首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin action is enhanced in people who exercise regularly and vigorously. In the present study, the hyperinsulinemic, euglycemic clamp procedure was used to determine whether this enhanced insulin action is due to an increased sensitivity and/or an increased responsiveness to insulin. To avoid the variability that exists between individuals and complicates cross-sectional studies, the same subjects were studied in the trained exercising state and again after 10 days of physical inactivity. When the plasma insulin concentration was maintained at approximately 78 microU.ml-1 (a submaximal level), glucose disposal rate averaged 8.7 +/- 0.5 mg.kg-1.min-1 before and 6.7 +/- 0.6 mg.kg-1.min-1 after 10 days of activity (P less than 0.001). When the plasma insulin concentration was maintained at approximately 2,000 microU.ml-1 (a maximally effective concentration), the rate of glucose disposal was not significantly different before (15.3 +/- 0.5 mg.kg-1.min-1) compared with after (14.5 +/- 0.4 mg.kg-1.min-1) 10 days without exercise. These results provide evidence that the reversal of enhanced insulin action that occurs within a few days when exercise-trained individuals stop exercising is due to a decrease in sensitivity to insulin, not to a decrease in insulin responsiveness.  相似文献   

2.
The purpose of this study was to assess whether a prior bout of exercise enhances passive gut glucose absorption. Mongrel dogs had sampling catheters, infusion catheters, and a portal vein flow probe implanted 17 days before an experiment. Protocols consisted of either 150 min of exercise (n = 8) or rest (n = 7) followed by basal (-30 to 0 min) and a primed (150 mg/kg) intraduodenal glucose infusion [8.0 mg x kg-1x min-1, time (t) = 0-90 min] periods. 3-O-[3H]methylglucose (absorbed actively, facilitatively, and passively) and l-[14C]glucose (absorbed passively) were injected into the duodenum at t = 20 and 80 min. Phloridzin, an inhibitor of the active sodium glucose cotransporter-1 (SGLT-1), was infused (0.1 mg x kg-1 x min-1) into the duodenum from t = 60-90 min with a peripheral venous isoglycemic clamp. Duodenal, arterial, and portal vein samples were taken every 10 min during the glucose infusion, as well as every minute after each tracer bolus injection. Net gut glucose output in exercised dogs increased compared with that in the sedentary group (5.34 +/- 0.47 and 4.02 +/- 0.53 mg x kg-1x min-1). Passive gut glucose absorption increased approximately 100% after exercise (0.93 +/- 0.06 and 0.45 +/- 0.07 mg x kg-1 x min-1). Transport-mediated glucose absorption increased by approximately 20%, but the change was not significant. The infusion of phloridzin eliminated the appearance of both glucose tracers in sedentary and exercised dogs, suggesting that passive transport required SGLT-1-mediated glucose uptake. This study shows 1). that prior exercise enhances passive absorption of intraduodenal glucose into the portal vein and 2). that basal and the added passive gut glucose absorption after exercise is dependent on initial transport of glucose via SGLT-1.  相似文献   

3.
Impaired glucose tolerance develops in normal humans after short-term bed rest. To elucidate the mechanism, insulin action on whole body glucose uptake rate (WBGUR) and leg glucose uptake rate (LGUR) was measured by sequential euglycemic clamp technique combined with femoral arterial and venous cannulation at insulin concentrations of 10 +/- 1, 18 +/- 1, 37 +/- 2, and 360 +/- 15 microU/ml. Studies were performed before (C) and after (BR) 7 days of strict bed rest. WBGUR was significantly lower after bed rest than before (5.5 +/- 0.4 and 7.2 +/- 0.8 mg.min-1.kg-1, respectively) when insulin was 37 microU/ml. LGUR was even more markedly depressed by bed rest, being 0.6 +/- 0.1, 0.9 +/- 0.2, and 2.8 +/- 0.4 mg.min-1.kg leg-1 (BR) compared with 0.9 +/- 0.1, 1.7 +/- 0.4, and 5.9 +/- 0.5 mg.min-1.kg leg-1 (C) (P less than 0.05) at the three lower insulin concentrations. At these insulin concentrations also, lactate release and glucose oxidation and glycogen storage estimated by indirect calorimetry were lower in the leg after bed rest. At the highest insulin dose WBGUR was similar on BR and C days, while LGUR was lower after bed rest. In conclusion, 7 days of bed rest decrease whole body insulin action, a fact that is explained by decreased insulin action in inactive muscle.  相似文献   

4.
