首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breeding dispersal among territorial species is of interest to population biologists because leaving a territory carries fundamental risks to the dispersing individuals, and this may not outweigh the costs of maintaining the territory. Most studies of breeding dispersal have focused on species inhabiting spatially open populations, in which undetected emigration could impart a negative bias to estimates of dispersal. We studied breeding dispersal in an isolated (spatially closed) population of California Spotted Owl Strix occidentalis occidentalis in southern California for 12 years to assess factors that might correlate with breeding dispersal. Twenty‐nine per cent (n = 47) of territorial females and 19% (n = 35) of territorial males dispersed at least once during the study. Annually, 0–13% of the territorial females and 0–12% of the territorial males dispersed. Among a set of a priori and post hoc models related to breeding dispersal, the top a priori model indicated that birds having higher reproductive output relative to the population average were less likely to disperse. A post hoc model based on an index of territory quality was ranked higher than the top a priori model and indicated that birds occupying higher quality territories were less likely to disperse. These two models were correlated and represented short‐ and long‐term reproductive performance, respectively. Birds that dispersed also failed to fledge young in the year prior to dispersal, but the failure to fledge young did not, by itself, explain dispersal. Because Spotted Owls are long‐lived, they may ultimately improve their reproduction by dispersing given that they would have future opportunities to breed over the long term. Birds whose mates are likely to have died tended to improve their reproductive success, whereas the relationship between reproductive success of birds that divorced was less clear. Substantial variation in breeding dispersal was unexplained by our analysis so it is likely that the motivation to disperse was a complex process in this population.  相似文献   

2.
Fragmentation of natural habitats can be detrimental for species if individuals fail to cross habitat boundaries to reach new locations, thereby reducing functional connectivity. Connectivity is crucial for species shifting their ranges under climate change, making it important to understand factors that might prevent movement through human‐modified landscapes. In tropical regions, rain forests are being fragmented by agricultural expansion, potentially isolating populations of highly diverse forest‐dependent species. The likelihood of crossing habitat boundaries is an important determinant of species dispersal through fragmented landscapes, and so we examined movement across rain forest‐oil palm plantation boundaries on Borneo by using relatively mobile nymphalid butterflies as our model study taxon. We marked 1666 individuals from 65 species, and 19 percent (100/527) of recaptured individuals crossed the boundary. Boundary crossing was relatively frequent in some species, and net movement of individuals was from forest into plantation. However, boundary crossing from forest into plantation was detected in less than 50 percent (12/28) of recaptured species and was dominated by small‐sized butterfly species whose larval host plants occurred within plantations. Thus, while oil palm plantations may be relatively permeable to some species, they may act as barriers to the movement of forest‐dependent species (i.e., species that require rain forest habitat to breed), highlighting the importance of maintaining forest connectivity for conserving rain forest species.  相似文献   

3.
Vignieri SN 《Molecular ecology》2005,14(7):1925-1937
In species affiliated with heterogeneous habitat, we expect gene flow to be restricted due to constraints placed on individual movement by habitat boundaries. This is likely to impact both individual dispersal and connectivity between populations. In this study, a GIS-based landscape genetics approach was used, in combination with fine-scale spatial autocorrelation analysis and the estimation of recent intersubpopulation migration rates, to infer patterns of dispersal and migration in the riparian-affiliated Pacific jumping mouse (Zapus trinotatus). A total of 228 individuals were sampled from nine subpopulations across a system of three rivers and genotyped at eight microsatellite loci. Significant spatial autocorrelation among individuals revealed a pattern of fine-scale spatial genetic structure indicative of limited dispersal. Geographical distances between pairwise subpopulations were defined following four criteria: (i) Euclidean distance, and three landscape-specific distances, (ii) river distance (distance travelled along the river only), (iii) overland distance (similar to Euclidean, but includes elevation), and (iv) habitat-path distance (a least-cost path distance that models movement along habitat pathways). Pairwise Mantel tests were used to test for a correlation between genetic distance and each of the geographical distances. Significant correlations were found between genetic distance and both the overland and habitat-path distances; however, the correlation with habitat-path distance was stronger. Lastly, estimates of recent migration rates revealed that migration occurs not only within drainages but also across large topographic barriers. These results suggest that patterns of dispersal and migration in Pacific jumping mice are largely determined by habitat connectivity.  相似文献   

