首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 729 毫秒
1.
Mean arterial pressure (mmHg (1 mmHg = 133.322 Pa)), sodium excretion rate (mumol.kg-1.min-1), and urine flow (microL.kg-1.min-1) were measured in conscious unrestrained spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) before, during, and after a 3-h intravenous infusion of arginine vasopressin (20 ng.kg-1.min-1), an equipressor dose of phenylephrine, or an infusion of the vehicle. Cessation of the phenylephrine infusion was associated with a return of arterial pressure to preinfusion control values in both SHR and WKY. Cessation of the vasopressin infusion was also associated with a return of arterial pressure to preinfusion values in WKY. In contrast, in the SHR, arterial pressure fell from a preinfusion control level of 164 +/- 6.2 to 137 +/- 4 mmHg within 1 h of stopping the vasopressin infusion. Five hours after stopping the infusion, pressure was 134 +/- 3 mmHg (29 +/- 5 mmHg below preinfusion levels). Similar to the WKY, cessation of a vasopressin infusion was associated with a return of arterial pressure to preinfusion values in Sprague-Dawley rats. Thus, the failure to observe a hypotensive response in normotensive rats was not a peculiarity of the WKY strain. Sodium excretion rates increased during the infusions of vasopressin to a greater extent in SHR than in WKY. However, the natriuresis induced by phenylephrine was not significantly different from that generated by vasopressin in SHR, and in WKY, the natriuresis was greater for phenylephrine than for vasopressin. Urine output increased to a greater extent during the infusions of phenylephrine in both SHR and WKY than during vasopressin infusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
The potent neutral endopeptidase inhibitor SQ 28,603 (N-(2-(mercaptomethyl)-1-oxo-3-phenylpropyl)-beta-alanine) significantly increased excretion of sodium from 4.9 +/- 2.3 to 14.3 +/- 2.1 muequiv./min and cyclic 3',5'-guanosine monophosphate from 118 +/- 13 to 179 +/- 18 pmol/min after intravenous administration of 300 mumol/kg (approximately 80 mg/kg) in conscious female cynomolgus monkeys. SQ 28,603 did not change blood pressure or plasma atrial natriuretic peptide concentrations in the normal monkeys. In contrast, 1-h infusions of 3, 10, or 30 pmol.kg-1.min-1 of human atrial natriuretic peptide lowered blood pressure by -3 +/- 4, -9 +/- 4, and -27 +/- 3 mmHg (1 mmHg = 133.322 Pa), increased cyclic guanosine monophosphate excretion from 78 +/- 11 to 90 +/- 6, 216 +/- 33, and 531 +/- 41 pmol/min, and raised plasma atrial natriuretic peptide from 7.2 +/- 0.7 to 21 +/- 4, 62 +/- 12, and 192 +/- 35 fmol/mL without affecting sodium excretion. In monkeys receiving 10 pmol.kg-1.min-1 of atrial natriuretic peptide, 300 mumol/kg of SQ 28,603 reduced mean arterial pressure by -13 +/- 5 mmHg and increased sodium excretion from 6.6 +/- 3.2 to 31.3 +/- 6.0 muequiv./min, cyclic guanosine monophosphate excretion from 342 +/- 68 to 1144 +/- 418 pmol/min, and plasma atrial natriuretic peptide from 124 +/- 8 to 262 +/- 52 fmol/mL. In conclusion, SQ 28,603 stimulated renal excretory function in conscious monkeys, presumably by preventing the degradation of atrial natriuretic peptide by neutral endopeptidase.  相似文献   

4.
