首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pseudomonas putida KT2440 TOL upper pathway is repressed under nonlimiting conditions in cells growing in chemostat with succinate as a carbon source. We show that the ptsN gene product IIANtr participates in this repression. Crc, involved in yeast extract-dependent repression in batch cultures, did not influence expression when cells were growing in a chemostat with succinate at maximum rate.  相似文献   

2.
To determine the effect of a secondary carbon source on biodegradation of a chloroaromatic compound, Pseudomonas cepacia DBO1(pRO101) was grown in continuous cultures on basal salts media containing various mixtures of 2,4-dichlorophenoxyacetic acid (2,4-D) and succinate. Both succinate and 2,4-D were metabolized over the entire range of dilution rates and compositions analyzed (0.05 to 0.6 h-1). 2,4-Dichlorophenol (DCP), the only intermediate detected, accumulated to significant amounts (10 to 21 mg/liter) in the chemostat only when the dilution rate was 0.4 h-1 or greater. At these concentrations, DCP reduced the apparent growth rate of P. cepacia DBO1(pRO101) in batch cultures by 15 to 35% over the apparent growth rate on succinate alone. Succinate fed to the chemostat increased the cell density as well as the percentage of 2,4-D that was consumed at each dilution rate. When the amount of succinate in the feed exceeded the amount of 2,4-D, the specific rates of 2,4-D degradation in the chemostat or by washed cells were significantly lower than the specific rates for cells grown on 2,4-D alone, suggesting repression by succinate. However, when the amount of 2,4-D in the feed exceeded the amount of succinate, the specific rates of 2,4-D degradation remained at values equivalent to or higher than the specific rate for cells grown on 2,4-D alone. DCP accumulated significantly in the washed-cell assay, suggesting that the level of DCP hydroxylase is rate limiting.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract High hexokinase activity was not related to glucose repression in Candida utilis IGC 3092. The addition of Cibacron Blue 3G-A to growing cells in batch culture led to a permanent in vivo hexokinase inactivation, decreased growth rate and inhibited alcohol dehydrogenase. Hexokinase inactivation up to 90% did not alleviate glucose repression of α-glucosidase, as has been described for Saccharomyces cerevisiae and other yeasts. Moreover, when cells were physiologically derepressed by growing them in a chemostat at low glucose concentrations, the highest hexokinase activity was shown by the derepressed cells, and decreased as repression increased. Thus, in our strain of C. utilis , hexokinase activity was inversely proportional to glucose repression.  相似文献   

4.
K O'Connor  W Duetz  B Wind    A D Dobson 《Applied microbiology》1996,62(10):3594-3599
Styrene degradation in Pseudomonas putida CA-3 has previously been shown to be subject to catabolite repression in batch culture. We report here on the catabolite-repressing effects of succinate and glutamate and the effects of a limiting inorganic-nutrient concentration on the styrene degradation pathway of P. putida CA-3 in a chemostat culture at low growth rates (0.05 h-1). Oxidation of styrene and the presence of styrene oxide isomerase and phenylacetaldehyde dehydrogenase activities were used as a measure of the expression of the styrene degradation pathway. Both glutamate and succinate failed to repress the styrene degradation ability under growth conditions of carbon and energy limitation. Lower levels of enzyme activities of the styrene degradation pathway were seen in cells grown on styrene or phenylacetic acid (PAA) under conditions of both ammonia and sulfate limitation than were seen under carbon and energy limitation. Cells grown on PAA under continuous culture oxidize styrene and styrene oxide and possess styrene oxide isomerase and NAD(+)-dependent phenylacetaldehyde dehydrogenase activities. Catabolite repression of styrene metabolism was observed in cells grown on styrene or PAA in the presence of growth-saturating (nonlimiting) concentrations of succinate or glutamate under sulfate limitation.  相似文献   