4.
Many straits in the Japanese archipelago have been proposed as biogeographical boundaries, but there is disagreement regarding their importance as historic barriers against dispersal of terrestrial and freshwater taxa. Mitochondrial DNA haplotype and phylogenetic analyses of Lefua nikkonis, a primary freshwater fish inhabiting northern Japan and descendent from Siberia, revealed that the species is genetically structured within its geographic range, but that two major haplotypes are widely distributed across the Ishikari Lowland of Hokkaido Island as well as across the Tsugaru Strait between Hokkaido and Honshu Islands, two well-known biogeographical boundaries of northern Japan. The two major haplotypes were separated from each other by only one mutational step, and many other haplotypes, including those endemic to the region south of these barriers, have diverged from the major haplotypes, suggesting rapid range expansion and local differentiation. Divergence-time estimates, based on vicariance of the Honshu endemic congener L. echigonia via uplift of the Central Highlands, demonstrated that the southward dispersal of L. nikkonis from Hokkaido Island to Honshu Island occurred less than 0.08–0.19 Mya, suggesting that a land bridge emerged at the Tsugaru Strait during the Riss glaciation. Given that other freshwater taxa crossed the strait earlier (during the Middle Pleistocene), it is likely that land bridges in the strait have repeatedly emerged. The fact that L. nikkonis invaded only the northern part of Honshu, and that many other freshwater species also have the limit of their distribution ranges in this area as well, indicates that a faunal transition zone might persist even without the Tsugaru Strait. Thus, straits and lowlands in northern Japan are likely to have been less important as dispersal barriers to freshwater taxa than is currently thought.  相似文献   

5.
A major knowledge gap exists in understanding dispersal potential of ground-dwelling arthropods, especially in forest ecosystems. Movement of the ground-dwelling arthropod community was quantified using a novel mark-capture technique in which three different colored fluorescent powders in two separate mixtures were applied to the floor of a deciduous forest in concentric bands 3, 8, and 15 m from the center of 30 × 30 m experimental plots. The majority (67.1%) of ground-dwelling arthropods did not cross a colored band when fluorescents were mixed with protein powder in 2014. However, when mixed with sand in 2015, 77.3% of captured arthropods were marked with fluorescent powder, with the majority of individuals crossing one band (41.2%), suggesting limited dispersal by most individuals in the community. Only 2.8% and 15.0% of arthropods crossed all three bands in 2014 and 2015, respectively, which further indicates that individuals have limited dispersal. Responses were taxon-specific, and a high proportion of some arthropods such as millipedes and harvestmen crossed two or three bands. Limited dispersal by most individuals may have important implications for the structure and distribution of ground-dwelling arthropod communities, as well as their responses to natural or anthropogenic disturbances. Our results demonstrate the feasibility of this novel technique for self-marking and capturing individuals in the field to investigate dispersal of ground-dwelling arthropods.  相似文献   

