首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M S Ritsner  S I Karas'  E I Chernykh 《Genetika》1990,26(12):2232-2239
The contribution of genetic, constitutional and environmental factors to the clinical polymorphism of schizophrenia was analysed. A sample from 353 pedigrees of the patients suffering from the manifest forms of schizophrenia which inhabited five districts of Tomsk region was studied using multifactorial threshold and single locus diallele models. It is established that the severity of the psychosis is mainly determined by autosomal genetic factors, the proportion of the affective disorders being specified by gonosomal factors. The type of the course of schizophrenia is closely connected with the patients' somatotype. Common environmental influences and peculiarities of personality before onset are linked with no characteristics of the clinical polymorphism studied.  相似文献   

2.
In contrast to monogenic diseases, a straightforward genotype–phenotype relationship is unlikely for multifactorial diseases because of a number of genetic and nongenetic factors, including genetic heterogeneity, gene–gene and gene–environment interactions, and epigenetic mechanisms. As a consequence, the relative risk of particular genetic variants will generally be small, which implies that large sample sizes are required for their initial identification. No conclusions as to the frequency and diversity of the causative genetic variation can generally be drawn from the prevalence of a disease alone. Homogenization of the genetic background of the study population and the use of simple and clearly defined phenotypes together with “educated guesses” in candidate gene and gene–environment studies appear to be the most promising way to identify the genetic factors underlying multifactorial diseases. Replication of initial disease association findings, particularly for rare variants, should be carried out in populations that are genetically as similar as possible to the original population.  相似文献   

3.
The etiology of heritable diseases may be elucidated by localizing genes conferring susceptibility and by subsequent biological characterization of these genes. To localize genetic components for multifactorial traits, both hypothesis-driven candidate gene and hypothesis-free genome scan approaches have been applied. To date, only a handful of results have been reproduced in either a different cohort or model organisms. The integration of genetic approaches with high-throughput genomic techniques is very promising. Unfortunately, most genetic studies completely ignore strong nongenetic effects such as low education and poverty even though these factors are well-known to predict, for example, obesity. Thus, what are most needed in future research are statistical methods for discovering sets of susceptibility genes and environmental factors, as well as systematic verifications of the gene-environment-disease network.  相似文献   

4.
The long anticipated ‘genetic revolution’ in neuropsychiatry has yet to have an impact on the practice of clinical medicine. Excitement in the 1980s over major genetic breakthroughs in schizophrenia and manic depression, for example, has been replaced in the late 1990s by the sobering realization that most common neuropsychiatric disorders are multifactorial. Despite considerable effort and resources, no ‘causative’ genetic variation has been identified that plays a definitive major role in any common neuropsychiatric disorder.  相似文献   

5.
Common diseases are often familial, but they do not show in most families, a simple pattern of inheritance. In a few families these diseases may be caused by a mutation in a single gene. In most families these diseases are multifactorial, they result from a complex interaction between a genetic component which is often polygenic and many environmental factors. Two major, model free, methods are used to locate and identify susceptibility genes that predispose to multifactorial diseases. The first is a non parametric linkage analysis that relies on affected sib pairs, or an affected pedigree member, the second method is association studies which looks for increase frequency of particular alleles or genotypes in affected compared with unaffected individuals in the population. Most of the results have not been replicated, identifying susceptibility genes is proving much more difficult than most geneticists imagined 20 years ago. The main reason for this irreproducibility is genetic heterogeneity.  相似文献   

6.
Studies have argued that genetic testing will provide limited information for predicting the probability of common diseases, because of the incomplete penetrance of genotypes and the low magnitude of associated risks for the general population. Such studies, however, have usually examined the effect of one gene at time. We argue that disease prediction for common multifactorial diseases is greatly improved by considering multiple predisposing genetic and environmental factors concurrently, provided that the model correctly reflects the underlying disease etiology. We show how likelihood ratios can be used to combine information from several genetic tests to compute the probability of developing a multifactorial disease. To show how concurrent use of multiple genetic tests improves the prediction of a multifactorial disease, we compute likelihood ratios by logistic regression with simulated case-control data for a hypothetical disease influenced by multiple genetic and environmental risk factors. As a practical example, we also apply this approach to venous thrombosis, a multifactorial disease influenced by multiple genetic and nongenetic risk factors. Under reasonable conditions, the concurrent use of multiple genetic tests markedly improves prediction of disease. For example, the concurrent use of a panel of three genetic tests (factor V Leiden, prothrombin variant G20210A, and protein C deficiency) increases the positive predictive value of testing for venous thrombosis at least eightfold. Multiplex genetic testing has the potential to improve the clinical validity of predictive testing for common multifactorial diseases.  相似文献   

