首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Psalmopeotoxin I (PcFK1) is a 33-amino-acid residue peptide isolated from the venom of the tarantula Psalmopoeus cambridgei. It has been recently shown to possess strong antiplasmodial activity against the intra-erythrocyte stage of Plasmodium falciparum in vitro. Although the molecular target for PcFK1 is not yet determined, this peptide does not lyse erythrocytes, is not cytotoxic to nucleated mammalian cells, and does not inhibit neuromuscular function. We investigated the structural properties of PcFK1 to help understand the unique mechanism of action of this peptide and to enhance its utility as a lead compound for rational development of new antimalarial drugs. In this paper, we have determined the three-dimensional solution structure by (1)H two-dimensional NMR means of recombinant PcFK1, which is shown to belong to the ICK structural superfamily with structural determinants common to several neurotoxins acting as ion channels effectors.  相似文献   

2.
Melittin is an amphipathic peptide which has received much attention as a model peptide for peptide–membrane interactions. It is however not suited as a transfection agent due to its cytolytic and toxicological effects. Retro-inverso-melittin, when covalently linked to the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (riDOM), eliminates these shortcomings. The interaction of riDOM with phospholipid membranes was investigated with circular dichroism (CD) spectroscopy, dynamic light scattering, ζ-potential measurements, and high-sensitivity isothermal titration calorimetry. riDOM forms cationic nanoparticles with a diameter of ~ 13 nm which are well soluble in water and bind with high affinity to DNA and lipid membranes. When dissolved in bilayer membranes, riDOM nanoparticles dissociate and form transient pores. riDOM-induced membrane leakiness is however much reduced compared to that of authentic melittin. The secondary structure of the ri-melittin is not changed when riDOM is transferred from water to the membrane and displays a large fraction of β-structure. The 31P NMR spectrum of the nanoparticle is however transformed into a typical bilayer spectrum. The Gibbs free energy of riDOM binding to bilayer membranes is − 8.0 to − 10.0 kcal/mol which corresponds to the partition energy of just one fatty acyl chain. Half of the hydrophobic surface of the riDOM lipid extension with its 2 oleic acyl chains is therefore involved in a lipid–peptide interaction. This packing arrangement guarantees a good solubility of riDOM both in the aqueous and in the membrane phase. The membrane binding enthalpy is small and riDOM binding is thus entropy-driven.  相似文献   

3.
Animal toxins block voltage-dependent potassium channels (Kv) either by occluding the conduction pore (pore blockers) or by modifying the channel gating properties (gating modifiers). Gating modifiers of Kv channels bind to four equivalent extracellular sites near the S3 and S4 segments, close to the voltage sensor. Phrixotoxins are gating modifiers that bind preferentially to the closed state of the channel and fold into the Inhibitory Cystine Knot structural motif. We have solved the solution structure of Phrixotoxin 1, a gating modifier of Kv4 potassium channels. Analysis of the molecular surface and the electrostatic anisotropy of Phrixotoxin 1 and of other toxins acting on voltage-dependent potassium channels allowed us to propose a toxin interacting surface that encompasses both the surface from which the dipole moment emerges and a neighboring hydrophobic surface rich in aromatic residues.  相似文献   

4.
Long chain acylamides of ethanolamine were previously found to increase in the infarcted canine myocardium. Subsequent in vitro experiments established a number of interesting biological and physiological properties of these compounds including alteration of rabbit skeletal sarcoplasmic reticulum function and inhibition of permeability dependent calcium release from heart mitochondria. These results suggested an interaction between the N-acylethanolamines and biological membranes. In the present work we show that the most potent species in previous studies, N-oleylethanolamine, forms stable complexes with phospholipid vesicles, lowers diphenylhexatriene polarization ratios in dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine uni- and multilamellar bilayer vesicles, and also produces a concentration dependent decrease in the phase transitions of these lipid structures. In addition studies with parinaric acids also suggested that N-oleylethanolamine partitions preferentially into more fluid areas of the bilayer. The results are discussed in terms of possible effects on biological membranes.  相似文献   