6.
The resurrection of Asiatic lions (Panthera leo persica) from the brink of extinction is a remarkable conservation success story. Yet, occurrence of lions as a single population makes them vulnerable to extinction from genetic and environmental factors. Asiatic lions exist as a single free ranging population of 360 individuals in Gir Protected Area (PA; about 290 lions) and surrounding satellite areas (68 lions), namely Girnar Wildlife Sanctuary (WLS), coastal areas, hill ranges extending from Mitiyala-Savarkundla-Palitana-Shihor spreading across Junagadh, Amreli and Bhavnagar districts of Gujarat State, India. This paper traces the conservation history, current conservation pressures, and critically evaluates current conservation planning based on lion ecology and existing anthropogenic pressures. Conservation proposals for translocation of lions to alternate habitats in Kuno WLS and Barda WLS are awaiting final implementation. An alternate initiative is aimed at developing satellite lion habitats, improving corridor connectivity, and facilitating natural dispersal and expansion of lion habitats. The paper evaluates human population living within 2 km boundary of lion habitats and between Gir PA and satellite habitats to show that dispersing lions have to cross heavily populated habitations taking refuge in agriculture fields and scattered forest patches. Satellite habitats vary in size from 18 km2 (Mitiyala WLS) to 250 km2 (scattered forests Hipavadli-Savarkundla-Palitana zone along Shetrunji river) and are inadequate to maintain natural ranging and movement requirements of territorial lions. These habitats are varied in vegetation, terrain, human pressure, and distance to source population. Though satellite lion habitats are important suboptimal habitats for dispersing lions, long-term conservation planning require planned restoration of mosaic habitats for growing populations.  相似文献   

7.
In many nonclonal, benthic marine species, geographic distribution is mediated by the dispersal of their larvae. The dispersal and recruitment of marine larvae may be limited by temperature gradients that can affect mortality or by ocean currents that can directly affect the movements of pelagic larvae. We focus on Point Conception, a well-known biogeographic boundary between the Californian and Oregonian biogeographic provinces, to investigate whether ocean currents affect patterns of gene flow in intertidal marine invertebrates. The predominance of pelagically dispersing species with northern range limits at Point Conception suggests that ocean currents can affect species distributions by erecting barriers to the dispersal of planktonic larvae. In this paper, we investigate whether the predominantly southward currents have left a recognizable genetic signature in species with pelagically dispersing larvae whose ranges span Point Conception. We use patterns of genetic diversity and a new method for inferring cladistic migration events to test the hypothesis that southward currents increase southward gene flow for species with pelagically dispersing larvae. We collected mitochondrial DNA (mtDNA) sequence data for the barnacles Balanus glandula and Chthamalus fissus and also reanalyzed a previously published mtDNA dataset (Strongylocentrotus purpuratus, Edmands et al. 1996). For all three species, our cladistic approach identified an excess of southward migration events across Point Conception. In data from a fourth species with nondispersing larvae (Nucella emarginata, Marko 1998), our method suggests that ocean currents have not played a role in generating genetic structure.  相似文献   

8.
Whole‐genome duplication is considered an important speciation mechanism in plants. However, its effect on reproductive isolation between higher cytotypes is not well understood. We used backcrosses between different ploidy levels and surveys of mixed‐ploidy contact zones to determine how reproductive barriers differed with cytotype across a polyploid complex. We backcrossed F1 hybrids derived from 2X‐4X and 4X‐6X crosses in the Campanula rotundifolia autopolyploid complex, measured backcross fitness, and estimated backcross DNA cytotype. We then sampled four natural mixed‐ploidy contact zones (two 2X‐4X and two 4X‐6X), estimated ploidy, and genotyped individuals across each contact zone. Reproductive success and capacity for gene flow was markedly lower for 2X‐4X than 4X‐6X hybrids. In fact, 3X hybrids could not backcross; all 2X‐4X backcross progeny resulted from neotetraploid F1 hybrids. Further, no 3X individuals were found in 2X‐4X contact zones, and 2X and 4X individuals were genetically distinct. By contrast, backcrosses of 5X hybrids were relatively successful, particularly when crossed to 6X individuals. In 4X‐6X contact zones, 5X individuals and aneuploids were common and all cytotypes were largely genetically similar and spatially intermixed. Taken together, these results provide strong evidence that reproduction is low between 2X and 4X cytotypes, primarily occurring via unreduced gamete production, but that reproduction and gene flow are ongoing between 4X and 6X cytotypes. Further, it suggests whole‐genome duplication can result in speciation between diploids and polyploids, but is less likely to create reproductive barriers between different polyploid cytotypes, resulting in two fundamentally different potentials for speciation across polyploid complexes.

