首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pomegranate (Punica granatum L.) is a temperate climate species requiring high temperatures for proper and complete ripening. The species is consumed as a fresh fruit, but also can be used to obtain transformed products such as juice, jam, or preserve. It is a fruit tree species with a high degree of diversity, but the identification of cultivars by morphological traits is very difficult. Thus, the characterization of genotypes through molecular markers is of great value for germplasm preservation, genetic studies, and plant breeding. The number of simple sequence repeat (SSR or microsatellite) markers developed for this genus is too low, so in this work we report the development of 117 microsatellite loci from a CT/AG-enriched pomegranate genomic library. In order to check their utility, eleven accessions were analyzed. The polymorphism information content (PIC) value across all loci ranged between 0.09 and 0.71, with an average of 0.37. These markers will facilitate genetic diversity studies, mapping, and genotyping of pomegranate.  相似文献   

2.
The dwarf pomegranate (Punica granatum L. var. nana) is a dwarf ornamental plant that has the potential to be the model plant of perennial fruit trees because it bears fruits within 1 year of seedling. We established an Agrobacterium-mediated transformation system for the dwarf pomegranate. Adventitious shoots regenerated from leaf segments were inoculated with A. tumefaciens strain EHA105 harboring the binary vector pBin19-sgfp, which contains neomycin phosphotransferase (npt II) and green fluorescent protein (gfp) gene as a selectable and visual marker, respectively. After co-cultivation, the inoculated adventitious shoots were cut into small pieces to induce regeneration, and then selected on MS medium supplemented with 0.5 μM α-naphthaleneacetic acid (NAA), 5 μM N6-benzyladenine (BA), 0.3% gellan gum, 50 mg/l kanamycin, and 10 mg/l meropenem. Putative transformed shoots were regenerated after 6–8 months of selection. PCR and PCR-Southern blot analysis revealed the integration of the transgene into the plant genome. Transformants bloomed and bore fruits within 3 months of being potted, and the inheritance of the transgene was confirmed in T1 generations. The advantage of the transformation of dwarf pomegranate was shown to be the high transformation rate. The establishment of this transformation system is invaluable for investigating fruit-tree-specific phenomena.  相似文献   

3.
When cotyledonary explants, excised from in vitro germinated seedlings, of pomegranate (Punica granatum L.) were incubated on solid Murashige and Skoog (1962) medium supplemented with 21 μM naptheleneacetic acid (NAA) and 9 μM 6-benzyladenine (BA), 80% of explants developed callus. A high frequency of shoot organogensis was obtained when explants were incubated on MS medium supplemented with 8 μM BA, 6 μM NAA, and 6 μM giberrellic acid (GA3). However, adding 24 μM silver nitrate (AgNO3) to this medium markedly enhanced shoot regeneration frequency (63%) and mean number of shoots per explant (11.26) and length of shoots (2.22 cm). Highest frequency of in vitro rooting, mean number of roots/shoot (4.32), and mean root length (2.71 cm) were obtained when regenerated shoots were transferred to half-strength MS medium supplemented with 0.02% activated charcoal. Well-rooted plantlets were acclimatized, and then transferred to soil medium. Moreover, when zygotic embryos of P. granatum, excised from seeds collected at 16 weeks following full bloom, were incubated on MS medium containing 30 g l−1 sucrose, 15% coconut water, 21 μM NAA, and 9 μM BA, they developed the highest frequency of embryogenic callus, clumps with globular embryos, and mean number of both globular and heart-shaped embryos per callus clump. Subjecting zygotic embryo explants to six-week dark incubation period was essential for embryogenic callus induction, and these were subsequently transferred to 16 h photoperiod for further growth and development of somatic embryos. Germination of somatic embryos was observed when these were transferred to MS medium was supplemented with 60 g l−1 sucrose.  相似文献   