5.
The chemical shifts of specific (13)C and (15)N labels distributed throughout KIAGKIA-KIAGKIA-KIAGKIA (K3), an amphiphilic 21-residue antimicrobial peptide, prove that the peptide is in an all alpha-helical conformation in the bilayers of multilamellar vesicles (MLVs) containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol (1:1). Rotational-echo double-resonance (REDOR) (13)C[(31)P] and (15)N[(31)P] experiments on the same labeled MLVs show that on partitioning into the bilayer, the peptide chains remain in contact with lipid headgroups. The amphipathic lysine side chains of K3 in particular appear to play a key role in the electrostatic interactions with the acidic lipid headgroups. In addition to the extensive peptide-headgroup contact, (13)C[(19)F] REDOR experiments on MLVs containing specifically (19)F-labeled lipid tails suggest that a portion of the peptide is surrounded by a large number of lipid acyl chains. Complementary (31)P[(19)F] REDOR experiments on these MLVs show an enhanced headgroup-lipid tail contact resulting from the presence of K3. Despite these distortions, static (31)P NMR lineshapes indicate that the lamellar structure of the membrane is preserved.  相似文献   

6.
The association of bacterial lipopolysaccharide with artificial membranes was studied in an attempt to understand the mechanism of binding of lipopolysaccharide to cell surfaces and to look for an effect on membrane stability. The membrane models used were phospholipid bilayers and monolayers. As measured by survival time, lipopolysaccharide was found to decrease the stability of bilayers at a concentration of 300 μg/ml. When assayed by dielectric breakdown, an effect of lipopolysaccharide was noticeable at concentrations of 50 μg/ml. In studies involving the penetration of monomolecular films of various phospholipids, native and alkali-treated lipopolysaccharide both caused increases in surface pressure, and therefore penetrated the films. However, alkali-treated lipopolysaccharide was at least ten times more efficient than the native product in penetration. Alkali-treated lipopolysaccharide had a greater degree of surface activity than native lipopolysaccharide, since alkali-treated lipopolysaccharide formed monomolecular films by itself, whereas native lipopolysaccharide did not. The changes in the surface pressure and surface potential of phospholipid films produced by lipopolysaccharide in the subsolution suggested that the interaction of lipopolysaccharide with phospholipid monolayers was by a combination of penetration and adsorption to the undersurface.  相似文献   

7.
Natural venoms are promising sources of candidate therapeutics including antibiotics. A recently described potent antimicrobial peptide latarcin 2a (Ltc 2a) from Lachesana tarabaevi spider venom shows a broad-spectrum antibacterial activity. This peptide consists of 26 amino acid residues and therefore its production using chemical synthesis, although trivial, is costly. We describe an easy approach to Ltc 2a production in Escherichia coli using the conventional fusion partner thioredoxin. Latarcin 2a synthetic gene was cloned into the expression vector pET-32b, which was then used to transform E. coli BL21(DE3) strain. His-tagged fusion purification was achieved using metal-chelate affinity chromatography. Since no methionine residues are present in the latarcin 2a sequence, cyanogen bromide could be effectively utilized to separate the target product from the carrier protein. Reverse-phase HPLC was used as the final step of purification; the final yield was 3 mg/L of bacterial culture. To increase the yields, we attempted incorporation of Ltc 2a tandem repeats into the fusion protein; however, production rates greatly decreased due to enhanced fusion toxicity. Moreover, we probed constructs to produce an Ltc 2a dimer and the Ltc 2a propeptide to study their functional properties. Recombinant peptides were produced at appreciable yields and biological tests to determine their activities were performed. Latarcin 2a is the first linear peptide from spider venom and one of the first membrane-active peptides from venomous animals to be biosynthetically produced.  相似文献   

8.
de Alba E  Weiler S  Tjandra N 《Biochemistry》2003,42(50):14729-14740
Saposin C binds to membranes to activate lipid degradation in lysosomes. To get insights into saposin C's function, we have determined its three-dimensional structure by NMR and investigated its interaction with phospholipid vesicles. Saposin C adopts the saposin-fold common to other members of the family. In contrast, the electrostatic surface revealed by the NMR structure is remarkably different. We suggest that charge distribution in the protein surface can modulate membrane interaction leading to the functional diversity of this family. We find that the binding of saposin C to phospholipid vesicles is a pH-controlled reversible process. The pH dependence of this interaction is sigmoidal, with an apparent pK(a) for binding close to 5.3. The pK(a) values of many solvent-exposed Glu residues are anomalously high and close to the binding pK(a). Our NMR data are consistent with the absence of a conformational change prior to membrane binding. All this information suggests that the negatively charged electrostatic surface of saposin C needs to be partially neutralized to trigger membrane binding. We have studied the membrane-binding behavior of a mutant of saposin C designed to decrease the negative charge of the electrostatic surface. The results support our conclusion on the importance of protein surface neutralization in binding. Since saposin C is a lysosomal protein and pH gradients occur in lysosomes, we propose that lipid degradation in the lysosome could be switched on and off by saposin C's reversible binding to membranes.  相似文献   