Effects of acute exercise and detraining on insulin action in trained men   总被引:8,自引:0,他引:8  
Seven endurance-trained subjects [maximal O2 consumption (VO2max) 64 +/- 1 (SE) ml.min-1.kg-1] underwent sequential hyperinsulinemic euglycemic clamps on three occasions: 1) in the "habitual state" 15 h after the last training bout (C), 2) after 60 min of bicycle exercise at 72 +/- 3% of VO2max performed in the habitual state (E), and 3) 5 days after the last ordinary training session (detrained, DT). Sensitivity for insulin-mediated whole-body glucose uptake was not affected by acute exercise [insulin concentrations eliciting 50% of maximal insulin-mediated glucose uptake being 44 +/- 2 (C) vs. 46 +/- 3 (E) microU/ml] but was decreased after detraining (54 +/- 2 microU/ml, P less than 0.05) to levels comparable to those found in untrained subjects [Am. J. Physiol. 254 (Endocrinol. Metab. 17): E248-E259, 1988]. Near-maximal insulin-mediated glucose uptake (responsiveness) was higher than in untrained subjects and not influenced by acute exercise or detraining [13.4 +/- 1.2 (C), 12.2 +/- 0.9 (E), and 12.2 +/- 0.3 (DT) mg.min-1.kg-1]. Calculated by indirect calorimetry, the glucose-to-glycogen conversion was not influenced by E but was reduced during detraining (P less than 0.05) yet remained higher than previously found in untrained subjects (P less than 0.05). However, only on E days did muscle glycogen increase during insulin infusion. Glycogen synthase activity was increased on E and decreased on DT compared with C days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We studied hemodynamic responses to alpha- and beta-receptor agonists in eight men to test the hypothesis that adrenoreceptor responsiveness is altered within 24 h of the performance of maximal exercise. Adrenoreceptor responsiveness was tested under two experimental conditions (with and without maximal exercise). Adrenoreceptor tests were performed 24 h after each subject performed graded upright cycle ergometry to volitional exhaustion. The 2 test days (experimental conditions) were separated by at least 1 wk, and the order of exercise and no-exercise conditions was counterbalanced. Steady-state graded infusions of phenylephrine (PE) and isoproterenol (Iso) were used to assess alpha- and beta-adrenoreceptor responsiveness, respectively. Slopes calculated from linear regressions between Iso and PE doses and changes in heart rate, blood pressure, and leg vascular resistance for each subject were used as an index of alpha- and beta-adrenoreceptor responsiveness. The slope of the relationship between heart rate and Iso with maximal exercise was 1773 +/- 164 beats x microm-1x kg-1x min-1 compared with 1987 +/- 142 beats x microg-1x kg-1x min-1 without exercise (P = 0.158), whereas the slopes of the relationship between vascular resistance to Iso were -438 +/- 123 peripheral resistance units (PRU) x microg-1x kg-1x min-1 with maximal exercise and -429 +/- 105 x microg-1x kg-1 x min-1 without exercise (P = 0.904). Maximal exercise was associated with greater (P < 0.05) vascular resistance (15.1 +/- 2.8 PRU x microg-1 kg-1x min-1) and mean arterial blood pressure (15.8 +/- 2.1 mmHg. microg-1x kg-1x min-1) responses to PE infusion compared with no exercise (9.0 +/- 2.0 PRU x microg-1 kg-1 x min-1 and 10.9 +/- 2.0 mmHg. microg-1x kg-1x min-1, respectively). These results provide evidence that a single bout of maximal exercise increases alpha1-adrenoreceptor responsiveness within 24 h without affecting beta-cardiac and vascular adrenoreceptor responses.  相似文献   

6.
