Analysis of ADH and LDH activity gels indicated in roots 1 and 2 isoforms, respectively. The level of isozymes of both enzymes increased in roots upon exposure to hypoxic stress. Differences in isoenzymatic spectrum of ADH and LDH between roots, hypocotyls and cotyledons indicate organ specificity of isozymes of both enzymes. The importance of alcohol and lactate fermentation in roots to cope with hypoxic stress is discussed.  相似文献   

16.
王红霞  胡金朝  施国新  杨海燕  李阳  赵娟  许晔 《生态学报》2010,30(10):2784-2792
采用营养液水培的方法,研究了外源亚精胺(Spd)和精胺(Spm)对Cu胁迫下水鳖叶片3种形态多胺(PAs)、抗氧化系统及营养元素的影响。结果表明:(1)Cu胁迫使水鳖叶片腐胺(Put)急剧积累,Spd和Spm明显下降,从而使(Spd+Spm)/Put比值也随之下降。外源Spd和Spm显著或极显著逆转Cu诱导的PAs变化,抑制Put的积累,缓解Spd和Spm的下降,从而提高了(Spd+Spm)/Put比值。(2)外源Spd和Spm抑制了Cu胁迫诱导的多胺氧化酶(PAO)的增加,缓解了二胺氧化酶(DAO)的下降。(3)与单一Cu胁迫相比,Spd和Spm显著或极显著提高了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性和抗坏血酸(AsA)、谷胱甘肽(GSH)、游离脯氨酸(Pro)含量,从而降低了超氧阴离子(O2.-)产生速率和过氧化氢(H2O2)含量,极显著降低了丙二醛(MDA)含量,缓解了Cu诱导的氧化胁迫。(4)外源Spd和Spm显著或极显著缓解了Cu胁迫下矿质营养元素吸收平衡的紊乱。以上结果均说明了外施Spd和Spm可增加水鳖对Cu胁迫的耐受性。  相似文献   

17.
NaCl胁迫对菜用大豆种子多胺代谢的影响   总被引:1,自引:0,他引:1  
Wang C  Zhu YL  Yang LF  Yang HS 《应用生态学报》2011,22(11):2883-2893
采用蛭石栽培,在100 mmol·L-1NaCl胁迫下,对耐盐性不同的两个品种菜用大豆种子的丙二醛(MDA)含量和多胺(PAs)代谢进行了研究.结果表明:NaCl胁迫显著增加了菜用大豆种子的MDA含量,但耐盐品种‘绿领特早’(LL)的增幅低于盐敏感品种‘理想高产95-1’(LX).与LX相比,LL种子在整个NaCl胁迫期间均维持了相对较高的游离态精胺(Spm)、结合态Spm、结合态亚精胺(Spd)、束缚态Spd和束缚态腐胺(Put)含量,较高的(Spd +Spm )/Put 和(cPAs+bPAs)/fPAs值及较低的Put/PAs值,在胁迫中、后期(9~15 d)维持了相对较高的游离态Spd含量;胁迫期间,LL的精胺酸脱羧酶(ADC)长时期(6~15 d)保持相对较高的活性,而多胺氧化酶(PAO)则长时期(6~15 d)维持相对较低的活性.综上,LL具有较强的多胺合成能力及较强的Put向Spd和Spm以及游离态多胺向结合态和束缚态多胺转化的能力,进而有效抑制了细胞的膜脂过氧化,这可能是其耐盐性较强的重要原因之一.  相似文献   

18.
以‘新泰密刺’黄瓜为材料,采用营养液栽培,外源使用Ca2+、钙离子通道抑制剂La3+与钙调素拮抗剂三氟拉嗪(TFP),研究了钙对根际低氧胁迫下黄瓜幼苗根系ADH、LDH活性和同工酶的影响。结果表明,低氧胁迫诱导产生了新的ADH和LDH同工酶条带。低氧胁迫下,ADH、LDH同工酶丰度和活性显著高于对照;外源增施Ca2+有利于Ca2+信号的形成和逆境信号的传递,营养液添加CaCl2缓解了低氧胁迫对黄瓜植株的伤害,ADH、LDH同工酶丰度和活性接近对照水平;La3+抑制Ca2+的吸收和体内运输,营养液添加LaCl3显著抑制了ADH和LDH同工酶丰度和酶活性,黄瓜幼苗植株生长受到抑制,生物量显著低于低氧处理,表明La3+加重了低氧胁迫对黄瓜幼苗植株的伤害;TFP抑制了低氧逆境胁迫信号的传递,营养液添加TFP抑制了ADH和LDH同工酶丰度和酶活性,ADH和LDH同工酶丰度和酶活性显著低于低氧处理,黄瓜幼苗植株生长受到抑制,黄瓜植株的低氧耐性降低。暗示外源Ca2+参与了低氧胁迫下黄瓜根系无氧呼吸代谢的调节,增强了Ca2+向植物体内的运输,缓解了低氧胁迫对黄瓜幼苗植株的伤害,增强了植物对低氧的耐性。  相似文献   

19.
以两个蛋白质含量不同的小麦品种豫麦34(高蛋白)和扬麦9号(低蛋白)为材料,研究不同温光条件对小麦灌浆期旗叶光合特性和衰老的影响.结果表明:高温、弱光处理显著降低了小麦旗叶净光合速率(Pn)及叶绿素荧光参数Fv/Fm和ΦPSⅡ,但高温和弱光对小麦旗叶造成伤害的生理机制不同,高温主要降低了叶绿素含量(SPAD值)和Pn,灌浆后期Pn下降幅度达50%;而弱光主要降低了叶绿素荧光参数,抑制了光合系统PSⅡ的活性.高温使小麦旗叶丙二醛(MDA)含量升高,超氧化物歧化酶(SOD)活性和可溶性蛋白质含量下降,加速了植株衰老;而弱光下SOD活性较高,小麦衰老进程较高温缓慢,植株对弱光的耐受性较强.豫麦34对高温、弱光逆境的反应比扬麦9号敏感.  相似文献   

20.
200 mmol/L的NaCl胁迫8 d大麦幼苗叶片和根系中的三种形态多胺都有不同程度地下降,其中游离态多胺含量的下降幅度最大;高氯酸不溶性结合态多胺含量变化较小.根系中PAO的活性先上升后下降,而叶片中PAO的活性先下降后上升.游离态多胺中,亚精胺和精胺(Spd Spm)的含量变化与相应部位PAO的活性变化趋势相反,表明PAO在盐胁迫下可能调节了游离态多胺的含量从而影响高氯酸可溶结合态与高氯酸不溶结合态多胺的含量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号