Increased activity of the renin-angiotensin system may be involved in sodium and water retention during controlled mechanical ventilation (CMV) with positive end-expiratory pressure (PEEP). We therefore evaluated renal, hemodynamic, and hormonal effects of an acute angiotensin-converting enzyme inhibition (ACEI) during PEEP and extracellular volume expansion in five trained chronically tracheotomized dogs. Three protocols were performed: control, 4 h spontaneous breathing with continuous positive mean airway pressure (Paw) of 4 cmH2O (CPAP 4); CMV 20, CPAP for 1st h, CMV with 20 cmH2O Paw for 2 h (2nd and 3rd h), and 1 h of CPAP (4th h); and CMV20-ACEI, ACEI (Ramipril, 2 mg/kg body wt) followed by the same protocol as in CMV 20. During control, sodium excretion (UNaV) and urine volume (V) increased continuously to 56.2 +/- 2.7 (SE) mumol.min-1.kg body wt-1 and 482 +/- 23 microliters.min-1.kg body wt-1, respectively. UNaV and V increased less during PEEP in CMV 20 and CMV 20-ACEI. However, significantly more sodium and water were retained in CMV 20 than in CMV 20-ACEI (2.3 +/- 0.3 vs. 1.0 +/- 0.3 mmol/kg body wt, and 20 +/- 3 vs. 11 +/- 2 ml/kg body wt) because of a decrease of glomerular filtration rate and fractional UNaV in CMV 20. Heart rate did not change in control, CMV 20, or CMV 20-ACEI. Mean arterial pressure increased during control by 13 mmHg, did not change during CMV 20, and was decreased by 7 mmHg in CMV 20-ACEI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The stimulus-response characteristics of cardiopulmonary baroreflex control of forearm vascular resistance (FVR) were studied in five unfit [UF, maximal O2 consumption (VO2 max) = 38.5 ml X min-1 X kg-1] and six fit (F, VO2 max = 57.0 ml X min-1 X kg-1) subjects. We assessed the relationship between reflex stimulus, i.e., changes in central venous pressure (CVP) and response, i.e., FVR, during selective unloading of the cardiopulmonary mechanoreceptors with lower body negative pressure (0 to -20 mmHg). The linear relationship between FVR and CVP, the gain of this baroreflex, was significantly diminished in the F subjects, -2.42 +/- 0.57 U/mmHg, compared with the UF, -5.15 +/- 0.58 U/mmHg. Both groups, F and UF, had similar resting values for CVP and FVR; thus the diminished gain in F subjects was not simply an artifact resulting from a shift of the set point along the baroreflex stimulus-response curve. We also found a linear relationship between baroreflex gain and total blood volume (r = 0.59, P less than 0.05). We conclude that the gain of this vascular reflex is attenuated in trained individuals and is related to cardiovascular adaptations, such as an increased blood volume, associated with exercise training.  相似文献   

6.
Dopamine production by the isolated perfused rat kidney   总被引:1,自引:0,他引:1  
We used isolated perfused rat kidneys to examine dopamine (DA) production and its relation to renal function. Both innervated and chronically surgically denervated kidneys perfused with a solution containing neither albumin nor tyrosine, excreted 0.2 +/- 0.1 ng DA X min-1 X g wet weight-1 during the 10-min collection period between 30 and 40 min after starting perfusion. When perfused with 6.7% albumin, without tyrosine, innervated kidneys excreted 1.0 +/- 0.06 ng DA X min-1 X g-1 and denervated kidneys excreted 1.0 +/- 0.07 DA X min-1 X g-1. When 0.03 mM tyrosine was included in the albumin perfusate, innervated kidneys excreted 1.2 +/- 0.1 ng DA X min-1 X g-1 (p less than 0.1). Under these conditions DA excretion continued for at least 100 min at which time it was 0.6 ng X min-1 X g-1 and 86 ng/g kidney weight had been excreted. Denervated kidneys perfused with albumin + tyrosine excreted 0.9 +/- 0.13 ng DA X min-1 X g-1. Renal stores of free DA, conjugated DA, and dihydroxyphenylalanine (DOPA) could have provided at the most 30 ng/g of DA. Carbidopa inhibited DA excretion completely. DA excretion did not correlate with renal vascular resistance, inulin clearance, or fractional sodium excretion. In summary, nonneural tissue in isolated perfused kidneys produced DA at the same rate as denervated kidneys in vivo. Less than one-third of the DA produced by isolated kidneys could have come from intrarenal stores of DOPA, free DA, and conjugated DA; the rest was synthesized from unknown precursors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We examined the respiratory effects of a patent ductus arteriosus in 29 premature lambs (131-135 days gestational age) after infiltrating the ductal wall with formaldehyde solution (Formalin) and