The present experiments were undertaken to assess dynamics of hepatic lactate and glucose balance in the over-night-fasted dog during 150 min of moderate-intensity treadmill exercise and 90 min of exercise recovery. Catheters were implanted chronically in an artery and portal and hepatic veins 16 days before experimentation. 3-3H-glucose was infused to determine hepatic glucose uptake, as well as tracer-determined glucose production by isotope dilution (Ra). At rest, net hepatic lactate output was 0.33 +/- 0.15 mg.kg-1.min-1 and increased to 2.26 +/- 0.82 mg.kg-1.min-1 after 10 min of exercise, after which it fell such that the liver was a net lactate consumer by the end of exercise and through recovery. In contrast to the rapid release of lactate, net hepatic glucose output rose gradually from 2.58 +/- 0.20 mg.kg-1.min-1 at rest to 8.87 +/- 0.85 mg.kg-1.min-1 after 60 min of exercise, beyond which it did not change significantly until the cessation of exercise. Hepatic glucose uptake at rest was 1.38 +/- 0.42 mg.kg-1.min-1 and did not change appreciably during exercise or recovery. Absolute hepatic glucose output (net glucose output plus uptake) rose from 3.96 +/- 0.45 mg.kg-1.min-1 at rest to 10.20 +/- 1.09 mg.kg-1.min-1 after 60 min of exercise and was 9.65 +/- 1.15 mg.kg-1.min-1 at 150 min of exercise. Ra rose from 3.34 +/- 0.21 mg.kg-1.min-1 to 7.58 +/- 0.73 and 8.59 +/- 0.77 mg.kg-1.min-1 at 60 and 150 min, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The improved glucose tolerance and increased insulin sensitivity associated with regular exercise appear to be the result, in large part, of the residual effects of the last bout of exercise. To determine the effects of exercise intensity on this response, glucose tolerance and the insulin response to a glucose load were determined in seven well-trained male subjects [maximal O2 uptake (VO2max) = 58 ml.kg-1.min-1] and in seven nontrained male subjects (VO2max = 49 ml.kg-1.min-1) in the morning after an overnight fast 1) 40 h after the last training session (control), 2) 14 h after 40 min of exercise on a cycle ergometer at 40% VO2max, and 3) 14 h after 40 min of exercise at 80% VO2max. Subjects replicated their diets for 3 days before each test and ate a standard meal the evening before the oral glucose tolerance test. No differences in the 3-h insulin or glucose response were observed between the control trial and before exercise at either 40 or 80% VO2max in the trained subjects. In the nontrained subjects the plasma insulin response was decreased by 40% after a single bout of exercise at either 40 or 80% VO2max (7.0 X 10(3) vs. 5.0 X 10(3), P less than 0.05; 3.8 X 10(3) microU.ml-1.180 min-1, P less than 0.01). The insulin response after a single bout of exercise in the nontrained subjects was comparable with the insulin responses found in the trained subjects for the control and exercise trials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Research suggests that pre-exercise sources of dietary carbohydrate with varying glycemic indexes may differentially affect metabolism and endurance. This study was designed to examine potential differences in metabolism and cycling performance after consumption of moderate glycemic raisins vs. a high glycemic commercial sports gel. Eight endurance-trained male (n = 4) and female (n = 4) cyclists 30 +/- 5 years of age completed 2 trials in random order. Subjects were fed 1 g carbohydrate per kilogram body weight from either raisins or sports gel 45 minutes prior to exercise on a cycle ergometer at 70% V(.-)O2max. After 45 minutes of submaximal exercise, subjects completed a 15-minute performance trial. Blood was collected prior to the exercise bout, as well as after the 45th minute of exercise, to determine serum concentrations of glucose, insulin, lactate, free fatty acids (FFAs), triglycerides, and beta-hydroxybutyrate. Performance was not different (p > 0.05) between the raisin (189.5 +/- 69.9 kJ) and gel (188.0 +/- 64.8 kJ) trials. Prior to exercise, serum concentrations of glucose and other fuel substrates did not differ between trials; however, insulin was higher (p < 0.05) for the gel (110.0 +/- 70.4 microU x ml(-1)) vs. raisin trial (61.4 +/- 37.4 microU x ml(-1)). After 45 minutes of exercise, insulin decreased to 14.2 +/- 6.2 microU x ml(-1) and 13.3 +/- 18.9 microU x ml(-1) for gel and raisin trials, respectively. The FFA concentration increased (+0.2 +/- 0.1 mmol x L(-1)) significantly (p < 0.05) during the raisin trial. Overall, minor differences in metabolism and no difference in performance were detected between the trials. Raisins appear to be a cost-effective source of carbohydrate for pre-exercise feeding in comparison to sports gel for short-term exercise bouts.  相似文献   

9.