To assess the role of ploidy in determining reproductive isolation and speciation in polyploid contact zones, we used backcrosses between different ploidy levels and surveys of mixed‐ploidy contact zones to determine how reproductive barriers differed with cytotype across a polyploid complex. Reproductive success and capacity for gene flow was markedly higher for 4X‐6X hybrids than 2X‐4X hybrids, which was also seen in natural mixed‐ploidy contact zones. Our results suggest whole‐genome duplication can result in speciation between diploids and polyploids, but is less likely to create reproductive barriers between different polyploid cytotypes, resulting in two fundamentally different potentials for speciation across polyploid complexes.  相似文献   

9.
Cultural transmission is thought to be a mechanism by which migratory animals settle into habitats, but little evidence exists in wild populations because of the difficulty of following individuals over successive generations and wide geographical distances. Cultural inheritance of migration routes represents a mechanism whereby geographical isolation can arise between separate groups and could constrain individuals to potentially suboptimal sites within their range. Conversely, adopting the parental migratory route in adult life, rather than dispersing randomly, may increase an individual's reproductive success because that strategy has already been proven to allow successful breeding. We combined a pedigree of related light-bellied Brent geese (Branta bernicla hrota) with 6 years of observations of marked birds to calculate the dispersal distances of adult offspring from their parents in both Ireland and Iceland. In both countries, the majority of offspring were found to recruit into or near their parental sites, indicating migratory connectivity in the flyway. Despite this kin structure, we found no evidence of genetic differentiation using genotype data from 1127 individuals across 15 microsatellite loci. We suggest that the existence of migratory connectivity of subpopulations is far more common than previous research indicates and that cultural information may play an important role in structuring reproductive isolation among them.  相似文献   

10.
The European wildcat (Felis silvestris silvestris) is a focal species for conservation in many European countries. After a severe population decline during the 19th century, many populations became extinct or isolated. Within Germany, suitable wildcat habitat is assumed to be highly fragmented. We thus investigated fine-scale genetic structure of wildcat populations in Central Germany across two major potential barriers, the Rhine River with its valley and a major highway. We analyzed 260 hair and tissue samples collected between 2006 and 2011 in the Taunus and Hunsrück mountain ranges (3,500 km2 study area). We identified 188 individuals by genotyping 14 microsatellite loci, and found significant genetic substructure in the study area. Both the Rhine River and the highway were identified as significant barrier to gene flow. While the long-term effect of the river has led to stronger genetic differentiation in the river compared to the highway, estimates of current gene flow and relatedness across barriers indicated a similar or even stronger barrier effect to ongoing wildcat dispersal of the highway. Despite these barrier effects, we found evidence for the presence of recent migration across both the river and the highway. Our study thus suggests that although wildcats have the capability of dispersal across major anthropogenic and natural landscape barriers, these structures still lead to an effective isolation of populations as reflected by genetic analysis. The results strengthen the need for currently ongoing national strategies of wildcat conservation aiming for large scale habitat connectivity.  相似文献   

11.
Breeding dispersal is the movement of an individual between breeding attempts and is usually associated with the disruption of the social pair bond, although mates may disperse together as a social unit. In monogamous territorial species, the decision to disperse may be affected by individual attributes such as sex, age and condition of the disperser. However, environmental and social contexts may also play a crucial role in the decision to disperse. We analysed capture‐resighting data collected over 9 years to study breeding dispersal and divorce rates of a Southern House Wren Troglodytes aedon musculus population in South Temperate Argentina. Between‐season dispersal was more frequent than within‐season dispersal, with females dispersing more often than males, both between and within seasons. Both within‐season and between‐season breeding dispersal probability was affected by territory availability, but not by previous breeding success. When the adult sex ratio (ASR) was more skewed towards males, male between‐season dispersal was also affected by mating status, with widowed and single males dispersing more often than paired males. Within‐season divorce increased the reproductive success of females but not males, and was affected by the availability of social partners (with increasingly male‐skewed ASR). Our results suggest that territorial vacancies and mating opportunities affect dispersal and divorce rates in resident Southern House Wrens, highlighting the importance of social and environmental contexts for dispersal behaviour and the stability of social pair bonds.  相似文献   

12.