7.
Neurobiology of schizophrenia   总被引:15,自引:0,他引:15  
With its hallucinations, delusions, thought disorder, and cognitive deficits, schizophrenia affects the most basic human processes of perception, emotion, and judgment. Evidence increasingly suggests that schizophrenia is a subtle disorder of brain development and plasticity. Genetic studies are beginning to identify proteins of candidate genetic risk factors for schizophrenia, including dysbindin, neuregulin 1, DAOA, COMT, and DISC1, and neurobiological studies of the normal and variant forms of these genes are now well justified. We suggest that DISC1 may offer especially valuable insights. Mechanistic studies of the properties of these candidate genes and their protein products should clarify the molecular, cellular, and systems-level pathogenesis of schizophrenia. This can help redefine the schizophrenia phenotype and shed light on the relationship between schizophrenia and other major psychiatric disorders. Understanding these basic pathologic processes may yield novel targets for the development of more effective treatments.  相似文献   

8.
Schizophrenia is perhaps the most debilitating mental disease and determining the underlying cause has become a challenging area of psychiatric research. It is relatively well established that genes play a role in the aetiology of schizophrenia. In this article, a review of important findings related to schizophrenia as a genetic trait will be provided, including a discussion of family, twin and adoption studies. Molecular genetic studies of specific candidate genes are then reviewed. Some controversies within the literature are examined and possible directions for future research are discussed.  相似文献   

9.
Several psychiatric disorders--such as bipolar disorder, schizophrenia and autism--are highly heritable, yet identifying their genetic basis has been challenging, with most discoveries failing to be replicated. However, inroads have been made by the incorporation of intermediate traits (endophenotypes) and of environmental factors into genetic analyses, and through the identification of rare inherited variants and novel structural mutations. Current efforts aim to increase sample sizes by gathering larger samples for case-control studies or through meta-analyses of such studies. More attention on unique families, rare variants, and on incorporating environment and the emerging knowledge of biological function and pathways into genetic analysis is warranted.  相似文献   

10.
Evidence for genetic factors in schizophrenia is reviewed with regard to family, twin and adoption studies, and recent advances in molecular genetic technology are applied to explore possible gene loci susceptible to schizophrenia. Application of neuropsychological and neuroimaging methodologies are also reviewed with an aim to develop criteria for defining phenotypes for genetic studies.Plenary Session, Twelfth Joint Annual Conference of Biomedical Sciences, April 20, 1997, Taipei, Taiwan.  相似文献   

11.
The causes of rheumatoid arthritis (RA) are largely unknown. However, RA is most probably a multifactorial disease with contributions from genetic and environmental factors. Searches for genes that influence RA have been conducted in both human and experimental model materials. Both types of study have confirmed the polygenic inheritance of the disease. It has become clear that the features of RA complicate the human genetic studies. Animal models are therefore valuable tools for identifying genes and determining their pathogenic role in the disease. This is probably the fastest route towards unravelling the pathogenesisis of RA and developing new therapies.  相似文献   

12.
Molecular Biology Reports - Gastric cancer is one of the most common worldwide types of cancer. It is a multifactorial disease and both environmental and genetic factors play an important role in...  相似文献   

13.
Asthma and associated phenotypes are complex traits most probably caused by an interaction of multiple disease susceptibility genes and environmental factors. Major achievements have occurred in identifying chromosomal regions and polymorphisms in candidate genes linked to or associated with asthma, atopic dermatitis, IgE levels and response to asthma therapy. The aims of this review are to explain the methodology of genetic studies of multifactorial diseases, to summarize chromosomal regions and polymorphisms in candidate genes linked to or associated with asthma and associated traits, to list genetic alterations that may alter response to asthma therapy, and to outline genetic factors that may render individuals more susceptible to asthma and atopy due to environmental changes.  相似文献   

14.
Asthma and associated phenotypes are complex traits most probably caused by an interaction of multiple disease susceptibility genes and environmental factors. Major achievements have occurred in identifying chromosomal regions and polymorphisms in candidate genes linked to or associated with asthma, atopic dermatitis, IgE levels and response to asthma therapy. The aims of this review are to explain the methodology of genetic studies of multifactorial diseases, to summarize chromosomal regions and polymorphisms in candidate genes linked to or associated with asthma and associated traits, to list genetic alterations that may alter response to asthma therapy, and to outline genetic factors that may render individuals more susceptible to asthma and atopy due to environmental changes.  相似文献   

