首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Strawberry is one of the most economically important fruit crops in the world. Cytokinins (CKs) play a critical role in plant growth and development, as well as the stress response, and the level of CKs in plants is regulated by synthesis and degradation pathways. The key synthetic enzymes of CKs are isopentenyl transferases (IPTs) and LONELY GUYS (LOGs). We surveyed the strawberry genome and identified seven FvIPT genes and nine FvLOG genes. We analyzed gene structures, conserved domains, and their phylogenetic relationships with rice and Arabidopsis. The isoelectric points and glycosylation sites of the proteins were predicted. We also analyzed tissue- or organ-specific expression patterns of the FvIPT and FvLOG genes. The FvIPT and FvLOG genes showed different expression profiles in different organs. Most FvIPT and FvLOG genes were down-regulated in response to osmotic stress, high-temperature treatment, and exogenous abscisic acid (ABA) application, suggesting possible roles of these genes in the plants’ resistance to abiotic stresses. In addition, we found that the results of bioinformatics analyses to identify cis-regulatory elements may not be consistent with experimental expression data; thus, computer-predicted putative cis-elements need to be confirmed by experiments. Our systematic analyses of the FvIPT and FvLOG families provide a foundation for characterizing the function of these genes in the regulation of growth, development, and stress tolerance in Fragaria vesca, as well as a reference for improving stress tolerance by manipulating CK content.  相似文献   

9.
10.
The chromate ion transporter (CHR) superfamily includes proteins that confer chromate resistance by extruding toxic chromate ions from cytoplasm. Burkholderia xenovorans strain LB400 encodes six CHR homologues in its multireplicon genome and has been reported as highly chromate-resistant. The objective of this work was to analyze the involvement of chr redundant genes in chromate resistance by LB400. It was found that B. xenovorans plant rhizosphere strains lacking the megaplasmid are chromate-sensitive, suggesting that the chr gene present in this replicon is responsible for the chromate-resistance phenotype of the LB400 strain. Transformation of a chromate-sensitive B. xenovorans strain with each of the six cloned LB400 chr genes showed that genes from ‘adaptive replicons’ (chrA1b and chr1NCb from chromosome 2 and chrA2 from the megaplasmid) conferred higher chromate resistance levels than chr genes from ‘central’ chromosome 1 (chrA1a, chrA6, and chr1NCa). An LB400 insertion mutant affected in the chrA2 gene displayed a chromate-sensitive phenotype, which was fully reverted by transferring the chrA2 wild-type gene, and partially reverted by chrA1b or chr1NCb genes. These data indicate that chr genes from adaptive replicons, mainly chrA2 from the megaplasmid, are responsible for the B. xenovorans LB400 chromate-resistance phenotype.  相似文献   

11.
12.
Proteins with glycine-rich repeats have been identified in plants, mammalians, fungi, and bacteria. Plant glycine-rich proteins have been associated to stress response. Previously, we reported that the Arabidopsis thaliana AtGRDP2 gene, which encodes a protein with a glycine-rich domain, plays a role in growth and development of A. thaliana and Lactuca sativa. In this study, we generated composite Phaseolus vulgaris plants that overexpress the AtGRDP2 gene in hairy roots generated by Agrobacterium rhizogenes. We observed that hairy roots harboring the AtGRDP2 gene developed more abundant and faster-growing roots than control hairy roots generated with the wild type A. rhizogenes. In addition, composite common bean plants overexpressing the AtGRDP2 gene in roots were more tolerant to salt stress showing increments in their fresh and dry weight. Our data further support the role of plant GRDP genes in development and stress response.  相似文献   

13.
Real time quantitative PCR (qPCR) is widely used in gene expression analysis for its accuracy and sensitivity. Reference genes serving as endogenous controls are necessary for gene normalization. In order to select an appropriate reference gene to normalize gene expression in Casuarina equisetifolia under salt stress, 10 potential reference genes were evaluated using real time qPCR in the leaves and roots of plants grown under different NaCl concentrations and treatment durations. GeNorm, NormFinder, and BestKeeper analyses reveal that elongation factor 1-alpha (EF1α) and ubiquitin-conjugating enzyme E2 (UBC) were the most appropriate reference genes for real time qPCR under salt stress. However, β-tubulin (βTUB) and actin 7, which were widely used as reference genes in other plant species, were not always stably expressed. The combination of EF1α, UBC, uncharacterized protein 2, DNAJ homolog subfamily A member 2, and glyceraldehyde-3-phosphate dehydrogenase should be ideal reference genes for normalizing gene expression data in all samples under salt stress. It indicates the need for reference gene selection for normalizing gene expression in C. equisetifolia. In addition, the suitability of reference genes selected was confirmed by validating the expression of WRKY29-like and expansin-like B1. The results enable analysis of salt response mechanism and gene expression in C. equisetifolia.  相似文献   