Exercise training improves skeletal muscle insulin sensitivity in the obese Zucker rat. The purpose of this study was to investigate whether the improvement in insulin action in response to exercise training is associated with enhanced insulin receptor signaling. Obese Zucker rats were trained for 7 wk and studied by using the hindlimb-perfusion technique 24 h, 96 h, or 7 days after their last exercise training bout. Insulin-stimulated glucose uptake (traced with 2-deoxyglucose) was significantly reduced in untrained obese Zucker rats compared with lean controls (2.2 +/- 0.17 vs. 5.4 +/- 0.46 micromol x g(-1) x h(-1)). Glucose uptake was normalized 24 h after the last exercise bout (4.9 +/- 0.41 micromol x g(-1) x h(-1)) and remained significantly elevated above the untrained obese Zucker rats for 7 days. However, exercise training did not increase insulin receptor or insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, phosphatidylinositol 3-kinase (PI3-kinase) activity associated with IRS-1 or tyrosine phosphorylated immunoprecipitates, or Akt serine phosphorylation. These results are consistent with the hypothesis that, in obese Zucker rats, adaptations occur during training that lead to improved insulin-stimulated muscle glucose uptake without affecting insulin receptor signaling through the PI3-kinase pathway.  相似文献   

10.
Seven endurance-trained subjects [maximal O2 consumption (VO2max) 64 +/- 1 (SE) ml.min-1.kg-1] were subjected to three sequential hyperinsulinemic euglycemic clamps 15 h after having performed their last training session (T). Results were compared with findings in seven untrained subjects (VO2max 44 +/- 2 ml.min-1.kg-1) studied both at rest (UT) and after 60 min of bicycle exercise at 150 W (UT-ex). In T and UT-ex compared with UT, sensitivity for insulin-mediated whole-body glucose uptake was higher [insulin concentrations eliciting half-maximal glucose uptake being 44 +/- 2 (T) and 43 +/- 4 (UT-ex) vs. 52 +/- 3 microU/ml (UT), P less than 0.05] and responsiveness was higher [13.4 +/- 1.2 (T) and 10.9 +/- 0.7 (UT-ex) vs. 9.5 +/- 0.7 mg.min-1.kg-1 (UT), P less than 0.05]. Furthermore, responsiveness was higher (P less than 0.05) in T than in UT-ex. Insulin-stimulated O2 uptake and maximal glucose oxidation rate were higher in T than in UT and UT-ex. Insulin-stimulated conversion or glucose to glycogen and muscle glycogen synthase was higher in T than in UT and UT-ex. However, glycogen storage in vastus lateralis muscle was found only in UT-ex. No change in any glucoregulatory hormone or metabolite could explain the increased insulin action in trained subjects. It is concluded that physical training induces an adaptive increase in insulin responsiveness of whole-body glucose uptake, which does not reflect increased glycogen deposition in muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Glucose clamp experiments were performed in 27 chronically catheterized, late-gestation fetal lambs in order to measure the effect of fetal insulin concentration on fetal glucose uptake at a constant glucose concentration. Fetal arterial blood glucose concentration was measured over a 30-min control period and then maintained at the control value by a variable glucose infusion into the fetus while insulin was infused at a constant rate into the fetus. Plasma insulin concentration increased from 21 +/- 10 (SD) to 294 +/- 179 (SD) microU X ml-1. The exogenous glucose infusion rate necessary to maintain constant glycemia during the plateau hyperinsulinemia averaged 4.3 +/- 1.6 (SD) mg X min-1 X kg-1. In a subset of 13 animals, total fetal exogenous glucose uptake (FGU; sum of glucose uptake from the placenta via the umbilical circulation plus the steady-state exogenous glucose infusion rate) was measured during the control and hyperinsulinemia period. FGU was directly related to insulin concentration (y = 4.24 + 0.07x) at insulin levels less than 100 microU/ml and increased 132% above control at insulin levels above 100 microU/ml. Hyperinsulinemia did not affect fetal glucose uptake from the placenta via the umbilical circulation. These studies demonstrate that insulin concentration is a major factor controlling glucose uptake in the near-term fetal lamb, and that an increase of fetal insulin does not affect the transport of glucose to the fetus from the placenta.  相似文献   

12.