Aim

Temperate tree species overwhelmingly responded to past climate change by migrating rather than adapting. However, past climate change did not have the modern human‐driven patterns of land use and fragmentation, raising questions of whether tree migration will still be able to keep pace with climate. Previous studies using coarse‐grained or randomized landscapes suggest that dispersal may be delayed but have not identified outright barriers to migration. Here, we use real‐world fragmented landscapes at the scale of forest stands to assess the migration capacity of eastern tree species.

Location

Eastern U.S.A.

Time period

Present day to 2100.

Major taxa studied

Eastern U.S. trees.

Methods

We simulated dispersal over 100 years for 15 species common to the mid‐Atlantic region and that are predicted to gain suitable habitat in the northeast. In contrast to previous studies, we incorporated greater realism with species‐specific life histories and real‐world spatial configurations of anthropogenic land use. We used simulation results to calculate dispersal rates for each species and related these to predicted rates of species habitat shift.

Results

Our simulations suggest that land use in the human‐dominated east‐coast corridor slows species dispersal rates by 12–40% and may prevent keeping pace with climate. Species most impacted by anthropogenic land use were often those with the highest predicted species habitat shifts. We identified two major dispersal barriers, the Washington DC metropolitan area and central NY, that severely impeded tree migration.

Main conclusions

Patterns of anthropogenic land use not only slowed migration but also resulted in effective barriers to dispersal. These impacts were exacerbated by tree life histories, such as long ages to maturity and narrow dispersal kernels. Without intervention, the migration lags predicted here may lead to loss in biodiversity and ecosystem functions as current forest species decline, and may contribute to formation of novel communities.  相似文献   

13.
Spotted hyenas (Crocuta crocuta) are gregarious carnivores that live in multigenerational social groups, called clans, containing one to several matrilines. Members of multiple matrilines within a clan cooperate during dangerous interactions with inter- and intraspecific competitors. The evolution of cooperation may be influenced by relatedness between individuals, which in turn is influenced by reproductive skew and mate choice, dispersal and territorial behaviours. Behavioural data exist for spotted hyenas, but corresponding data on patterns of relatedness are unavailable; this lack of data makes it difficult to assess the relative importance of selection pressures favouring cooperative behaviour within and among groups. Therefore we conducted a longitudinal analysis of relatedness within a single large clan of spotted hyenas, as well as a cross-sectional analysis of relatedness among hyenas from multiple clans. Within a clan, patterns of relatedness reflected known pedigree relationships, and relatedness was higher within than among matrilines, even across generations. Although mean within-matriline relatedness varied among matrilines, it did not decline with matriline rank. On average, clan members were not related closely, due to high levels of male-mediated gene flow among clans, and relatedness declined very slightly across clan borders. Low mean relatedness within clans suggests that spotted hyenas cooperate with unrelated clan-mates against close paternal kin in other clans. Our data also suggest that spotted hyenas must derive large net direct fitness benefits from group living and cooperation.  相似文献   

14.
The European wild rabbit (Oryctolagus cuniculus) lives in stable, territorial breeding groups, with male-biased natal dispersal, female philopatry, and a polygynous mating system. It was introduced into Britain in the 11 th century and kept in captive warrens as a food and fur resource. Populations expanded in the wild in the 18th century. Microsatellite markers were employed to examine the genetic structure of wild rabbit populations on three spatial scales: macrogeographic structure of 17 populations in East Anglia, microgeographic structure of a tagged population in the grounds of the University of East Anglia over four consecutive years, and pairwise kinships and individual movement within this tagged population. Populations across East Anglia were found to be genetically distinct, and heterozygote deficits were observed at all loci indicating sub-division within sampled populations. Analysis of the tagged population confirmed that rabbit populations are genetically sub-divided among social groups. Studying this population over four consecutive years revealed that as the population size increased, the number of social groups increased. Analysis of individual pairwise relatedness of females indicated that individuals did not necessarily group with kin, and behavioural data indicate that an optimum group size may exist which maximizes reproductive success.  相似文献   