5.
Using 2D electrophoresis the protein expression pattern during growth on carbon sources with different impact on carbon catabolite repression of phenol degradation was analysed in a derivative of Pseudomonas putida KT2440. The cytosolic protein pattern of cells growing on phenol or the non-repressive substrate pyruvate was almost identical, but showed significant differences to that of cells growing with the repressive substrates succinate or glucose. Proteins, which were mainly expressed in the presence of phenol or pyruvate, could be assigned to the functional groups of transport, detoxification, stress response, amino acid, energy, carbohydrate and nucleotide metabolism. The addition of succinate to cells growing with phenol ('shift-up') resulted in the inhibition of the synthesis of these proteins. Proteins with enhanced expression at growth with succinate or glucose were proteins for de novo synthesis of nucleotides, amino acids and enzymes of the TCA cycle. The synthesis of proteins, necessary for phenol catabolism was regulated in different manners following the addition of succinate. Whereas the synthesis of Phl-proteins (subunits of the phenolhydroxylase) only decreased slowly, was the translation of the Cat-proteins (catechol 1,2-dioxygenase, cis,cis-muconate cycloisomerase and muconolactone isomerase) repressed immediately and the synthesis of the Pca-proteins (beta-ketoadipate enolactone hydrolase, beta-ketoadipate succinyl-CoA transferase and beta-ketoadipyl CoA thiolase) remained unaffected.  相似文献   

6.
The symbiotic, nitrogen-fixing bacterium Sinorhizobium meliloti favors succinate and related dicarboxylic acids as carbon sources. As a preferred carbon source, succinate can exert catabolite repression upon genes needed for the utilization of many secondary carbon sources, including the alpha-galactosides raffinose and stachyose. We isolated lacR mutants in a genetic screen designed to find S. meliloti mutants that had abnormal succinate-mediated catabolite repression of the melA-agp genes, which are required for the utilization of raffinose and other alpha-galactosides. The loss of catabolite repression in lacR mutants was seen in cells grown in minimal medium containing succinate and raffinose and grown in succinate and lactose. For succinate and lactose, the loss of catabolite repression could be attributed to the constitutive expression of beta-galactoside utilization genes in lacR mutants. However, the inactivation of lacR did not cause the constitutive expression of alpha-galactoside utilization genes but caused the aberrant expression of these genes only when succinate was present. To explain the loss of diauxie in succinate and raffinose, we propose a model in which lacR mutants overproduce beta-galactoside transporters, thereby overwhelming the inducer exclusion mechanisms of succinate-mediated catabolite repression. Thus, some raffinose could be transported by the overproduced beta-galactoside transporters and cause the induction of alpha-galactoside utilization genes in the presence of both succinate and raffinose. This model is supported by the restoration of diauxie in a lacF lacR double mutant (lacF encodes a beta-galactoside transport protein) grown in medium containing succinate and raffinose. Biochemical support for the idea that succinate-mediated repression operates by preventing inducer accumulation also comes from uptake assays, which showed that cells grown in raffinose and exposed to succinate have a decreased rate of raffinose transport compared to control cells not exposed to succinate.  相似文献   

7.
The relationship between the xylose induced decrease in hexokinase PII activity and the derepression of invertase synthesis in yeast is described. When xylose was added to cells growing in a chemostat under nitrogen limitation, the catabolic repression was supressed as shown by the large increase on invertase levels even if glucose remained high. The glucose phosphorylating-enzymes were separated by hydroxylapatite chromatography and it is shown that the treatment with xylose is accompanied by a loss of 98% hexokinase PII and a 50% of the PI isoenzyme, whereas the levels of glucokinase as well as those of glucose-6-phosphate, fructose-6-phosphate, pyruvate and ATP remained unaffected.The analysis of the enzymes present in cells grown in ethanol, limiting glucose and high glucose, shows that hexokinase PII predominates in cells under catabolic repression, the opposite is true for glucokinase, whereas hexokinase PI remains unaffected.  相似文献   

8.
Synthesis of the Pseudomonas aeruginosa aliphatic amidase was repressed severely by succinate and malate and less severely by glucose, acetate or lactate. Amidase synthesis in inducible and constitutive strains was stimulated by cyclic AMP, which also gave partial relief to catabolite repression produced by the addition of lactate to cultures growing in pyruvate medium. Mutants which were resistant to catabolite repression were isolated from succinate+lactamide medium.  相似文献   

9.
In Pseudomonas aeruginosa, the synthesis of histidase, urocanase and amidase is severly repressed when succinate is added to a culture growing in pyruvate + ammonium salts medium. When growth is nitrogen-limited, catabolite repression by succinate of histidase and urocanase synthesis does not occur but succinate repression of amidase synthesis persists. Amidase synthesis is not regulated in the same way as histidase synthesis by the availability of other nitrogen compounds for growth. Growth of P. aeruginosa strain PACI in succinate + histidine media is nitrogen-limited since this strain is defective in a histidine transport system. When methyl-ammonium chloride is added to succinate + histidine media, growth inhibition occurs. Mutants isolated from succinate + histidine + methylammonium chloride plates were found to be resistant to catabolite repression by succinate even in ammonium salts media. It is suggested that the hut genes of P. aeruginosa may be regulated in the same way as in Klebsiella aerogenes, by induction by urocanate and activation by either the cyclic AMP-dependent activator protein or by glutamine synthetase.  相似文献   