9.
Apolipoprotein A-I (apoA-I) interaction with specific cell lipid domains was suggested to trigger cholesterol and phospholipid efflux. We analyzed here apoA-I interaction with dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) bilayers at a temperature showing phase coexistence. Solid and liquid-crystalline domains were visualized by two-photon fluorescence microscopy on giant unilamellar vesicles (GUVs) labeled with 6-dodecanoyl-2-dimethyl-amino-naphthalene (Laurdan). A decrease of vesicle size was detected as long as they were incubated with lipid-free apoA-I, together with a shape deformation and a relative enrichment in DSPC. Selective lipid removal mediated by apoA-I from different domains was followed in real time by changes in the Laurdan generalized polarization. The data show a selective interaction of apoA-I with liquid-crystalline domains, from which it removes lipids, at a molar ratio similar to the domain compositions. Next, apoA-I was incubated with DMPC/DSPC small unilamellar vesicles, and products were isolated and quantified. Protein solubilized both lipids but formed complexes relatively enriched in the liquid component. We also show changes in the GUV morphology when cooling down. Our results suggest that the most efficient reaction between apoA-I and DMPC/DSPC occurs in particular bilayer conditions, probably when small fluid domains are nucleated within a continuous gel phase and interfacial packing defects are maximal.  相似文献   

10.
The interaction of three vitamin A derivatives or retinoids: all-trans-retinoic acid, 13-cis-retinoic acid and retinol with multilamellar phospholipid bilayers was studied using a combination of 2H- and 31P-NMR measurements. The following model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers; (2) bilayers composed of a mixture of DPPC and bovine heart phosphatidylcholine (PC); (3) mixed PC/phosphatidylethanolamine (PE) bilayers. Only a weak interaction was observed between 13-cis-retinoic acid and DPPC membranes. Addition of all-trans-retinoic acid at a molar ratio of 1:2 to the lipid causes a small decrease (5 C degrees) in the gel to liquid crystalline phase-transition temperature of DPPC, a small increase in the order parameters of the lipid side-chains of single component bilayers and no measurable effect in the other lipid systems studied. Considerably larger perturbation in the lipid bilayer structure is introduced by addition of retinol which, at a molar ratio of 1:2 to the lipid, lowered the gel to liquid crystalline phase-transition temperature of DPPC by 21 C degrees and caused a decrease of order parameters of the lipid side-chains in all three lipid bilayer systems. These effects are consistent with intercalation of retinol molecules into the bilayer interior. The results for the mixed PC/PE bilayers indicate that the presence of retinol caused lateral separation of PE- and retinol-enriched regions.  相似文献   

11.
S Akoka  C Tellier 《Biochimie》1989,71(1):137-144
The binding of Ca2+ to membrane models composed of diplamitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPE) 15N-labeled in the polar head group was investigated at pH 8.5 and pH 9.4 by 15N-NMR spectroscopy. Both phospholipids exhibit a decrease in the chemical shift anisotropy, indicating changes of the order parameter of the C-N bond and decrease in half-height width. Binding of Ca2+ induces a chemical shift change for the DPPE signal which indicates a decrease in the pKa of the amino group. The binding of spermine was also investigated for mixed phase (DPPC/DPPE) at pH 8 and pH 9.4; a decrease in the DPPE pKa was also noted. The signals of both phospholipids are broadened and the line shapes are more complex because of the lower mobility and the higher steric bulk of this molecule. The results show the value of 15N-NMR in the study of mixed liposomes and indicate that the deprotonation of membrane surface could constitute a necessary step for fusion processes.  相似文献   

12.
Synaptotagmin I (syt), an integral protein of the synaptic vesicle membrane, is believed to act as a Ca2+ sensor for neuronal exocytosis. Syt's cytoplasmic domain consists largely of two C2 domains, C2A and C2B. In response to Ca2+ binding, the C2 domains interact with membranes, becoming partially embedded in the lipid bilayer. We have imaged syt C2AB in association with lipid bilayers under fluid, using AFM. As expected, binding of C2AB to bilayers required both an anionic phospholipid [phosphatidylserine (PS)] and Ca2+. C2AB associated with bilayers in the form of aggregates of varying stoichiometries, and aggregate size increased with an increase in PS content. Repeated scanning of bilayers revealed that as C2AB dissociated it left behind residual indentations in the bilayer. The mean depth of these identations was 1.81 nm, indicating that they did not span the bilayer. Individual C2 domains (C2A and C2B) also formed aggregates and produced bilayer indentations. Binding of C2AB to bilayers and the formation of indentations were significantly compromised by mutations that interfere with binding of Ca2+ to syt or reduce the positive charge on the surface of C2B. We propose that bilayer perturbation by syt might be significant with respect to its ability to promote membrane fusion.  相似文献   

