首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Key message

Molecular analysis of a zeta subfamily GST gene from T. hispida involved in ABA and methyl viologen tolerance in transgenic Arabidopsis and Tamarix.

Abstract

Glutathione S-transferase (GST) genes are important for the improvement of plant abiotic stress tolerance, and our previous study demonstrated that the ThGSTZ1 gene from Tamarix hispida improves plant salt and drought tolerance. To further understand the role of ThGSTZ1 in the response of plants to abscisic acid (ABA) and oxidative stress, three ThGSTZ1-overexpressing transgenic Arabidopsis thaliana lines were analyzed in the current study. The results showed that the transgenic lines exhibited higher biomass accumulation, higher activities of GST and other protective enzymes, and less reactive oxygen species (ROS) and cell damage than wild-type (WT) plants under ABA and methyl viologen (MV) stress. In addition, the analysis of a transgenic T. hispida line transiently expressing ThGSTZ1 confirmed these results. The activities of GST, glutathione peroxidase, and superoxide dismutase were markedly higher in the ThGSTZ1-overexpressing lines compared with the control lines under both ABA and MV treatments, and the transgenic lines also exhibited a lower degree of electrolyte leakage (EL) and a decreased H2O2 content. All these results suggested that ThGSTZ1 can also improve plant ABA and oxidation tolerance by regulating ROS metabolism and that ThGSTZ1 represents an excellent candidate gene for molecular breeding to increase plant stress tolerance.
  相似文献   

2.
3.
To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses. Under drought stress, the transgenic plants maintained higher relative water content (RWC), net photosynthesis, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than wild-type control plants. These results indicate the high tolerance of the transgenic plants to drought stress compared to the WT. The transgenic tobacco lines accumulated less reactive oxygen species (ROS) and exhibited higher antioxidative enzyme activities compared with wild-type (WT) plants under drought stress, which suggested that the overexpression of AsNF-YC8 improves the antioxidant defense system by regulating the activities of these antioxidant enzymes, which in turn protect transgenic lines against drought stress. These results suggest that AsNF-YC8 plays an important role in tolerance to drought and salt stresses.  相似文献   

4.
Peroxiredoxins (Prxs) are ubiquitous thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative Type II Prx (ThPrx1) was identified and characterized from Tamarix hispida. The expression of ThPrx1 is highly induced in response to hydrogen peroxide (H2O2) and methyl viologen (MV) stresses. When expressed ectopically, ThPrx1 showed enhanced tolerance against oxidative stress in yeast and Arabidopsis. In addition, transgenic Arabidopsis plants overexpressing ThPrx1 displayed improved seedling survival rates and increased root growth and fresh weight gain under H2O2 and MV treatments. Moreover, transgenic Arabidopsis plants showed decreased accumulation of H2O2, superoxide (O2??) and malondialdehyde (MDA), increased superoxide dismutase (SOD) activity compared to wild-type (WT) plants under oxidative stress. Moreover, transgenic plants maintained higher photosynthesis efficiency and lower electrolyte leakage rates than that of WT plants under stress conditions. These results clearly indicated that ThPrx1 plays an important role in cellular redox homeostasis under stress conditions, leading to the maintenance of membrane integrity and increased tolerance to oxidative stress.  相似文献   

5.
6.
7.
8.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

9.
The tomato bZIP2-encoding gene was inserted into the Nicotiana benthamiana genome using Agrobacterium-mediated transformation to characterize resistance to oxidative stress and two herbicides, glyphosate and paraquat. We produced transgenic tobacco plants using the LebZIP2 gene, which were then utilized to examine salt stress and herbicide resistance through oxidative mechanisms. Transgenic LebZIP2-overexpressing plants were examined using specific primers for selection marker genes (PCR using genomic DNA) and target genes (RT-PCR). Based on microscopic examination, we observed an increase in leaf thickness and cell number in transgenic plants. The electrolyte leakage of leaves suggested that LebZIP2-overexpressing lines were weak tolerant to NaCl stress and resistant to methyl viologen. During our analysis, transgenic lines were exposed to different herbicides. Transgenic plants showed an increased tolerance based on visual injury, as well as an increased biomass. Based on these results, the LebZIP2 gene may be involved in oxidative stress tolerance and cell development in plants.  相似文献   

10.
11.
12.
Cassava (Manihot esculenta) is an important tropical crop with extraordinary tolerance to drought stress but few reports on it. In this study, MeDREB1D was significantly and positively induced by drought stress. Two allelic variants of the gene named MeDREB1D(R-2) and MeDREB1D(Y-3) were identified. Overexpressing MeDREB1D(R-2) and MeDREB1D(Y-3) in Arabidopsis resulted in stronger tolerance to drought and cold stresses. Under drought stress, transgenic plants had more biomass, higher survival rates and less MDA content than wild-type plants. Under cold stress, transgenic plants also had higher survival rates than wild-type plants. To further characterize the molecular function of MeDREB1D, we conducted an RNA-Seq analysis of transgenic and wild-type Arabidopsis plants. The results showed that the Arabidopsis plants overexpressing MeDREB1D led to changes in downstream genes. Several POD genes, which may play a vital role in drought and cold tolerance, were up-regulated in transgenic plants. In brief, these results suggest that MeDREB1D can simultaneously improve plant tolerance to drought and cold stresses.  相似文献   

13.
Aluminum is one of the most important heavy metals inducing stress during plant growth and development. In this study, transgenic rice (Oryza sativa L., cv. Kitaake) plants expressing the maize C4PEPC and PPDK genes were evaluated for aluminum tolerance. A 4.3 and 19.1 folds increase of PPDK and PEPC activities in transgenic rice produced increases in root exudation of oxalate, malate, and citrate (1.20, 1.41, and 1.65 times, respectively) compared to untransformed (WT) plants. Transgenic rice had enhanced aluminum tolerance compared to WT based on chlorophyll fluorescence and chlorophyll levels. Transgenic plants under aluminum stress also had decreased lipid membrane oxidative damage and higher levels of ROS-scavenging enzyme activity. The PEPC and PPDK genes play an important role in aluminum stress tolerance by increasing the effluxes of organic acids.  相似文献   

14.