placing a snare around the ductus to regulate its patency. The lambs were given sheep surfactant, paralyzed, and mechanically ventilated at birth. We first compared 8 lambs with open ductus and 13 lambs with closed ductus during the 12 h after birth. Although lambs with open ductus had greater pulmonary blood flow (301 +/- 36 vs. 188 +/- 11 ml.min-1.kg-1, mean +/- SE, at 12 h of age) and mean pulmonary arterial (44 +/- 3 vs. 33 +/- 2 mmHg) and left ventricular end-diastolic (6 +/- 0.6 vs 4 +/- 0.7 mmHg) pressures, we found no differences in dynamic respiratory compliance (Cdyn = 0.55 +/- 0.07 vs. 0.55 +/- 0.03 ml.cmH2O-1.kg-1), midtidal volume resistance (62 +/- 5 X 10(-3) vs. 62 +/- 7 X 10(-3) cmH2O.ml-1.s), or functional residual capacity (FRC = 27 +/- 3 vs. 26 +/- 2 ml.kg-1). Alveolar-arterial PO2 difference was lower in the lambs with open ductus (238 +/- 65 vs. 362 +/- 37 Torr). Next, we challenged eight lambs with two separate saline infusions (50 ml.kg-1 over 3 min), each given with the ductus alternately closed or open. When the ductus was closed, FRC was unchanged, but Cdyn increased by 18% immediately after the infusion. When the ductus was open, FRC decreased by 16% and Cdyn decreased by 12%. We conclude that the premature lamb is surprisingly resistant to changes in respiratory function from ductal patency during the immediate neonatal period.  相似文献   

8.
We have studied the effect of alveolar hypoxia on fluid filtration characteristics of the pulmonary microcirculation in an in situ left upper lobe preparation with near static flow conditions (20 ml/min). In six dogs (group 1), rate of edema formation (delta W/delta t, where W is weight and t is time) was assessed over a wide range of vascular pressures under two inspired O2 fraction (FIO2) conditions (0.95 and 0.0 with 5% CO2-balance N2 in both cases). delta W/delta t was plotted against vascular pressure, and the best-fit linear regression was obtained. There was no significant difference (paired t test) in either threshold pressure for edema formation [18.3 +/- 1.8 and 17.1 +/- 1.2 (SE) mmHg, respectively] or the slopes (0.067 +/- 0.008 and 0.073 +/- 0.017 g.min-1. mmHg-1.100g-1, respectively). In another seven dogs (group 2), delta W/delta t was obtained at a constant vascular pressure of 40 mmHg under four FIO2 conditions (0.95, 0.21, 0.05, and 0.0, with 5% CO2-balance N2). Delta W/delta t for the four conditions averaged 0.60 +/- 0.11, 0.61 +/- 0.11, 0.61 +/- 0.10, and 0.61 +/- 0.10 (SE) g.min-1.mmHg-1.100g-1, respectively. No significant differences (ANOVA for repeated measures) were noted. We conclude that alveolar hypoxia does not alter the threshold for edema formation or delta W/delta t at a given microvascular pressure.  相似文献   

9.
Hemodynamic, gas exchange, and hormonal response induced by application of a 25- to 40-mmHg lower body positive pressure (LBPP), during positive end-expiratory pressure (PEEP; 14 +/- 2.5 cmH2O) were studied in nine patients with acute respiratory failure. Compared with PEEP alone, LBPP increased cardiac index (CI) from 3.57 to 4.76 l X min-1 X m-2 (P less than 0.001) in relation to changes in right atrial pressure (RAP) (11 to 16 mmHg; P less than 0.01). Cardiopulmonary blood volume (CPBV) measured in five patients increased during LBPP from 546 +/- 126 to 664 +/- 150 ml (P less than 0.01), with a positive linear relationship between changes in RAP and CPBV (r = 0.88; P less than 0.001). Venous admixture (Qva/QT) decreased with PEEP from 24 to 16% (P less than 0.001) but did not change with LBPP despite the large increase in CI, leading to a marked O2 availability increase (P less than 0.001). Although PEEP induced a significant rise in plasma norepinephrine level (NE) (from 838 +/- 97 to 1008 +/- 139 pg/ml; P less than 0.05), NE was significantly decreased by LBPP to control level (from 1,008 +/- 139 to 794 +/- 124 pg/ml; P less than 0.003). Plasma epinephrine levels were not influenced by PEEP or LBPP. Changes of plasma renin activity (PRA) paralleled those of NE. No change in plasma arginine vasopressin (AVP) was recorded. We concluded that LBPP increases venous return and CPBV and counteracts hemodynamic effects of PEEP ventilation, without significant change in Qva/QT. Mechanical ventilation with PEEP stimulates sympathetic activity and PRA apparently by a reflex neuronal mechanism, at least partially inhibited by the loading of cardiopulmonary low-pressure reflex and high-pressure baroreflex. Finally, AVP does not appear to be involved in the acute cardiovascular adaptation to PEEP.  相似文献   

10.