4.
The physiological and antioxidant response to salinity was studied in pomegranate (Punica granatum L.) by exposing in vitro growing shoots of the Italian variety Profeta Partanna to 125 or 250 mM NaCl for 10 and 20 days. 250 mM NaCl significantly reduced shoot length, leaf area and water content of the shoots, regardless the length of the salt treatment,with respect to the control and to the 125 mM NaCl treatment. After 20 days the shoots treated with 250 mM NaCl also showed a significant reduction in relative growth rate (RGR) together with marked necroses and abscission of the oldest leaves. Salt treatments significantly decreased the contents of chlorophylls and carotenoids in both exposure times, depending on NaCl concentration. Proline, total phenolic compounds and ellagic acid did not increase or even decrease with the salt treatments. The levels of lipid peroxidation decreased, ascorbate peroxidase (APX) activity significantly increased in both treatment times and concentrations, while guaiacol peroxidase (G-POD) activity significantly increased in shoots treated with 250 mM NaCl for 20 days suggesting the rapid involvement of APX in controlling the oxidative stress in this species, even at low salt concentrations, and a delayed complementary role of G-POD.  相似文献   

5.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

6.
The transfer of desired traits from related wild diploid Coffea species into the cultivated allotetraploid C. arabica is essential in coffee breeding to develop pest/disease-resistant cultivars. The present work is an attempt to gain insights into alien introgression in C. arabica. An F2 population derived from a cross between T5296 and Et6 was analysed with simple sequence repeat (SSR; microsatellite) and amplified fragment length polymorphism (AFLP) molecular markers. The T5296 is a derivative of an interspecific hybrid introgressed by the diploid C. canephora species and Et6 is a wild Ethiopian accession of C. arabica. The origin of the revealed polymorphism was determined by comparisons using representative accessions from C. arabica and its two diploid parental species, C. eugenioides and C. canephora. The number and mode of inheritance of canephora-introgressed segments were investigated, as well as their sub-genome localisation and rate of recombination. The results suggested that the transfer of desirable genes into C. arabica from C. canephora is not limited by the ploidy level differences or the suppression of recombination between the different genomes.  相似文献   

7.
As a major contributor to the flower market, Gypsophila paniculata is an important target for the breeding of new varieties. However, gypsophila breeding is strongly hampered by the sterility of this species’ genotypes and the lack of a genetic-transformation procedure for this genus. Here we describe the establishment of a transformation procedure for gypsophila (Gypsophila paniculata L.) based on Agrobacterium inoculation of highly regenerative stem segments. The transformation procedure employs stem explants derived from GA3-pretreated mother plants and a two-step selection scheme. The GA3 treatment was crucial for obtaining high gene-transfer frequencies (75–90% GUS-expressing explants out of total inoculated explants), as shown using three different gypsophila varieties. An overall transformation efficiency of five GUS-expressing shoots per 100 stem explants was demonstrated for cv. Arbel. The applicability of the transformation system to gypsophila was further reinforced by the generation of transgenic plants expressing Agrobacterium rhizogenes rolC driven by a CaMV 35S promoter. Transgenic gypsophila plantlets exhibited extensive rooting and branching, traits that could be beneficial to the ornamental industry.  相似文献   

8.
Transgenic cotton with an increased level of phytase activity was generated from cotton (Gossypium hirsutum L.) cv. ND94-7 by subjecting shoot-apex explants to particle bombardment. These tissues were transformed with plasmid pC-KSA2300 carrying a selectable marker (for kanamycin) and a target gene (phytase, or phyA, from Aspergillus ficuum). Primary plants were regenerated in a medium containing 75 mg l−1 kanamycin. Of 1,534 shoot apices, 52 (3.4%) survived on this selection medium. Southern and Northern blot analyses confirmed that phyA was stably integrated and expressed in those primary transgenics. The progenies of the primary transgenic plants were found to have a 3.1- to 3.2-fold increase in root extracellular phytase activity, resulting in improved phosphorus (P) nutrition. Growth also was enhanced when they were supplied with phytate, and their P content was equivalent to that of wildtype plants supplied with inorganic phosphate. These results demonstrate that the expression of phyA in cotton plants improves their ability to utilize organic P in response to a deficiency.  相似文献   