15.
Human genetic studies have shown that neuregulin 1 (NRG1) is a potential susceptibility gene for schizophrenia. Nrg1 influences various neurodevelopmental processes, which are potentially related to schizophrenia. The neurodevelopmental theory of schizophrenia suggests that interactions between genetic and environmental factors are responsible for biochemical alterations leading to schizophrenia. To investigate these interactions and to match experimental design with the pathophysiology of schizophrenia, we applied a comprehensive behavioural phenotyping strategy for motor activity, exploration and anxiety in a heterozygous Nrg1 transmembrane domain mutant mouse model (Nrg1 HET) using different housing conditions and age groups. We observed a locomotion- and exploration-related hyperactive phenotype in Nrg1 HETs. Increased age had a locomotion- and exploration-inhibiting effect, which was significantly attenuated in mutant mice. Environmental enrichment (EE) had a stimulating influence on locomotion and exploration. The impact of EE was more pronounced in Nrg1 hypomorphs. Our study also showed a moderate task-specific anxiolytic-like phenotype for Nrg1 HETs, which was influenced by external factors. The behavioural phenotype detected in heterozygous Nrg1 mutant mice is not specific to schizophrenia per se, but the increased sensitivity of mutant mice to exogenous factors is consistent with the pathophysiology of schizophrenia and the neurodevelopmental theory. Our findings reinforce the importance of carefully controlling experimental designs for external factors and of comprehensive, integrative phenotyping strategies. Thus, Nrg1 HETs may, in combination with other genetic and drug models, help to clarify pathophysiological mechanisms behind schizophrenia.  相似文献   

16.
Obstructive sleep apnea syndrome (OSAS) is a complex chronic clinical syndrome, characterized by snoring, periodic apnea, hypoxemia during sleep, and daytime hypersomnolence. It affects 4-5% of the general population. Racial studies and chromosomal mapping, familial studies and twin studies have provided evidence for the possible link between the OSAS and genetic factors and also most of the risk factors involved in the pathogenesis of OSAS are largely genetically determined. A percentage of 35-40% of its variance can be attributed to genetic factors. It is likely that genetic factors associated with craniofacial structure, body fat distribution and neural control of the upper airway muscles interact to produce the OSAS phenotype. Although the role of specific genes that influence the development of OSAS has not yet been identified, current researches, especially in animal model, suggest that several genetic systems may be important. In this chapter, we will first define the OSAS phenotype, the pathogenesis and the risk factors involved in the OSAS that may be inherited, then, we will review the current progress in the genetics of OSAS and suggest a few future perspectives in the development of therapeutic agents for this complex disease entity.Key Words: Obstructive sleep apnea, genetic, hypopnea, AHI, snoring, risk factors, phenotype, multifactorial disease.  相似文献   

17.
Osteoporosis is a leading public health problem in our rapidly growing, aging population. It is characterized by reduced bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture risk. Osteoporosis is a complex multifactorial disease, determined by genetic and environmental factors as well as their interactions. A large number of molecular, genetic and environmental factors underlying osteoporosis have been identified in past decades. In this article, we review 1) the molecular mechanisms of several principal systemic and local factors regulating bone metabolism; and 2) the current status of genetic studies searching for genes underlying osteoporosis. Further, we attempt to integrate knowledge from those two fields, and their potential implications for osteoporosis treatment.  相似文献   

18.
Intensive development of DNA analysis technologies and large-scale genome-wide association studies have led to accumulation of a large array of data on the relationship between genetic factors and various phenotypic manifestations, including monogenic and polygenic hereditary diseases. This has greatly extended the capabilities of clinical diagnostics and predictive medicine in the field of socially significant diseases. For example, the role of a genetic component of the risk for such multifactorial and polyetiologic disease as stroke is now actively explored. Large-scale studies have revealed both general and specific genetic markers associated only with a certain type and subtype of stroke. This review analyzes the current state of the problem of using genetic markers for diagnosis of predisposition to stroke, complex issues associated with multiplicity of risk factors for stroke, and potential development in this area.  相似文献   

19.
The multifactorial process of carcinogenesis involves mutations in oncogenes, or tumor suppressor genes, as well as the influence of environmental etiological factors. Common DNA polymorphisms in low penetrance genes have emerged as genetic factors that seem to modulate an individual’s susceptibility to malignancy. Genetic studies, which lead to a true association, are expected to increase understanding of the pathogenesis of each malignancy and to be a powerful tool for prevention and prognosis in the future. Here, we review the findings of genetic association studies of gene polymorphisms in gynecologic cancer with special reference to glutathione-S-transferase, FAS/CD95 and p53 genes including our recent research results.  相似文献   

20.
New perspectives for the elucidation of genetic disorders   总被引:4,自引:0,他引:4       下载免费PDF全文
For almost 15 years, genome research has focused on the search for major risk factors in common diseases, with disappointing results. Only recently, whole-genome association studies have begun to deliver because of the introduction of high-density single-nucleotide-polymorphism arrays and massive enlargement of cohort sizes, but most of the risk factors detected account for only a small proportion of the total genetic risk, and their diagnostic value is negligible. There is reason to believe that the complexity of many "multifactorial" disorders is primarily due to genetic heterogeneity, with defects of different genes causing the same disease. Moreover, de novo copy-number variation has been identified as a major cause of mental retardation and other complex disorders, suggesting that new mutations are an important, previously overlooked factor in the etiology of complex diseases. These observations support the notion that research into the previously neglected monogenic disorders should become a priority of genome research. Because of the introduction of novel high-throughput, low-cost sequencing methods, sequencing and genotyping will soon converge, with far-reaching implications for the elucidation of genetic disease and health care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号