To determine whether aerobic conditioning alters the orthostatic responses of older subjects, cardiovascular performance was monitored during graded lower body negative pressure in nine highly trained male senior athletes (A) aged 59-73 yr [maximum O2 uptake (VO2 max) = 52.4 +/- 1.7 ml.kg-1 x min-1] and nine age-matched control subjects (C) (VO2 max = 31.0 +/- 2.9 ml.kg-1 x min-1). Cardiac volumes were determined from gated blood pool scintigrams by use of 99mTc-labeled erythrocytes. During lower body negative pressure (0 to -50 mmHg), left ventricular end-diastolic and end-systolic volume indexes and stroke volume index decreased in both groups while heart rate increased. The decreases in cardiac volumes and mean arterial pressure and the increase in heart rate between 0 and -50 mmHg were significantly less in A than in C. For example, end-diastolic volume index decreased by 32 +/- 4 ml in C vs. 14 +/- 2 ml in A (P < 0.01), mean arterial pressure declined 7 +/- 5 mmHg in C and increased by 5 +/- 3 mmHg in A (P < 0.05), and heart rate increased 13 +/- 3 beats/min in C and 7 +/- 1 beats/min in A (P < 0.05). These data suggest that increased VO2 max among older men is associated with improved orthostatic responses.  相似文献   

11.
Hemodynamic effects of epinephrine: concentration-effect study in humans   总被引:1,自引:0,他引:1  
The hemodynamic effects of three different infusion rates of epinephrine (25, 50, or 100 ng X kg-1 X min-1 for 14 min) were examined in 10 normal human subjects. Ejection fraction and changes in cardiac volumes were assessed by radionuclide ventriculography. Plasma epinephrine was increased to levels that spanned the normal physiological range (178 +/- 15, 259 +/- 24, and 484 +/- 69 pg/ml, respectively). Epinephrine infusions resulted in dose-dependent increases in heart rate (8 +/- 3, 12 +/- 2, and 17 +/- 1 beats/min, mean +/- SE) and systolic pressure (8 +/- 1, 18 +/- 2, and 30 +/- 6 mmHg). Although epinephrine infusions had minimal effects on end-diastolic volume, there were significant increases in stroke volume (+26 +/- 2, 31 +/- 4, and 40 +/- 4%), ejection fraction (+0.10 +/- 0.01, 0.14 +/- 0.02 and 0.16 +/- 0.03 ejection fraction units), and cardiac output (+41 +/- 4, 58 +/- 5, and 74 +/- 1%). These increases in left ventricular performance were associated with a decreased systemic vascular resistance (-31 +/- 3, -42 +/- 2, and -48 +/- 8%). Supine bicycle exercise resulted in similar plasma epinephrine levels (417 +/- 109 pg/ml) and similar changes in stroke volume, ejection fraction, and systemic vascular resistance but greater increases in heart rate and systolic blood pressure. Since infusion-associated hemodynamic changes occurred at plasma epinephrine levels commonly achieved during many types of physical and emotional stress, epinephrine release may have an important role in regulating systemic vascular resistance, stroke volume, and ejection fraction responses to stress in man.  相似文献   

12.