15.
Landscape features of anthropogenic or natural origin can influence organisms' dispersal patterns and the connectivity of populations. Understanding these relationships is of broad interest in ecology and evolutionary biology and provides key insights for habitat conservation planning at the landscape scale. This knowledge is germane to restoration efforts for the New England cottontail (Sylvilagus transitionalis), an early successional habitat specialist of conservation concern. We evaluated local population structure and measures of genetic diversity of a geographically isolated population of cottontails in the northeastern United States. We also conducted a multiscale landscape genetic analysis, in which we assessed genetic discontinuities relative to the landscape and developed several resistance models to test hypotheses about landscape features that promote or inhibit cottontail dispersal within and across the local populations. Bayesian clustering identified four genetically distinct populations, with very little migration among them, and additional substructure within one of those populations. These populations had private alleles, low genetic diversity, critically low effective population sizes (3.2–36.7), and evidence of recent genetic bottlenecks. Major highways and a river were found to limit cottontail dispersal and to separate populations. The habitat along roadsides, railroad beds, and utility corridors, on the other hand, was found to facilitate cottontail movement among patches. The relative importance of dispersal barriers and facilitators on gene flow varied among populations in relation to landscape composition, demonstrating the complexity and context dependency of factors influencing gene flow and highlighting the importance of replication and scale in landscape genetic studies. Our findings provide information for the design of restoration landscapes for the New England cottontail and also highlight the dual influence of roads, as both barriers and facilitators of dispersal for an early successional habitat specialist in a fragmented landscape.  相似文献   

16.
Understanding dispersal and habitat selection behaviours is central to many problems in ecology, evolution and conservation. One factor often hypothesized to influence habitat selection by dispersers is the natal environment experienced by juveniles. Nonetheless, evidence for the effect of natal environment on dispersing, wild vertebrates remains limited. Using 18 years of nesting and mark–resight data across an entire North American geographical range of an endangered bird, the snail kite (Rostrhamus sociabilis), we tested for natal effects on breeding-site selection by dispersers and its consequences for reproductive success and population structure. Dispersing snail kites were more likely to nest in wetlands of the same habitat type (lacustrine or palustrine) as their natal wetland, independent of dispersal distance, but this preference declined with age and if individuals were born during droughts. Importantly, dispersing kites that bred in natal-like habitats had lower nest success and productivity than kites that did not. These behaviours help explain recently described population connectivity and spatial structure across their geographical range and reveal that assortative breeding is occurring, where birds are more likely to breed with individuals born in the same wetland type as their natal habitat. Natal environments can thus have long-term and large-scale effects on populations in nature, even in highly mobile animals.  相似文献   

17.
Current evolutionary models of dispersal set the ends of a continuum where the number of individuals emigrating from a habitat either equals the number of individuals immigrating (balanced dispersal) or where emigrants flow from a source habitat to a corresponding sink. Theories of habitat selection suggest a more sophisticated conditional strategy where individuals disperse from habitats where they have the greatest impact on fitness to habitats where their per capita impact is lower. Asymmetries between periods of population growth and decline result in a reciprocating dispersal strategy where the direction of migration is reversed as populations wax and wane. Thus, for example, if net migration of individuals flows from high- to low-density habitats during periods of population growth, net migration will flow in the opposite direction during population decline. Stochastic simulations and analytical models of reciprocating dispersal demonstrate that fitness, carrying capacity, stochastic dynamics, and interference from dominants interact to determine whether dispersal is balanced between habitats, or whether one habitat or the other acts as a net donor of dispersing individuals. While the pattern of dispersal may vary, each is consistent with an underlying strategy of density-dependent habitat selection.  相似文献   