13.
Mastoparan B (MP-B), an amphiphiphilic α-helical peptide newly isolated from the hornet Vespa basalis, was studied in comparison with mastoparan (MP), in terms of interaction with the phospholipid bilayer and of hemolytic and antimicrobial activity. The amphiphiphilic structure of MP-B has more hydrophilic amino acid residues in the hydrophilic surface than that of MP. Although each peptide had a considerably different effect on the interaction with lipid bilayers (e. g., their conformation in the presence of acidic and of neutral lipids and dye-release ability from the encapsulated liposomes), on the whole the interaction mode was similar. MP-B caused a change in the shape of erythrocytes from normal discoid to a crenated form (named echinocytes). MP exhibited strong activity against gram-positive bacteria but not against gram-negative ones. Contrary to this, MP-B showed both strong activity against gram-positive bacteria and potent activity against gram-negative bacteria. Whereas both peptides have almost the same residues on the hydrophobic side, the difference in the hydrophilic surface area on the molecules seems to lead to the subtle change in its interaction with membranes, resulting in the alteration of biological activity. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Norleucine is a structural analog of methionine with a methylene group replacing the thio ether. Despite the close structural similarity of these two amino acids, norleucine-containing peptides have markedly different behaviour with phospholipids compared with methionine-containing peptides. For example, HCO-L-Ahx-L-Leu-L-Phe-OMe behaves as a hydrophobic peptide when mixed with dimyristoylphosphatidylcholine. This peptide lowers the enthalpy of the lipid phase transition. The effect is independent of the rate of heating. With the homologous peptide, HCO-L-Met-L-Leu-L-Phe-OMe, the results are markedly dependent on scan rate with a higher enthalpy observed at faster scan rates. Only at a scan rate of 0.2 K min-1 do the two peptides approach similar behaviour. The higher enthalpy observed for samples with the methionine peptide at higher scan rates can be explained assuming that the peptide aggregates at low temperature. As the phase transition temperature is approached, the more hydrophilic methionine peptide partitions more slowly into the membrane than the norleucine peptide. Partitioning of the peptides between aqueous and lipid phases was measured at 37 degrees by centrifuging down the lipid-bound fraction. At a peptide concentration of 15 microM and a lipid concentration of 1.4 mM, 89% of the HCO-L-Ahx-L-Leu-L-PheOMe and 97% of the HCO-L-Met-L-Leu-L-PheOMe remained in the supernate; indicating a greater tendency of the norleucine-containing peptide to partition into the lipid phase. The peptides Ac-L-Phe-L-Met-L-Arg-L-Phe-NH2 and Ac-L-Phe-L-Ahx-L-Arg-L-Phe-NH2 are readily soluble in water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In this study we compare the ability of various amino acids to protect small unilamellar vesicles against damage during freeze/thaw. Liposomes were composed of 75% palmitoyloleoyl phosphatidylcholine and 25% phosphatidylserine. Damage to liposomes frozen in liquid nitrogen and thawed at 20 degrees C was assessed by resonance energy transfer. Cryoprotection by numerous amino acids was compared in the presence and absence of 350 mM NaCl. The majority of amino acids with hydrocarbon side chains increased membrane damage during freeze/thaw regardless of the presence of salt. However, amino acids with hydrocarbon side chains of less than three carbons long, e.g. glycine, alanine, and 2-aminobutyric acid, were cryoprotective only in the presence of salt. We suggest that NaCl selectively increases the solubility of such amino acids, allowing them to act as cryoprotectants. In contrast, amino acids with side chains containing charged amine groups were cryoprotective regardless of the presence of salt. The degree of charge on the second amine group is shown to be important for cryoprotection by these molecules. We present evidence that suggests an interaction between the positively charged, second amine group of the amino acid, and the negatively charged phospholipid headgroup.  相似文献   