We produced pulmonary fibrin microembolism using an infusion of a prothrombin activator (Echis carinatus venom, 30 min, 0.5 NIH thrombin equivalent units/kg) in open-chest mongrel dogs. To determine the nonclotting effects of this venom on edemagenesis we infused an irreversible thrombin inhibitor, D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (PPACK, 57 nmol X kg-1 X min-1 for 120 min), alone (n = 5) or with venom (Echis + PPACK, n = 5). The control group (n = 5) was given 1 ml of 0.9% NaCl. A decline in left atrial pressure (means +/- SE, 5.3 +/- 0.4 to 4.0 +/- 0.5 mmHg, P less than 0.05) and cardiac index (149 +/- 10 to 82 +/- 13 ml X min-1 X kg-1, P less than 0.01) in association with a marked increase in pulmonary arterial pressure (14.5 +/- 0.6 to 26.6 +/- 2.5 mmHg, P less than 0.001) and pulmonary vascular resistance (64 +/- 5 to 304 +/- 42 mmHg X ml-1 X min-1 X kg-1, P less than 0.001) was observed after 20 min of venom infusion. During this interval, pulmonary artery wedge pressure increased (4 +/- 1 to 12 +/- 4 mmHg, P less than 0.01) in four of eight animals. Fibrinogen declined below measurable levels and fibrin microemboli were seen in many pulmonary arterioles. These changes were not observed in the Echis + PPACK, PPACK, or control groups. Leukopenia and thrombocytopenia were observed in the Echis and Echis + PPACK groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To test the hypothesis that fetal lambs are able to maintain oxygen delivery to myocardial, brain and adrenal tissues during reduction in uterine blood flow to 25% of control, we performed experiments on five ewes and their fetuses. A snare occluder was placed around the maternal common hypogastric artery and catheters were placed for measurement of blood pressures, flows, blood gas tensions, pH and oxygen content. After a five day recovery period, control measurements were made. The snare occluder was then closed until the artery was fully occluded. The arterial occlusion caused uteroplacental blood flow to fall to 32 +/- 4% and maternal placental blood flow to fall to 25 +/- 3% of control values. This level of asphyxia was maintained for 19 +/- 3 minutes, when maternal and fetal blood flows were measured again. In response to occlusion, fetal ascending aortic PO2 fell from 21 +/- 2 (SEM) to 13 +/- 2 mmHg (P less than or equal to 0.01), oxygen content from 4.3 +/- 0.3 to 1.4 +/- 0.2 mM (P less than or equal to 0.01) and pH from 7.37 +/- 0.01 to 7.21 +/- 0.05 (P less than or equal to 0.01). PCO2 rose from 48 +/- 1 to 62 +/- 3 mmHg (P less than or equal to 0.01). Fetal arterial blood pressure increased from 51 +/- 3 to 61 +/- 3 mmHg (P less than or equal to 0.001) and heart rate decreased from 172 +/- 10 to 104 +/- 4 beats.min-1 (P less than or equal to 0.01). The heart, brain and adrenals showed vasodilation in response to the asphyxic stimulus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Right ventricular function was investigated in seven fetal sheep (125-130 days gestation) hypoxaemic at a mean of 5 days postoperation, and were compared to nine normoxaemic fetal sheep of the same gestation. Arterial O2 and CO2 tensions, pH, and haematocrit values for the hypoxaemic and normoxaemic fetuses were 15.6 +/- 1.0 vs. 20.6 +/- 1.8 torr, 49.4 +/- 4.1 vs. 46.1 +/- 1.6 torr, 7.38 +/- 0.02 vs. 7.39 +/- 0.02, and 29 +/- 7.5 vs. 31 +/- 5.3%, respectively. Right ventricular output and stroke volume were similar in the two groups, 241 +/- 57 vs. 247 +/- 75 ml X min-1 X kg-1 and 1.5 +/- 0.4 vs. 1.5 +/- 0.4 ml X kg-1, respectively. Filling and afterload pressures were also similar in the hypoxaemic and normoxaemic fetuses with right atrial pressure of 3.0 +/- 1.0 vs. 3.7 +/- 1.2 mmHg, and arterial pressure of 42 +/- 5 vs. 43 +/- 4 mmHg, respectively. Ventricular function curves were produced by rapid withdrawal and re-infusion of fetal blood producing curves with a steep ascending limb and a plateau phase. The breakpoint joining the limbs of the control function curve for the hypoxaemic and normoxaemic fetuses were right atrial pressure 2.9 +/- 1.0 vs. 3.4 +/- 1.2 mmHg and a stroke volume of 1.5 +/- 0.5 vs. 1.5 +/- 0.4 ml X kg-1, respectively. Linear regression of stroke volume against arterial pressure from 30-90 mmHg during infusions of nitroprusside and phenylephrine at right atrial filling pressures greater than breakpoint was stroke volume = 0.018 ml X kg-1 X mmHg-1 arterial pressure +/- 2.25 ml X kg-1. This equation is not different from that calculated in normoxaemic fetuses, and demonstrates that the fetal right ventricle is quite sensitive to changes in arterial pressure. These data indicate that reduction in fetal oxygen content by an estimated 40% does not affect fetal right ventricular function.  相似文献   

15.