18.
1. We present a novel metapopulation model where dispersal is fitness dependent: the strength of migration from a site is dependent on the expected reproductive fitness of individuals there. Furthermore, individuals continue to migrate until they reach a suitable habitat where their expected fitness is above a threshold value.
2. Fitness-dependent dispersal has a very strong stabilizing effect on population dynamics, even when the intrinsic dynamics of populations in the absence of dispersal exhibit complex high-amplitude oscillations. This stabilizing effect is much stronger than that of the density-independent dispersal normally considered in metapopulation models.
3. Even when fitness-dependent dispersal does not stabilize the dynamics in a formal sense, it generally leads to simplification, with complex or even chaotic fluctuations being reduced to simple cycles.
4. This form of dispersal also has a strong tendency to synchronize local population dynamics across the spatial extent of the metapopulation.
5. These conclusions are robust to the addition of strong stochasticity in the migration threshold.  相似文献   

19.
Individuals’ fidelity to an area provides insight into the stability of the spatial and temporal organisation of animals. Territorial fidelity is often influenced by reproductive success, age, the dispersion and predictability of resources, and intraspecific competition. We examined between-year territorial fidelity in wolverines (Gulo gulo), using location data from 47 individuals collected during 1993–2013 in northern Sweden, to assess the stability of the spatial organisation of this solitary carnivore. For females, we also determined residency status from 1 year to the next. The study population is characterized by a stable distribution of resident individuals, with both males and females showing higher fidelity at the total territory level compared to more intensively used core areas. In 86% of the yearly residency status estimates (n?=?122), the female remained stationary. In the remaining 14% of the cases, females either vacated their territory (8% of residency statuses), or expanded into a neighbouring territory (6% of residency statuses). We documented six cases of breeding dispersal, representing one of the few known cases of breeding dispersal in long-lived large mammals. We suggest that this high territorial fidelity is enabled by wolverines’ caching and scavenging behaviours, which buffer the unpredictable and large spatiotemporal variation in resource abundance in this low-productivity area. Breeding dispersal may occur due to competition for high-quality territories in this saturated population, where females are forced to abandon their territory by competitors or bequeath territories to offspring. This study further highlights the complexity of the social and spatial dynamics for solitary carnivores.  相似文献   

20.
Dispersal is of prime importance for many evolutionary processes and has been studied for decades. The reproductive consequences of dispersal have proven difficult to study, simply because it is difficult to keep track of dispersing individuals. In most previous studies evaluating the fitness effects of dispersal, immigrants at a study locality have been lumped into one category and compared to philopatric individuals. This is unfortunate, because there are reasons to believe that immigrants with long and short dispersal distances may differ substantially in reproductive success. In the present study, we used a combination of capture-recapturing and multilocus microsatellite genotyping to categorize great reed warblers at our Swedish study site as philopatric individuals or short- or long-distance dispersing immigrants. We then performed novel comparisons of lifetime reproductive success (LRS) and survival rates of these three dispersal categories. The birds belonged to cohorts 1987-1996, and data for their LRS were gathered between 1988 and 2003. The analyses showed that philopatric males attracted more females, produced more fledglings and recruits throughout their lives, and survived better than immigrants. Among the immigrant males, those categorized as long-distance dispersers had lowest LRS and survival probability. Models that included covariates of potential importance showed that the difference in LRS between dispersal categories was partly caused by corresponding variation in number of breeding years at our study site. These results indicate that short- and, in particular, long-distance dispersers were of poor phenotypic quality, but it may also be proposed that immigrants attracted few females because they were poorly adapted to the local social environment. In females, the number of local recruits corrected for the number of breeding years (as well as for number of fledglings) differed between dispersal categories in a pattern that suggests an intermediate optimal dispersal distance. Short-distance dispersers recruited more offspring per year (and per fledgling) than both philopatric individuals and long-distance dispersers. Data suggest that the low LRS of philopatric females was related to costs of inbreeding. The low LRS of long-distance dispersing females may have resulted from their offspring being especially prone to disperse outside the study area, but also other potential explanations exist, such as local maladaptation. Our study highlights the importance of separating immigrant birds on the basis of their genetic similarity to the local study population when analyzing variation in LRS and inferring realized gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号