9.
Agrobacterium tumefaciens-mediated transformation system was established for Hybanthus enneaspermus using leaf explants with the strain LBA4404 harbouring pCAMBIA 2301 carrying the nptII and gusA genes. Sensitivity of leaf explants to kanamycin was standardized (100 mg/l) for screening the transgenic plants. Transformation parameters (OD, virulence inducer, infection time, co-cultivation period, bactericidal antibiotics, etc.) influencing the gene transfer and integration were assessed in the present investigation. Fourteen-day pre-cultured explants were subjected with Agrobacterium strain LBA4404. Optimized parameters such as culture density of 0.5 OD600, infection time of 6 min, AS concentration of 150 µM with 3 days co-cultivation revealed maximum transformation efficiency based on GUS expression assay. The presence of gusA in transgenics was confirmed by polymerase chain reaction and Southern blotting analysis. The present transformation experiment yielded 20 shoots/explant with higher transformation efficiency (28 %). The protocol could be used to introduce genes for trait improvement as well as for altering metabolic pathway for secondary metabolites production.  相似文献   

10.
Sapium sebiferum (L.) Roxb is one of the most important oil trees in China. Diacylglycerol acyltransferases (DGATs) esterify sn-1, 2-diacylglycerol with a long-chain fatty acyl-CoA, the last step and the rate-limiting step of triacylglycerol (TAG) biosynthesis in prokaryotic and eukaryotic organisms. At least 74 DGAT2 sequences from 61 organisms have been identified, but the SsDGAT2 gene had not been reported to date. To clarify the function of SsDGAT2, we cloned the CDS (rapid amplification of cDNA end) of SsDGAT2 by RACE technology. The full-length CDS of SsDGAT2 contains 1011 bp and encodes a protein of 336 amino acids. Recombinant SsDGAT2 restored TAG biosynthesis to the yeast strain Saccharomyces cerevisiae H1246 TAG-deficient mutant and preferentially incorporated unsaturated C18 fatty acids into lipids. To investigate the biotechnological potential of SsDGAT2, it was expressed under the control of the 35S promoter in Arabidopsis Col-4. The oleic acid content increased by 50 % in transgenic plants relative to the control. The results indicated that most of the oleic acid increase was at the expense of linolenic acid (18:3) content, which suggests that high-oleic-acid-content seeds can be created by the overexpression of SsDGAT2 in S. sebiferum (L.) Roxb.  相似文献   

11.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

12.
13.
Transient expression studies using blueberry leaf explants and monitored by -glucuronidase (GUS) assays indicated Agrobacterium tumefaciens strain EHA105 was more effective than LBA4404 or GV3101; and the use of acetosyringone (AS) at 100 M for inoculation and 6 days co-cultivation was optimum compared to 2, 4, 8, 10 or 12 days. Subsequently, explants of the cultivars Aurora, Bluecrop, Brigitta, and Legacy were inoculated with strain EHA105 containing the binary vector pBISN1 with the neomycin phosphotransferase gene (nptII) and an intron-interrupted GUS gene directed by the chimeric super promoter (Aocs)3AmasPmas. Co-cultivation was for 6 days on modified woody plant medium (WPM) plus 100 M AS. Explants were then placed on modified WPM supplemented with 1.0 mg l–1 thidiazuron, 0.5 mg l–1 -naphthaleneacetic, 10 mg l–1 kanamycin (Km), and 250 mg l–1 cefotaxime. Selection for Km-resistant shoots was carried out in the dark for 2 weeks followed by culture in the light at 30 E m–2 s–1 at 25°C. After 12 weeks, selected shoots that were both Km resistant and GUS positive were obtained from 15.3% of the inoculated leaf explants of cultivar Aurora. Sixty-eight independent clones derived from such shoots all tested positive by the polymerase chain reaction using a nptII primer. Eight of eight among these 68 clones tested positive by Southern hybridization using a gusA gene derived probe. The transformation protocol also yielded Km-resistant, GUS-positive shoots that were also PCR positive at frequencies of 5.0% for Bluecrop, 10.0% for Brigitta and 5.6% for Legacy.  相似文献   