M J Camargo  S A Atlas  T Maack 《Life sciences》1986,38(26):2397-2404
One of the major renal hemodynamic actions of atrial natriuretic factor (ANF) is to increase glomerular filtration rate (GFR). To assess the role of this effect on ANF-induced natriuresis (UNaV), diuresis (V) and kaliuresis (UKV) we performed late clamp experiments in six rats. After control periods (C), synthetic ANF (auriculin A) was infused i.v. (2 micrograms X min-1/kg body wt) throughout the experiment (150 min). After pre-clamp periods, the perfusion pressure of the left kidney (LK) was reduced to 75-80 mmHg. The right kidney (RK) served as a time control. In LK, before the late clamp, ANF increased (p less than 0.01) GFR from 1.5 +/- 0.1 to 1.8 +/- 0.1 ml/min, V from 17 +/- 5 to 53 +/- 5 microliters/min, and UNaV from 2.1 +/- 0.6 to 10.0 +/- 0.9 microEq/min. Almost identical increases occurred in the RK. The late clamp returned all parameters in LK to C values (p greater than 0.05): GFR to 1.4 +/- 0.1 ml/min, V to 6.3 +/- 1.2 microliter/min, and UNaV to 1.0 +/- 0.3 microEq/min. The late clamp also reversed the ANF-induced increase in UKV. In the RK, GFR (1.8 +/- 0.1 ml/min), V (38 +/- 4 microliter/min) and UNaV (7.8 +/- 0.8 microEq/min) remained elevated (p less than 0.01 vs. C) to the end of the experiment. These data demonstrate that upon return of GFR to control levels, the ANF-induced diuresis, natriuresis and kaliuresis is abolished. The results support our previous view that the increase in GFR together with a decrease in inner-medullary hypertonicity account wholly or in great part for the natriuretic action of ANF.  相似文献   

16.
In spontaneously hypertensive rats (SHR) and their normotensive Wistar-Kyoto controls (WKY), prolonged intravenous administration of angiotensin II (AII, 0.2 microgram X kg-1 X min-1 for 3h) resulted in similar increases in arterial blood pressure. Heart rate decreased in WKY and increased in SHR. At the end of the infusion, blood pressure dropped substantially in SHR, but not in WKY: at 5 h after AII withdrawal, blood pressure in SHR had fallen from a control value of 172 +/- 3.3 to 146 +/- 3.9 mmHg (p less than 0.01), whereas pressure in WKY had fallen from 116 +/- 3.0 to 107 +/- 4.2 mmHg (statistically non significant). Thus, pressure at 5 h after AII withdrawal was still substantially higher (p less than 0.01) in the SHR than in the WKY. The results demonstrate that the fall in blood pressure following withdrawal of a prolonged infusion of AII in SHR is much less than that reported to occur following withdrawal of a prolonged infusion of vasopressin (AVP) in SHR.  相似文献   

17.
Ventilation volume Vg - mlH2O.min-1 ), respiratory frequency (fR - breaths.min-1) and tidal volume (VT - mlH2O.breath-1 ) were measured in a group of Piaractus mesopotamicus (650.4 +/- 204.7 g; n = 10) during normoxia and in response to graded hypoxia. The fR was maintained constant, around 100 breaths.min-1, from normoxia until the O2 tension of the inspired water (PiO2) of 53 mmHg, below which it increased progressively, reaching maximum values (157.6 +/- 6.3 breaths.min-1) at 10 mmHg. The VT rose from 1.8 +/- 0.1 to 6.0 +/- 0.5 and 5.7 +/- 0.4 mlH2O. breath-1 in the PiO2 of 16 and 10 mmHg, respectively. The Vg increased from 169.3 11.0 (normoxia) to 940.1 +/- 85.6 mlH2O. min-1 at the PiO2 of 16 mmHg, below which it also tended to decrease. A second group of fish (29 to 1510.0 g, n = 34) was used for the evaluation of allometric relationships concerning ventilation and dimensions of the buccal and opercular cavities. At maximum Vg, the VT corresponded to 93.2 +/- 2.4% of the buccal volume and 94.9 2.3% of the opercular volume, suggesting that the Vg of P. mesopotamicus is limited by the volumes of buccal and opercular cavities in severe hypoxia.  相似文献   

18.
