共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In order to complement data obtained from earlier deep-sea studies on microbial transformations, similarin situ incubation experiments were done in shallow coastal waters. Compared to laboratory controls,in situ activities were reduced about 50%, in contrast to about 99% previously reported for samples incubated in the deep sea. 相似文献
3.
Selective inhibition of cholesterol synthesis in liver versus extrahepatic tissues by HMG-CoA reductase inhibitors 总被引:5,自引:0,他引:5
R A Parker R W Clark S Y Sit T L Lanier R A Grosso J J Wright 《Journal of lipid research》1990,31(7):1271-1282
Hepatic specificity of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase may be achieved by efficient first-pass liver extraction resulting in low circulating drug levels, as with lovastatin, or by lower cellular uptake in peripheral tissues, seen with pravastatin. BMY-21950 and its lactone form BMY-22089, new synthetic inhibitors of HMG-CoA reductase, were compared with the major reference agent lovastatin and with the synthetic inhibitor fluindostatin in several in vitro and in vivo models of potency and tissue selectivity. The kinetic mechanism and the potency of BMY-21950 as a competitive inhibitor of isolated HMG-CoA reductase were comparable to the reference agents. The inhibitory potency (cholesterol synthesis assayed by 3H2O or [14C]acetate incorporation) of BMY-21950 in rat hepatocytes (IC50 = 21 nM) and dog liver slices (IC50 = 23 nM) equalled or exceeded the potencies of the reference agents. Hepatic cholesterol synthesis in vivo in rats was effectively inhibited by BMY-21950 and its lactone form BMY-22089 (ED50 = 0.1 mg/kg p.o.), but oral doses (20 mg/kg) that suppressed liver synthesis by 83-95% inhibited sterol synthesis by only 17-24% in the ileum. In contrast, equivalent doses of lovastatin markedly inhibited cholesterol synthesis in both organs. In tissue slices from rat ileum, cell dispersions from testes, adrenal, and spleen, and in bovine ocular lens epithelial cells, BMY-21950 inhibited sterol synthesis weakly in vitro with IC50 values 76- and 188-times higher than in hepatocytes; similar effects were seen for BMY-22089. However, the IC50 ratios (tissue/hepatocyte) for lovastatin and fluindostatin were near unity in these models. Thus, BMY-21950 and BMY-22089 are the first potent synthetic HMG-CoA reductase inhibitors that possess a very high degree of liver selectivity based upon differential inhibition sensitivities in tissues. This cellular uptake-based property of hepatic specificity of BMY-21950 and BMY-22089, also manifest in pravastatin, is biochemically distinct from the pharmacodynamic-based disposition of lovastatin, which along with fluindostatin exhibited potent inhibition in all tissues that were exposed to it. 相似文献
4.
Measurement of rates of cholesterol synthesis using tritiated water 总被引:18,自引:0,他引:18
Rates of sterol synthesis in various tissues commonly are assessed by assaying levels of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase on isolated microsomes or by measuring the rates of incorporation of various 14C-labeled substrates or [3H]water into cholesterol by whole cell preparations in vitro or by the tissues of the whole animal in vivo. While measurement of activities of HMG-CoA reductase or rates of incorporation of 14C-labeled substrates into cholesterol give useful relative rates of sterol production, neither method yields absolute rates of cholesterol synthesis. The use of [3H]water circumvents the problem of variable and unknown dilution of the specific activity of the precursor pool encountered when 14C-labeled substrates are used and does yield absolute rates of cholesterol synthesis provided that the 3H/C incorporation ratio is known for a particular tissue. In 12 different experimental situations it has been found that from 21 to 27 micrograms atoms of 3H are incorporated into cholesterol from [3H]water in different tissues of several animal species, so that the 3H/C incorporation ratio is similar under nearly all experimental conditions and varies from 0.78 to 1.00. When administered in vivo, [3H]water rapidly equilibrates with intracellular water and is incorporated into sterols within the various organs at rates that are linear with respect to time. From such data it is possible to obtain absolute rates of cholesterol synthesis in the whole animal and in the various organs of the animal. Current data suggest, therefore, that use of [3H]water yields the most accurate rates of cholesterol synthesis both in vitro and in vivo. 相似文献
5.