16.
The molecular interaction between common polymer chains and the cell membrane is unknown. Molecular dynamics simulations offer an emerging tool to characterise the nature of the interaction between common degradable polymer chains used in biomedical applications, such as polycaprolactone, and model cell membranes. Herein we characterise with all-atomistic and coarse-grained molecular dynamics simulations the interaction between single polycaprolactone chains of varying chain lengths with a phospholipid membrane. We find that the length of the polymer chain greatly affects the nature of interaction with the membrane, as well as the membrane properties. Furthermore, we next utilise advanced sampling techniques in molecular dynamics to characterise the two-dimensional free energy surface for the interaction of varying polymer chain lengths (short, intermediate, and long) with model cell membranes. We find that the free energy minimum shifts from the membrane-water interface to the hydrophobic core of the phospholipid membrane as a function of chain length. Finally, we perform coarse-grained molecular dynamics simulations of slightly larger membranes with polymers of the same length and characterise the results as compared with all-atomistic molecular dynamics simulations. These results can be used to design polymer chain lengths and chemistries to optimise their interaction with cell membranes at the molecular level.  相似文献   

17.
The hexapeptide Ac-RRWWRF-NH2 has earlier been identified as a potent antimicrobial peptide by screening synthetic combinatorial hexapeptide libraries. In this study, it was found that this peptide had a large influence on the thermotropic phase behavior of model membranes containing the negatively charged headgroup phosphatidylglycerol, a major component of bacterial membranes. In contrast, differential scanning calorimetry showed that it had little effect on model membranes containing the zwitterionic phosphatidylcholine headgroup, the main component of erythrocyte membranes. This behavior is consistent with its biological activity and with its affinity to these membranes as determined by titration calorimetry, implying that peptide-lipid interactions play an important role in this process. The structure of this peptide bound to membrane-mimetic sodium dodecyl sulfate (SDS) and dodecylphosphocholine micelles has been determined using conventional two-dimensional nuclear magnetic resonance methods. It forms a marked amphipathic structure in SDS with its hydrophobic residues on one side of the structure and with the positively charged residues on the other side. This amphipathic structure may allow this peptide to penetrate deeper into the interfacial region of negatively charged membranes, leading to local membrane destabilization. Knowledge about the importance of electrostatic interactions of Arg and the role of Trp residues as a membrane interface anchor will provide insight into the future design of potent antimicrobial peptidomimetics.  相似文献   

18.
Liu F  Lewis RN  Hodges RS  McElhaney RN 《Biochemistry》2002,41(29):9197-9207
High-sensitivity differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the interaction of an alpha-helical transmembrane peptide, acetyl-Lys2-Leu24-Lys2-amide (L24), and odd-chain members of the homologous series of n-saturated diacylphosphatidylcholines. An analogue of L24, in which the lysine residues were all replaced by 2,3-diaminopropionic acid, and another, in which a leucine residue at each end of the polyLeu sequence was replaced by a tryptophan, were also studied. At low peptide concentrations, the DSC thermograms exhibited by these lipid/peptide mixtures are resolvable into two components. One of these components is fairly narrow, highly cooperative, and exhibits properties which are similar to but not identical with those of the pure lipid. In addition, the transition temperature and cooperativity of this component, and its fractional contribution to the total enthalpy change, decrease with an increase in peptide concentration, more or less independently of phospholipid acyl chain length. The other component is very broad and predominates at high peptide concentrations. These two components have been assigned to the chain-melting phase transitions of populations of peptide-poor and peptide-enriched lipid domains, respectively. Moreover, when the mean hydrophobic thickness of the PC bilayer is less than the peptide hydrophobic length, the peptide-associated lipid melts at higher temperatures than does the bulk lipid and vice versa. In addition, the chain-melting enthalpy of the broad endotherm does not decrease to zero even at high peptide concentrations, suggesting that these peptides reduce somewhat but do not abolish the cooperative gel/liquid-crystalline phase transition of the lipids with which it is in contact. Our DSC results indicate that the width of the broad phase transition observed at high peptide concentration is inversely but discontinuously related to hydrocarbon chain length. Our FTIR spectroscopic data indicate that these peptides form a very stable alpha-helix under all of our experimental conditions but that small distortions of their alpha-helical conformation are induced in response to mismatch between peptide hydrophobic length and gel-state bilayer hydrophobic thickness. We also present evidence that these distortions are localized to the N- and C-terminal regions of these peptides. Interestingly, replacing the terminal Lys residues of L24 by 2,3-diaminopropionic acid residues actually attenuates the hydrophobic mismatch effects of the peptide on the thermotropic phase behavior of the host PC bilayer, in contrast to the predictions of the snorkel hypothesis. We rationalize this attenuated hydrophobic mismatch effect by postulating that the 2,3-diaminopropionic acid residues are too short to engage in significant electrostatic and hydrogen-bonding interactions with the polar headgroups of the host phospholipid bilayer, even in the absence of any hydrophobic mismatch between incorporated peptide and the bilayer. Similarly, the reduced hydrophobic mismatch effect also observed when the two terminal Leu residues of L24 are replaced by Trp residues is rationalized by considering the lower energetic cost of exposing the Trp as opposed to the Leu residues to the aqueous phase in thin PC bilayers and the higher cost of inserting the Trp as opposed to the Leu residues into the hydrophobic cores of thick PC bilayers.  相似文献   