Blood volume expands significantly during pregnancy, but afferent signals from cardiac receptors are reduced. In addition, during exogenous volume expansion, right atrial pressure (RAP) increases more for equivalent volumes in pregnant animals, implying reduced atrial compliance. To examine possible gestational alterations in atrial dimension during volume expansion, we compared the effects of volume expansion on RAP and right atrial dimension (RAD) in pregnant vs. virgin rats. Anesthetized animals were ventilated and catheterized for measurement of arterial pressure and RAP and for drug infusion. Through a parasternal incision, ultrasonic crystals were glued to the medial and lateral surfaces of the right atrium for measurement of RAD. Plasma volume and hematocrit were determined before experimentation. RAP, RAD, and arterial pressure were recorded at baseline and during progressive volume expansion (6% dextran, 60% of initial blood volume). Baseline RAP was similar in the two groups: 2.82 +/- 0.40 and 2.72 +/- 0.47 mmHg in pregnant and virgin rats, respectively. Basal RAD was significantly larger in pregnant than in virgin rats: 4.36 +/- 0.66 vs. 3.36 +/- 0.48 mm. Despite increased basal RAD in pregnant rats, the slope of the RAD-RAP relation during volume expansion was similar in the two groups. Results indicate that resting RAD is increased in pregnant rats and that the change in dimension during volume loads is similar to that in virgin rats. Thus, during pregnancy, the right atrium appears to accommodate the increased blood volume, and reduced afferent signaling most likely is due to mechanisms other than mechanical alterations of the atrium by expanded volume.  相似文献   

19.
To assess the degree of circulatory fullness and to evaluate the influence of peripheral and cardiac factors in the regulation of cardiac output during pregnancy, the following studies were conducted using pentobarbital-anesthetized, open-chest nonpregnant and late term pregnant guinea pigs. Mean circulatory filling pressure was taken as the equilibrium pressure when the pulmonary artery was constricted. Total vascular compliance was assessed by +/- 5-mL changes in blood volume performed while this constriction was maintained. A separate group of guinea pigs was prepared with a pulmonary artery electromagnetic flow probe and right atrial catheter. Rapid infusion of saline was used to increase right atrial pressure while the cardiac output was determined. Pregnancy was characterized by the following changes relative to nonpregnant controls: 51Cr-labelled RBC blood volume increased from 55 +/- 3 to 67 +/- 3 mL/kg; mean circulatory filling pressure increased from 7.1 +/- 0.2 to 8.0 +/- 0.5 mmHg (1 mmHg = 133.322 Pa); right atrial pressure decreased from 3.4 +/- 0.2 to 2.1 +/- 0.3 mmHg; and cardiac output increased from 71.8 +/- 3.9 to 96.8 +/- 3.3 mL.min-1.kg-1. Total vascular compliance was not changed (2.1 +/- 0.1 mL.kg-1.mmHg-1) and most of the expanded blood volume was accommodated as unstressed volume. The cardiac function curve was shifted upwards in pregnant animals. The resistance to venous return, as determined from the slope of the venous return curves, was not changed. These data suggest that the circulation of the pregnant guinea pig is slightly overfilled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
31P NMR measurement of ATP synthesis rate in perfused intact rat hearts   总被引:1,自引:0,他引:1  
Using 31P NMR and the saturation-transfer method, the unidirectional rate of ATP synthesis was measured in isolated, Langendorff-perfused, isovolumic rat hearts operating at a rate pressure product of 25.6 +/- 2.5 (SE) X 10(3) mmHg X min-1 and consuming O2 at a rate of 35 +/- 2 mumol O2 X min-1 X (g dry wt)-1, at 37 degrees C. This rate was 7.2 +/- 0.9 mumol X s-1 X (g dry wt)-1 and was related to the rate of oxygen atom consumption by a ratio of 6.3 +/- 0.9. These data show that in the intact heart the unidirectional rate of ATP synthesis exceeds the net rate of ATP synthesis and consumption by approximately a factor of 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号