Key message

JrGSTTau1 is an important candidate gene for plant chilling tolerance regulation.

Abstract

A tau subfamily glutathione S-transferase (GST) gene from Juglans regia (JrGSTTau1, GeneBank No.: KT351091) was cloned and functionally characterized. JrGSTTau1 was induced by 16, 12, 10, 8, and 6 °C stresses. The transiently transformed J. regia showed much greater GST, glutathione peroxidase (GPX), superoxide dismutase (SOD), and peroxidase (POD) activities and lower H2O2, malondialdehyde (MDA), reactive oxygen species (ROS), and electrolyte leakage (EL) rate than prokII (empty vector control) and RNAi::JrGSTTau1 under cold stress, indicating that JrGSTTau1 may be involved in chilling tolerance. To further confirm the role of JrGSTTau1, JrGSTTau1 was heterologously expressed in tobacco, transgenic Line5, Line9, and Line12 were chosen for analysis. The germinations of WT, Line5, Line9, and Line12 were similar, but the fresh weight, primary root length, and total chlorophyll content (tcc) of the transgenic lines were significantly higher than those of WT under cold stress. When cultivated in soil, the GST and SOD activities of transgenic tobacco were significantly higher than those of WT; however, the MDA and H2O2 contents of WT were on average 1.47- and 1.96-fold higher than those of Line5, Line9, and Line12 under 16 °C. The DAB, Evans blue, and PI staining further confirmed these results. Furthermore, the abundances of NtGST, MnSOD, NtMAPK9, and CDPK15 were elevated in 35S::JrGSTTau1 tobacco compared with WT. These results suggested that JrGSTTau1 improves the plant chilling tolerance involved in protecting enzymes, ROS scavenging, and stress-related genes, indicating that JrGSTTau1 is a candidate gene for the potential application in molecular breeding to enhance plant abiotic stress tolerance.
  相似文献   

15.
16.
Reactive oxygen species (ROS) play key roles in plants and are regulated by several ROS-scavenging enzymes. Ascorbate peroxidase (APX), which catalyzes the reduction of hydrogen peroxide to water, a vital part of ROS formation, plays a significant role in higher plants. In this study, a cytosolic APX gene from Populus tomentosa, named PcAPX, was identified and characterized. Recombinant PcAPX had a calculated mass of 33.24 kD and showed high activity towards ascorbic acid (ASA) and hydrogen peroxide (H2O2). Real-time PCR analysis showed that APX mRNA expression levels were higher in leaves than roots or stems of P. tomentosa. Compared with wild-type, transgenic tobacco plants overexpressing PcAPX showed no significant difference in morphology under normal conditions. However, the transgenic plants were more resistant to drought, salt and oxidative stress conditions, as shown by decreased levels of malondialdehyde and increased levels of chlorophyll. Moreover, decreased H2O2 levels, increased ASA consumption, an increase in the NADP to NADPH ratio, and higher APX activity in the transgenic plants suggested an increased ability to eliminate ROS. These data suggest that PcAPX overexpression in transgenic tobacco plants can enhance tolerance to drought, salt and oxidative stress. Therefore, APX has a crucial role in abiotic stress tolerance in plants.  相似文献   

17.
18.
MiR408 is a conserved miRNA family in plants. Although AtmiR408 is generally regarded as participating in stress responses, it still remains obscure whether OsmiR408 modulates tolerance to environmental stress. In the current study, expression of Pre-OsmiR408 and OsmiR408 was found to be induced by cold stress, but repressed by drought stress in the rice cultivar “Kongyu 131”. By comparing the wild type and OsmiR408 transgenic lines, we found that OsmiR408 overexpression conferred enhanced cold tolerance at both the early seedling stage and the young seedling stage. On the other hand, the OsmiR408 transgenic lines exhibited decreased drought tolerance, which is further verified by greater water loss. We also predicted the putative target genes of OsmiR408 and verified the decreased expression of seven targets in OsmiR408 transgenic lines, including four phytocyanins and three atypical target genes. Among them, Os09g29390, a phytocyanin gene, and Os01g53880, an auxin responsive Aux/IAA gene, were down-regulated by cold treatment, which is opposite to the cold-induced expression of OsmiR408. Taken together, our results suggest opposite roles of OsmiR408 in plant responses to cold and drought stresses.  相似文献   

19.
20.
Ascorbate (AsA) is an important antioxidant that can scavenge reactive oxygen species to protect plant cells against oxidative stress. Guanosine 5'-diphosphate (GDP)-L-galactose phosphorylase (GGP) is a key enzyme in the AsA biosynthetic pathway. To investigate the functions of GGP in AsA synthesis and oxidative stress tolerance in tomato, antisense lines with a reduced expression of SlGGP were obtained. Photobleaching after treatment of leaf disks with methyl viologen was more severe in transgenic lines compared to wild type (WT) plants. Moreover, compared with the WT plants, the transgenic plants showed a higher content of hydrogen peroxide, superoxide anion, malondialdehyde, as well as ion leakage, but a lower content of AsA and chlorophylls, ascorbate peroxidase activity, net photosynthetic rate, and maximal photochemical efficiency of photosystem II. Results of real-time quantitative polymerase chain reaction show that suppression of the SlGGP gene in the transgenic plants reduced their oxidative stress tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号