6.
Absolute rates of sterol synthesis estimated from [3H]water for bovine lens epithelial cells in culture 总被引:2,自引:0,他引:2
All cells of the avascular ocular lens derive from a monolayer of epithelial cells located on only the anterior surface of this organ. The source of the cholesterol required for the growth and division of these cells was studied by using cultures of bovine lens epithelial cells. Cells were in active growth during the third to fourth day of subculture following seeding. Absolute rates of cholesterol synthesis were estimated for the cultured cells from incorporation of [3H]water. Rates were estimated on the assumption that 0.81 atoms of 3H of [3H]water were incorporated into cholesterol per carbon atom of cholesterol, a situation where all of the NADPH would be generated by oxidative enzymatic processes. We tested this assumption by measuring the changes in sterol mass per dish of cells grown in lipoprotein-deficient media over day 3 to 4 of subculture and by simultaneously measuring the rates of incorporation of [3H]water into sterols during this period. In this situation, the increases in sterol mass should be attributable solely to de novo sterol synthesis. We calculated that an average of 0.79 atoms of 3H of [3H]water were incorporated by these cells into cholesterol per carbon atom of cholesterol. Sterol synthesis was only modestly decreased (about 30%) when the cells were cultured in media prepared with whole calf serum. Growth rates of the cells were also little affected by the absence of lipoproteins. In spite of the capacity to furnish its sterol requirements by de novo synthesis, the lens epithelial cells readily degraded 125I-labeled bovine LDL, and LDL greatly decreased sterol synthesis when added to the media at low levels.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
The decomposition of three different 14C-labeled cellulose substrates (plant holocellulose, plant cellulose prepared from 14C-labeled beech wood (Fagus sylvatica) and bacterial cellulose produced by Acetobacter xylinum) in samples from the litter and mineral soil layer of a beechwood on limestone was studied. In a long-term (154 day) experiment, mineralization of cellulose materials, production of 14C-labeled water-soluble compounds, and incorporation of 14C in microbial biomass was in the order Acetobacter cellulose > holocellulose > plant cellulose in both litter and soil. In general, mineralization of cellulose, production of 14C-labeled water-soluble compounds, and incorporation of 14C in microbial biomass were more pronounced, but microbial biomass 14C declined more rapidly in litter than in soil. In short-term (14 day) incubations, mineralization of cellulose substrates generally corresponded with cellulase and xylanase activities in litter and soil. Pre-incubation with trace amounts of unlabeled holocellulose significantly increased the decomposition of 14C-labeled cellulose substrates and increased cellulase activity later in the experiment but did not affect xylanase activity. The sum of 14CO2 production, 14C in microbial biomass, and 14C in water-soluble compounds is considered to be a sensitive parameter by which to measure cellulolytic activity in soil and litter samples in short-term incubations. Shorter periods than 14 days are preferable in assays using Acetobacter cellulose, because the decomposition of this substrate is more variable than that of holocellulose and plant cellulose.Offprint requests to: S. Scheu. 相似文献
8.
9.
1. The biosynthesis of cholesterol in vivo was studied at a number of tissue sites in rats by using 3H2O as precursor. Overall, the mass of cholesterol synthesized was in good agreement with the rate of cholesterogenesis, as determined by kinetic analysis of cholesterol specific-radioactivity-time curves after administration of radiolabelled cholesterol. 2. Dietary cholesterol increased the circulating concentration of cholesterol and inhibited endogenous cholesterogenesis, with concomitant increases in the concentration of esterified cholesterol, in all tissues studied. Addition of ororic acid to the cholesterol-supplemented diet tended to reverse each of these changes in extrahepatic tissues. 3. The co-ordinated change in cholesterol biosynthesis and esterification, with no change in total cholesterol content, in extrahepatic tissues, is attributed to control by receptor-mediated lipoprotein uptake. 4. Further reduction of the concentration of the apoprotein B-containing lipoproteins by addition of orotic acid to a diet without supplementary cholesterol did not further enhance cholesterogenesis. We consider that the relatively high rates of extrahepatic cholesterogenesis in normolipidaemic rats are attributable to the low concentration of low-density lipoprotein. 相似文献
10.