The effects of a 10-day low-calorie diet (LCD; n = 8) or exercise training (ET; n = 8) on insulin secretion and action were compared in obese men (n = 9) and women (n = 7), aged 53 +/- 1 yr, with abnormal glucose tolerance by using a hyperglycemic clamp with superimposed arginine infusion and a high-fat drink. Body mass (LCD, 115 +/- 5 vs. 110 +/- 5 kg; ET, 111 +/- 7 vs. 109 +/- 7 kg; P < 0. 01) and fasting plasma glucose (LCD, 115 +/- 10 vs. 99 +/- 4 mg/dl; ET, 112 +/- 4 vs. 101 +/- 5 mg/dl, P < 0.01) and insulin (LCD, 23.9 +/- 5.6 vs. 15.2 +/- 3.9 microU/ml; ET, 17.6 +/- 1.9 vs. 13.9 +/- 2. 4 microU/ml; P < 0.05) decreased in both groups. There was a 40% reduction in plasma insulin during hyperglycemia (0-45 min) after LCD (peak: 118 +/- 18 vs. 71 +/- 14 microU/ml; P < 0.05) and ET (69 +/- 14 vs. 41 +/- 7 microU/ml; P < 0.05) and trends for reductions during arginine infusion and a high-fat drink. The 56% increase in glucose uptake after ET (4.95 +/- 0.90 vs. 7.74 +/- 0.82 mg. min-1. kg fat-free mass-1; P < 0.01) was significantly (P < 0.01) greater than the 19% increase (5.72 +/- 1.12 vs. 6.80 +/- 0.94 mg. min-1. kg fat-free mass-1; P = not significant) that occurred after LCD. The marked increase in glucose disposal after ET, despite lower insulin levels, suggests that short-term exercise is more effective than diet in enhancing insulin action in individuals with abnormal glucose tolerance.  相似文献   

13.
Euglycemic-hyperinsulinemic clamps were performed on six healthy untrained individuals to determine whether exercise that induces muscle damage also results in insulin resistance. Clamps were performed 48 h after bouts of predominantly 1) eccentric exercise [30 min, downhill running, -17% grade, 60 +/- 2% maximal O2 consumption (VO2max)], 2) concentric exercise (30 min, cycle ergometry, 60 +/- 2% VO2max), or 3) without prior exercise. During the clamps, euglycemia was maintained at 90 mg/dl while insulin was infused at 30 mU.m-2.min-1 for 120 min. Hepatic glucose output (HGO) was determined using [6,6-2H]glucose. Eccentric exercise caused marked muscle soreness and significantly elevated creatine kinase levels (273 +/- 73, 92 +/- 27, 87 +/- 25 IU/l for the eccentric, concentric, and control conditions, respectively) 48 h after exercise. Insulin-mediated glucose disposal rate was significantly impaired (P less than 0.05) during the clamp performed after eccentric exercise (3.47 +/- 0.51 mg.kg-1.min-1) compared with the clamps performed after concentric exercise (5.55 +/- 0.94 mg.kg-1.min-1) or control conditions (5.48 +/- 1.0 mg.kg-1.min-1). HGO was not significantly different among conditions (0.77 +/- 0.26, 0.65 +/- 0.27, and 0.66 +/- 0.64 mg.kg-1.min-1 for the eccentric, concentric, and control clamps, respectively). The insulin resistance observed after eccentric exercise could not be attributed to altered plasma cortisol, glucagon, or catecholamine concentrations. Likewise, no differences were observed in serum free fatty acids, glycerol, lactate, beta-hydroxybutyrate, or alanine. These results show that exercise that results in muscle damage, as reflected in muscle soreness and enzyme leakage, is followed by a period of insulin resistance.  相似文献   

14.