14.
15.
FK506-binding proteins (FKBPs), which belong to the peptidyl-prolyl cis/trans isomerase superfamily, are involved in plant response to abiotic stresses. A number of FKBP family genes have been isolated in plants, but little has been reported of FKBP genes in maize. In this study, a drought-induced FKBP gene, ZmFKBP20-1, was isolated from maize and was characterized for its role in stress responses using gene expression, protein subcellular localization, transformation in Arabidopsis, expression patterns of the stress-responsive genes, and physiological parameter analysis. During drought and salt stresses, ZmFKBP20-1 transgenic Arabidopsis plants exhibited enhanced tolerance, which was concomitant with the altered expression of stress/ABA-responsive genes, such as COR15a, COR47, ERD10, RD22, KIN1, ABI1, and ABI2. The resistance characteristics of ZmFKBP20-1 overexpression were associated with a significant increase in survival rate. These results suggested that ZmFKBP20-1 plays a positive role in drought and salt stress responses in Arabidopsis and provided new insights into the mechanisms of FKBP in response to abiotic stresses in plants.  相似文献   

16.
17.
Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled enzyme located at the core of plant carbohydrate metabolism. Plant PEPCs belong to a small multigene family encoding several plant-type PEPC genes, along with at least one distantly related bacterial-type PEPC gene. The PEPC genes have been intensively studied in Arabidopsis, but not in peanut (Arachis hypogaea L.). Previously, we isolated five PEPC genes (AhPEPC1, AhPEPC2, AhPEPC3, AhPEPC4 and AhPEPC5) from peanut. Here, due to the sequencing of the peanut genome, we analyzed the complexity of its PEPC gene family, including phylogenetic relationships, gene structure and chromosome mapping. The results showed that AhPEPC1, AhPEPC2, AhPEPC3 and AhPEPC4 encoded typical plant-type enzymes, while AhPEPC5 was a bacterial-type PEPC. The recombinant proteins of these genes were expressed in Escherichia coli, and the calculated molecular weights of the recombinant proteins were 110.8 kD (AhPEPC1), 110.7 kD (AhPEPC2), 110.3 kD (AhPEPC3), 110.8 kD (AhPEPC4), and 116.4 kD (AhPEPC5). The expression patterns of AhPEPC1-5 were analyzed under cold, salt and drought conditions. Our results indicated that the expression of AhPEPC3 was rapidly and substantially enhanced under abiotic stress, whereas the expression of AhPEPC1 and AhPEPC2 was slightly enhanced under certain stress conditions. Some genes were down-regulated in leaves under stress: AhPEPC1, AhPEPC4 and AhPEPC5 under salt stress and AhPEPC4 and AhPEPC5 under drought stress. These results suggest that peanut PEPC proteins may differ in their functions during acclimation to abiotic stresses.  相似文献   

18.
19.
20.
The appropriate reference genes are crucial for normalization of the target gene expression in qRT-PCR analysis. Broomcorn millet (Panicum miliaceum L.) is one of the most important crops in drought areas worldwide, while the systematical investigation and evaluation of reference genes has not been investigated in this species up to now. Here, 9 commonly used reference genes were selected to detect their expressional stability in different tissues and under different stresses in broomcorn millet. ΔCt, BestKeeper, NormFinder and GeNorm approaches were used to evaluate the potentiality of these candidate genes as the reference gene in broomcorn millet. Taken together, results found that 18S and GAPDH were the suitable reference genes for gene expression normalization in different tissues and under stress treatment in broomcorn millet. This was the first study to investigate the reference genes for qRT-PCR analysis in broomcorn millet, which will facilitate the gene expression studies and also accelerate revealing the molecular mechanism of well-adapted extreme climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号