G A Dienel T Nelson N F Cruz T Jay A M Crane L Sokoloff 《The Journal of biological chemistry》1988,263(36):19697-19708
Significant dephosphorylation of glucose 6-phosphate due to glucose-6-phosphatase activity in rat brain in vivo was recently reported (Huang, M., and Veech, R.L. (1982) J. Biol. Chem. 257, 11358-11363). The evidence was an apparent more rapid 3H than 14C loss from the glucose pool and faster [2-3H]glucose than [U-14C]glucose utilization following pulse labeling of the brain with [2-3H,U-14C]glucose. Radiochemical purity of the glucose and quantitative recovery of the labeled products of glucose metabolism isolated from the brain were obviously essential requirements of their study, but no evidence for purity and recovery was provided. When we repeated these experiments with the described isolation procedures, we replicated the results, but found that: 1) the precursor glucose pool contained detritiated, 14C-labeled contaminants arising from glucose metabolism, particularly 2-pyrrolidone-5-carboxylic acid derived from [14C]glutamine; 2) [14C]glucose metabolite were not quantitatively recovered; 3) the procedure used to isolate the glucose itself produced detritiated, 14C-labeled derivatives of [2-3H,U-14C]glucose. These deficiencies in the isolation procedures could fully account for the observations that were interpreted as evidence of significant glucose 6-phosphate dephosphorylation by glucose-6-phosphatase activity. When glucose was isolated by more rigorous procedures and its purity verified in the present studies, no evidence for such activity in rat brain was found. 相似文献
11.
12.
J G Lehoux A Lefebvre E de Medicis M Bastin S Bélisle D Bellabarba 《Journal of steroid biochemistry》1987,27(4-6):1151-1160
Previous studies have established that under normal conditions, adrenal HMG-CoA reductase activity is higher in hamsters than in rats and humans. The hamster reductase activity follows a diurnal rhythm corresponding to that of plasma ACTH and glucocorticoids [Endocrinology 107 (1980) 215] but not to that of aldosterone. ACTH treatments to hamsters increased reductase activity after a latency of 60 min; this enhancement was prevented by cycloheximide [J. steroid Biochem. 24 (1986) 325]. Immunotitration and immunoblotting studies confirmed that ACTH caused an increase in reductase protein synthesis. In rats, long-term (1-9 days) and short-term (3 h) treatments with ACTH also induced increase in adrenal HMG-CoA reductase activity and reductase protein. In the presence of iodoacetamide and inhibitors of proteolytic enzyme, a main specific band of enzyme was evinced in the area of 102 +/- 6 kDaMr, by Western blotting, for both hamster homogenate and microsomal preparations (Endocrinology, 120 (1987]. Similarly Mr values were found with rat adrenal preparations. The concentration of mRNA, analyzed using the c-DNA pRed-10 coding for the Chinese hamster ovary reductase, was increased in adrenals of hamsters treated with ACTH. The reductase mRNA levels also fluctuated during the day in parallel with those of reductase activity and reductase protein. In conclusion, these results indicate that ACTH and other conditions inducing a change in hamster adrenal HMG-CoA reductase activity provoke parallel changes in reductase mRNA and reductase protein content. ACTH acts on the adrenal reductase of species synthesizing large as well as small quantities of cholesterol, thus indicating the general importance of this hormonal control. 相似文献
13.
Absolute rates of protein synthesis in sea urchins with specific activity measurements of radioactive leucine and leucyl-tRNA 总被引:1,自引:0,他引:1
A technique for isolating leucyl-tRNA and determining its specific radioactivity is described. The method is applied to an analysis of the rates of protein synthesis in unfertilized sea urchin eggs and gastrulae. Comparison of specific activities of leucine and leucyl-tRNA suggests that, in the gastrula under our experimental conditions, compartmentation of intracellular leucine is relatively minor. The protein synthetic rate in the gastrula stage embryo is 113 times greater than that in the unfertilized egg. 相似文献
14.