Defects in insulin secretion and/or action contribute to the hyperglycemia of stressed and diabetic patients, and we hypothesize that failure to suppress glucagon also plays a role. We examined the chronic impact of glucagon on glucose uptake in chronically catheterized conscious depancreatized dogs placed on 5 days of nutritional support (NS). For 3 days of NS, a variable intraportal infusion of insulin was given to maintain isoglycemia (approximately 120 mg/dl). On day 3 of NS, animals received a constant low infusion of insulin (0.4 mU.kg-1.min-1) and either no glucagon (CONT), basal glucagon (0.7 ng.kg-1.min-1; BasG), or elevated glucagon (2.4 ng.kg-1.min-1; HiG) for the remaining 2 days. Glucose in NS was varied to maintain isoglycemia. An additional group (HiG+I) received elevated insulin (1 mU.kg-1.min-1) to maintain glucose requirements in the presence of elevated glucagon. On day 5 of NS, hepatic substrate balance was assessed. Insulin and glucagon levels were 10+/-2, 9+/-1, 7+/-1, and 24+/-4 microU/ml, and 24+/-5, 39+/-3, 80+/-11, and 79+/-5 pg/ml, CONT, BasG, HiG, and HiG+I, respectively. Glucagon infusion decreased the glucose requirements (9.3+/-0.1, 4.6+/-1.2, 0.9+/-0.4, and 11.3+/-1.0 mg.kg-1.min-1). Glucose uptake by both hepatic (5.1+/-0.4, 1.7+/-0.9, -1.0+/-0.4, and 1.2+/-0.4 mg.kg-1.min-1) and nonhepatic (4.2+/-0.3, 2.9+/-0.7, 1.9+/-0.3, and 10.2+/-1.0 mg.kg-1.min-1) tissues decreased. Additional insulin augmented nonhepatic glucose uptake and only partially improved hepatic glucose uptake. Thus, glucagon impaired glucose uptake by hepatic and nonhepatic tissues. Compensatory hyperinsulinemia restored nonhepatic glucose uptake and partially corrected hepatic metabolism. Thus, persistent inappropriate secretion of glucagon likely contributes to the insulin resistance and glucose intolerance observed in obese and diabetic individuals.  相似文献   

15.