14.
15.
Liu T  Zhang J  Wang M  Wang Z  Li G  Qu L  Wang G 《Plant cell reports》2007,26(12):2091-2099
DWF4 encodes a rate-limiting mono-oxygenase that mediates 22α-hydroxylation reactions in the BR biosynthetic pathway and it is the target gene in the BR feedback loop. Knockout of DWF4 results in a dwarfed phenotype and other severe defects in Arabidopsis. Here we report on the isolation of the ZmDWF4 gene in maize. Sequence analysis revealed that the open reading frame of ZmDWF4 was 1,518 bp, which encodes a protein composed of 505 amino acid residues with a calculated molecular mass of 57.6 kD and a predicated isoelectric point (pI) of 9.54. Phylogenetic analysis indicated that ZmDWF4 was very close to the Arabidopsis DWF4. In young maize seedlings, the expression of ZmDWF4 in shoots was much higher than that in roots. The highest expression of ZmDWF4 was observed in husk leaves and the lowest in silks during flowering stage. The expression of ZmDWF4 in maize was significantly down regulated by exogenous brassinolide. A heterogeneous complementary experiment demonstrated that the defects of three Arabidopsis DWF4 mutants could be rescued by constitutive expression of ZmDWF4, with leaf expandability, inflorescence stem heights and fertile capabilities all restored to normal levels. Increases in seed and branch number as well as the height of florescence stem were observed in the over-expressed transformants. These findings suggest that ZmDWF4 may be an ortholog gene of Arabidopsis DWF4 and responsible for BR biosynthesis in maize. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
In vitro culture and genetic transformation of black gram are difficult due to its recalcitrant nature. Establishment of gene transfer procedure is a prerequisite to develop transgenic plants of black gram in a shorter period. Therefore, genetic transformation was performed to optimize the factors influencing transformation efficiency through Agrobacterium tumefaciens-mediated in planta transformation using EHA 105 strain harbouring reporter gene, bar, and selectable marker, gfp-gus, in sprouted half-seed explants of black gram. Several parameters, such as co-cultivation, acetosyringone concentration, exposure time to sonication, and vacuum infiltration influencing in planta transformation, have been evaluated in this study. The half-seed explants when sonicated for 3 min and vacuum infiltered for 2 min at 100 mm of Hg in the presence of A. tumefaciens (pCAMBIA1304 bar) suspensions and incubated for 3 days co-cultivation in MS medium with 100 µM acetosyringone showed maximum transformation efficiency (46 %). The putative transformants were selected by inoculating co-cultivated seeds in BASTA® (4 mg l?1) containing MS medium followed by BASTA® foliar spray on 15-day-old black gram plants (35 mg l?1) in green house, and the transgene integration was confirmed by biochemical assay (GUS), Polymerase chain reaction, Dot-blot, and Southern hybridisation analyses.  相似文献   

17.
Gametophytic self-incompatibility, a natural mechanism occurring in pear and other fruit-tree species, is usually controlled by the S-locus with allelic variants ( S1, S2, Sn). Recently, biochemical and molecular tools have determined the S-genotype of cultivars in various species. The present study determined the S-locus composition of ten European pear cultivars via S-PCR molecular assay, thereby obviating time-consuming fieldwork whose results are often ambiguous because of environmental effects. To verify the S-PCR assay, two putative S-allele DNA fragments of Japanese pear were isolated; their sequences proved to be identical to those reported in the databank. Six S-allele fragments of European pear were then sequenced. While field data confirmed the molecular results, fully and half-compatible field crosses were not distinguishable.  相似文献   

18.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

19.
Agrobacterium tumefaciens strain LBA4404 carrying plasmid pTOK233 encoding the hygromycin resistance (hph) and beta-glucuronidase (uidA) genes has been used to transform two agronomic grass species: tall fescue (Festuca arundinacea) and Italian ryegrass (Lolium multiflorum). Embryogenic cell suspension colonies or young embryogenic calli were co-cultured with Agrobacterium in the presence of acetosyringone. Colonies were grown under hygromycin selection with cefotaxime and surviving colonies plated on embryogenesis media. Eight Lolium (six independent lines) and two Festuca plants (independent lines) were regenerated and established in soil. All plants were hygromycin-resistant, but histochemical determination of GUS activity showed that only one Festuca plant and one Lolium plant expressed GUS. Three GUS-negative transgenic L. multiflorum and the two F. arundinacea plants were vernalised and allowed to flower. All three Lolium plants were male- and female-fertile, but the Festuca plants failed to produce seed. Progeny analysis of L. multiflorum showed a 24-68% inheritance of the hph and uidA genes in the three lines with no significant difference between paternal and maternal gene transmission. However, significant differences were noted between the paternal and maternal expression of hygromycin resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号