The effect of glucagon on the incorporation of U-14C-labeled lactate, pyruvate or alanine into glucose has been studied using isolated hepatocytes from livers of fed rats. Rates of incorporation into glucose were about the same as observed in perfused liver preparations provided precautions were taken to avoid depletion of certain metabolities by the preparative procedures. With each substrate, stimulation of the incorporation into glucose by a maximally effective concentration of glucagon (10 nM) was associated with about a 75% reduction in the substrate concentration required for a half-maximal rate and with about a 30% increase in maximum rate. Consequently, the hormone caused a substantial (2--4-fold) stimulation when any one of the above substrates was present at a near physiological concentration, but brought about only a relatively small stimulation (1.4-fold) when very high substrate concentrations were used. Provision of cytoplasmic reducing equivalents (by ethanol addition), or of precursor for acetyl-coenzyme A formation (by acetate addition)-stimulated incorporation of labeled alanine into glucose and their effects were additive with that of glucagon. This suggested that provision of either of these intermediates was not a means by which the hormone increased the incorporation of labeled substrate into glucose. NH4+ stimulated the incorporation of 20 mM [U-14C] lactate into glucose 2-fold, probably by promoting glutamate synthesis and thus enhancing the transamination of oxaloacetate to aspartate. Evidence was obtained to support the view that glucagon also increases glutamate production (presumably from endogenous protein). However, the stimulation of incorporation into glucose from 20 mM [U-14C] lactate by NH4+ plus glucagon was synergistic. This suggested that glucagon also stimulated the incorporation of labeled substrate into glucose by additional means. Stimulation of the incorporation of [U-14C] alanine into glucose by beta-hydroxybutyrate plus glucagon was also synergistic. This suggested that another action of glucagon may be to provide more intramitochondrial reducing potential. 相似文献
15.
Photosynthesis Research - The application of metabolic radiolabeling techniques to plant tetrapyrroles, i.e., chlorophyll and hemes, is complicated by the difficulty of obtaining sufficient... 相似文献
16.
17.
Bromobenzene causes hepatic and extrahepatic toxicity in rats. Toxicity is related to the presence of covalently bound material in these tissues. A major bromobenzene metabolite, p-bromophenol, has been shown to give rise to covalently bound material in liver, lung and kidney , but is not toxic. p-Bromophenol is formed from bromobenzene in liver, lung and kidney microsomes and is subsequently metabolized to 4-bromocatechol and covalently bound material. Bromobenzene-3, 4-oxide generated by liver microsomes, is detoxified by kidney, liver and lung cytosol. The results suggest that the kidney toxicity caused by bromobenzene is probably not mediated by either bromobenzene-3, 4-oxide or the reactive metabolites of p-bromophenol. In contrast, bromobenzene-3, 4-oxide may play a role in the lung toxicity observed after bromobenzene administration. However, the covalently bound material found in extrahepatic tissues may be derived from both bromobenzene-3, 4-oxide or the reactive metabolites of p-bromophenol, which may be formed directly by these tissues or transported there from the liver. 相似文献
18.
19.
20.
The metabolic network of Lactococcus lactis: distribution of (14)C-labeled substrates between catabolic and anabolic pathways
下载免费PDF全文

Lactococcus lactis NCDO 2118 was grown in a simple synthetic medium containing only six essential amino acids and glucose as carbon substrates to determine qualitatively and quantitatively the carbon fluxes into the metabolic network. The specific rates of substrate consumption, product formation, and biomass synthesis, calculated during the exponential growth phase, represented the carbon fluxes within the catabolic and anabolic pathways. The macromolecular composition of the biomass was measured to distribute the global anabolic flux into the specific anabolic pathways. Finally, the distribution of radiolabeled substrates, both into the excreted fermentation end products and into the different macromolecular fractions of biomass, was monitored. The classical end products of lactic acid metabolism (lactate, formate, and acetate) were labeled with glucose, which did not label other excreted products, and to a lesser extent with serine, which was deaminated to pyruvate and represented approximately 10% of the pyruvate flux. Other minor products, keto and hydroxy acids, were produced from glutamate and branched-chain amino acids via deamination and subsequent decarboxylation and/or reduction. Glucose labeled all biomass fractions and accounted for 66% of the cellular carbon, although this represented only 5% of the consumed glucose. 相似文献