We evaluated whether acute anemia results in altered blood glucose utilization during sustained exercise at 26.8 m/min on 0% grade, which elicited approximately 60-70% maximal O2 consumption. Acute anemia was induced in female Sprague-Dawley rats by isovolumic plasma exchange transfusion. Hemoglobin and hematocrit were reduced 33% by exchange transfusion to 8.6 +/- 0.4 g/dl and 26.5 +/- 1%, respectively. Glucose kinetics were determined by primed continuous infusion of [6-3H]glucose. Rates of O2 consumption were similar during rest (pooled means 25.1 +/- 1.8 ml.kg-1.min-1) and exercise (pooled means 46.8 +/- 3.0 ml.kg-1.min-1). Resting blood glucose and lactate concentrations were not different in anemic animals (pooled means 5.1 +/- 0.2 and 0.9 +/- 0.02 mM, respectively). Exercise resulted in significantly decreased blood glucose (4.0 +/- 0.2 vs. 4.6 +/- 0.1 mM) and elevated lactate (6.1 +/- 0.4 vs. 2.3 +/- 0.5 mM) concentrations in anemic animals. Glucose turnover rates (Rt) were not different between anemic and control animals at rest and averaged 58.8 +/- 3.6 mumol.kg-1.min-1. Exercise resulted in a 30% greater increase in Rt in anemic (141.7 +/- 3.2 mumol.kg-1.min-1) than in control animals (111.2 +/- 5.2 mumol.kg-1.min-1). Metabolic clearance rates (MCR = Rt/[glucose]) were not different at rest (11.6 +/- 7.4) but were significantly greater in anemic (55.2 +/- 5.7 ml.kg-1.min-1) than in control animals (24.3 +/- 1.4 ml.kg-1.min-1) during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Acute exercise increases insulin binding to its receptors on blood cells. Whether the enhanced insulin binding explains the exercise-induced increase in glucose uptake is unclear, since insulin binding and glucose uptake have not been measured simultaneously in a target tissue of insulin. In this study, we determined insulin binding and the rate of glucose transport in adipocytes obtained by needle biopsy from 10 healthy men before and after 3 h of cycle-ergometric exercise. During the exercise, plasma glucose (P less than 0.01) and insulin (P less than 0.001) fell and serum free fatty acid level rose 4.3-fold (P less than 0.001). 125I-insulin binding to adipocytes remained unchanged during exercise. The rate of basal glucose transport clearance fell from 28.1 +/- 5.7 fl.cell-1.s-1 to 22.9 +/- 5.6 fl.cell-1.s-1 (P less than 0.005), and the insulin-stimulated increase in glucose transport rate rose from 196 +/- 26 to 279 +/- 33% (P less than 0.025) during the exercise. Thus, in the adipocytes during exercise, the basal glucose transport rate and the responsiveness of glucose transport to insulin changed in the absence of alterations in insulin binding. These data indicate that the exercise-induced changes in insulin binding show tissue specificity and do not always parallel alterations in glucose transport.  相似文献   

17.
To clarify the impact of vigorous physical training on in vivo insulin action and glucose metabolism independent of the intervening effects of concomitant changes in body weight and composition and residual effects of an acute exercise session, 10 lean, 10 obese, and 6 diet-controlled type II diabetic men trained for 12 wk on a cycle ergometer 4 h/wk at approximately 70% of maximal O2 uptake (VO2max) while body composition and weight were maintained by refeeding the energy expended in each training session. Before and 4-5 days after the last training session, euglycemic hyperinsulinemic (40 mU.m2.min-1) clamps were performed at a plasma glucose of 90 mg/dl, combined with indirect calorimetry. Total insulin-stimulated glucose disposal (M) was corrected for residual hepatic glucose output. Body weight, fat, and fat-free mass (FFM) did not change with training, but cardiorespiratory fitness increased by 27% in all groups. Before and after training, M was lower for the obese (5.33 +/- 0.39 mg.kg FFM-1.min-1 pretraining; 5.33 +/- 0.46 posttraining) than for the lean men (9.07 +/- 0.49 and 8.91 +/- 0.60 mg.kg FFM-1.min-1 for pretraining and posttraining, respectively) and lower for the diabetic (3.86 +/- 0.44 and 3.49 +/- 0.21) than for the obese men (P less than 0.001). Insulin sensitivity was not significantly altered by training in any group, but basal hepatic glucose production was reduced by 22% in the diabetic men. Thus, when intervening effects of the last exercise bout or body composition changes were controlled, exercise training per se leading to increased cardiorespiratory fitness had no independent impact on insulin action and did not improve the insulin resistance in obese or diabetic men.  相似文献   

18.