19.
Drug-membrane association of daunomycin, adriamycin and three of its derivatives, adriamycin-14-octanoate (AD-14-OCTA), adriamycin-14-acetate (AD-14-ACE) and N-trifluoroacetyladriamycin-14-valerate (AD32), was studied using phospholipid bilayers and human erythrocytes. The various drugs exhibited a differential affinity to membrane-lipid domains.Lipid-incorporated drugs exhibit a marked change in the shape of the emission spectrum which was utilized for the evaluation of the apparent dielectric constant, ?, of the environment surrounding the anthracycline moiety, as well as for the determination of the partitioning constant. By measuring the fluorescence polarization and the fluorescence lifetime of the incorporated drugs, rotational relaxation times of 4–8 ns were derived. These parameters provide a supportive evidence for the association of the fluorophore of the drugs with membrane-lipid domains.The anthracycline derivatives interact to a different degree with dipalmitoyl phosphatidylcholine and phosphatidylserine as reflected by changes in their thermotropic properties assessed by differential scanning calorimetry. Daunomycin was the most effective in decreasing the temperature of the phase transition and brought about a comparable reduction in the enthalpy of melting as AD32 and AD-14-OCTA. Adriamycin was the least potent of the series.AD-14-ACE and AD32 protected erythrocytes against hypotonic lysis, adriamycin and daunomycin had no significant effect on the susceptibility to hypotonic lysis, whereas AD-14-OCTA proved to be hemolytic even at low concentration (approx. 10?7 M).The interaction of erythrocytes with daunomycin, AD-14-ACE and Ad-14-OCTA resulted in a shape change from biconcave discs to cups. Adriamycin and AD32 did not affect erythrocyte shape.The differential drug-membrane interactions may be an important determinant in the antitumor differential efficiency of the drugs, especially in view of the fact that derivatives that do not intercalate into the DNA (AD32) are at least as potent as those that do.  相似文献   

20.
Liu F  Lewis RN  Hodges RS  McElhaney RN 《Biochemistry》2004,43(12):3679-3687
High-sensitivity differential scanning calorimetry and Fourier transform infrared spectroscopy were used to study the interaction of a cationic alpha-helical transmembrane peptide, acetyl-Lys(2)-Leu(24)-Lys(2)-amide (L(24)), and members of the homologous series of anionic n-saturated diacyl phosphatidylglycerols (PGs). Analogues of L(24), in which the lysine residues were replaced by 2,3-diaminopropionic acid (L(24)DAP), or in which a leucine residue at each end of the polyleucine sequence was replaced by a tryptophan (WL(22)W), were also studied to investigate the roles of lysine side-chain snorkeling and aromatic side-chain interactions with the interfacial region of phospholipid bilayers. The gel/liquid-crystalline phase transition temperature of the host PG bilayers is altered by these peptides in a hydrophobic mismatch-dependent manner, as previously found with zwitterionic phosphatidylcholine (PC) bilayers. However, all three peptides reduce the phase transition temperature and enthalpy to a greater extent in anionic PG bilayers than in zwitterionic PC bilayers, with WL(22)W having the largest effect. All three peptides form very stable alpha-helices in PG bilayers, but small conformational changes are induced in response to a mismatch between peptide hydrophobic length and gel-state lipid bilayer hydrophobic thickness. Moreover, electrostatic and hydrogen-bonding interactions occur between the terminal lysine residues of L(24) and L(24)DAP and the polar headgroups of PG bilayers. However, such interactions were not observed in PG/WL(22)W bilayers, suggesting that the cation-pi interactions between the tryptophan and lysine residues predominate. These results indicate that the lipid-peptide interactions are affected not only by the hydrophobic mismatch between these peptides and the host lipid bilayer, but also by the tryptophan-modulated electrostatic and hydrogen-bonding interactions between the positively charged lysine residues at the termini of these peptides and the negatively charged polar headgroups of the PG bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号