This study investigated the effects of intensity and duration of exercise on lymphocyte proliferation as a measure of immunologic function in men of defined fitness. Three fitness groups--low [maximal O2 uptake (VO2max) = 44.9 +/- 1.5 ml O2.kg-1.min-1 and sedentary], moderate (VO2max = 55.2 +/- 1.6 ml O2.kg-1.min-1 and recreationally active), and high (VO2max = 63.3 +/- 1.8 ml O2.kg-1.min-1 and endurance trained)--and a mixed control group (VO2max = 52.4 +/- 2.3 ml O2.kg-1.min-1) participated in the study. Subjects completed four randomly ordered cycle ergometer rides: ride 1, 30 min at 65% VO2max; ride 2, 60 min at 30% VO2max; ride 3, 60 min at 75% VO2max; and ride 4, 120 min at 65% VO2max. Blood samples were obtained at various times before and after the exercise sessions. Lymphocyte responses to the T cell mitogen concanavalin A were determined at each sample time through the incorporation of radiolabeled thymidine [( 3H]TdR). Despite differences in resting levels of [3H]TdR uptake, a consistent depression in mitogenesis was present 2 h after an exercise bout in all fitness groups. The magnitude of the reduction in T cell mitogenesis was not affected by an increase in exercise duration. A trend toward greater reduction was present in the highly fit group when exercise intensity was increased. The reduction in lymphocyte proliferation to the concanavalin A mitogen after exercise was a short-term phenomenon with recovery to resting (preexercise) values 24 h after cessation of the work bout. These data suggest that single sessions of submaximal exercise transiently reduce lymphocyte function in men and that this effect occurs irrespective of subject fitness level.  相似文献   

19.
The effect of physiologic elevations of plasma hydroxybutyrate induced by the infusion of sodium D,L-beta-hydroxybutyrate (15 mumol X kg-1 X min-1) on carbohydrate metabolism was examined with the euglycemic insulin clamp technique in nine healthy volunteers. Plasma insulin concentration was acutely raised and maintained at 126 +/- 6 microU/ml and plasma glucose was held constant at the fasting level by a variable glucose infusion. Glucose uptake of 6.53 +/- 0.80 mg X kg-1 X min-1 was unchanged by hyperketonemia when compared with an intraindividual control study using saline instead of beta-OH-butyrate infusion (6.26 +/- 0.59 mg X kg-1 X min-1). In studies, in which the degree of metabolic alkalosis accompanying butyrate infusion was mimicked by the continuous administration of bicarbonate, glucose uptake was also unaffected (6.25 +/- 0.45 mg X kg-1 X min-1). Furthermore, hyperketonemia had no effect on basal glucose production or the suppression of hepatic glucose production following hyperinsulinemia. It is concluded that moderate elevations in plasma beta-hydroxy-butyrate do not alter hepatic or peripheral glucose metabolism.  相似文献   

20.
The effects of a single bout of exercise to exhaustion on pancreatic insulin secretion were determined in seven untrained men by use of a 3-h hyperglycemic clamp with plasma glucose maintained at 180 mg/100 ml. Clamps were performed either 12 h after an intermittent treadmill run at approximately 77% maximum O2 consumption or without prior exercise. Arterialized blood samples for glucose, insulin, and C-peptide determination were obtained from a heated hand vein. The peak insulin response during the early phase (0-10 min) of the postexercise clamp was higher (81 +/- 8 vs. 59 +/- 9 microU/ml; P less than 0.05) than in the nonexercise clamp. Incremental areas under the insulin (376 +/- 33 vs. 245 +/- 51 microU.ml-1.min) and C-peptide (17 +/- 2 vs. 12 +/- 1 ng.ml-1.min) curves were also greater (P less than 0.05) during the early phase of the postexercise clamp. No differences were observed in either insulin concentrations or whole body glucose disposal during the late phase (15-180 min). Area under the C-peptide curve was greater during the late phase of the postexercise clamp (650 +/- 53 vs. 536 +/- 76 ng.ml-1.min, P less than 0.05). The exercise bout induced muscle soreness and caused an elevation in plasma creatine kinase activity (142 +/- 32 vs. 305 +/- 31 IU/l; P less than 0.05) before the postexercise clamp. We conclude that in untrained men a bout of running to exhaustion increased pancreatic beta-cell insulin secretion during the early phase of the hyperglycemic clamp. Increased insulin secretion during the late phase of the clamp appeared to be compensated by increased insulin clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号