10.
In contrast to its diauxic behaviour in batch culture, Thiobacillus A2 grew in chemostat culture using glucose and succinate as dual limiting substrates. Biomass production under dual limitations was the sum of that on single substrates with each substrate being oxidized and assimilated to similar extents in single and dual substrate-limited cultures. In glucose and glucose + succinate-limited cultures glucose was oxidized largely by the Entner-Doudoroff and pentose phosphate pathways, but other mechanisms also contributed and the ratios of pathways depended on substrate ratios and the previous substrate-history of the culture. Variations in specific activities of enzymes of carbohydrate metabolism following switches from single to mixed substrates were considerable, ranging from fourfold for fructose diphosphate aldolase to more than 200-fold for hexokinase, fructose diphosphatase, glucose 6-phosphate and 6-phosphogluconate dehydrogenases. Changes in specific activities occurred only over prolonged time periods in the chemostat, probably reflecting low concentrations of free substrates in carbon-limited cultures and consequent low levels of catabolite repression.  相似文献   

11.
Enzyme activities forming extracellular products from succinate, fumarate, and malate were examined using washed cell suspensions of Pseudomonas fluorescens from chemostat cultures. Membrane-associated enzyme activities (glucose, gluconate, and malate dehydrogenases), producing large accumulations of extracellular oxidation products in carbon-excess environments, have previously been found in P. fluorescens. Investigations carried out here have demonstrated the presence in this microorganism of a malic enzyme activity which produces extracellular pyruvate from malate in carbon-excess environments. Although the three membrane dehydrogenase enzymes decrease significantly in carbon-limited chemostat cultures, malic enzyme activity was found to increase fourfold under these conditions. The regulation of malate dehydrogenase and malic enzyme by malate or succinate was similar. Malate dehydrogenase increased and malic enzyme decreased in carbon-excess cultures. The opposite effect was observed in carbon-limited cultures. When pyruvate or glucose was used as the carbon source, malate dehydrogenase was regulated similarly by the available carbon concentration, but malic enzyme activity producing extracellular pyruvate was not detected. While large accumulations of extracellular oxalacetate and pyruvate were produced in malate-excess cultures, no extracellular oxidation products were detected in succinate-excess cultures. This may be explained by the lack of detectable activity for the conversion of added external succinate to extracellular fumarate and malate in cells from carbon-excess cultures. In cells from carbon-limited (malate or succinate) cultures, very active enzymes for the conversion of succinate to extracellular fumarate and malate were detected. Washed cell suspensions from these carbon-limited cultures rapidly oxidized added succinate to extracellular pyruvate through the sequential action of succinate dehydrogenase, fumarase, and malic enzyme. Succinate dehydrogenase and fumarase activities producing extracellular products were not detected in cells from chemostat cultures using pyruvate or glucose as the carbon source. Uptake activities for succinate, malate, and pyruvate also were found to increase in carbon-limited (malate or succinate) and decrease in carbon-excess cultures. The role of the membrane-associated enzymes forming different pathways for carbon dissimilation in both carbon-limited and carbon-excess environments is discussed.  相似文献   

12.
In glucose-limited continuous cultures, a Crabtree positive yeast such as Saccharomyces cerevisiae displays respiratory metabolism at low dilution rates (D) and respirofermentative metabolism at high D. We hypothesized that the onset of fermentative metabolism is related with the catabolite repression or glucose repression effect. To test this hypothesis, we have investigated the physiological behavior in glucose-limited continuous cultures of S. cerevisiae strain CEN.PK122 and isogenic mutants, snf1 (cat1) and snf4 (cat3), defective in proteins involved in the release from glucose repression and the mutant in glucose repression mig1. We analyzed the behavior of the wild type and mutant strains at steady state in chemostat cultures as a function of D. Wild-type cells displayed respiratory metabolism up to a D of 0.2 h−1. snf1 and snf4 mutants started fermenting after a D of 0.1 and 0.15 h−1, respectively. The latter behavior was not due to an impairment of respiration since their specific rate of oxygen consumption was similar or even higher than that shown by the wild type. The snf1 strain displayed much lower yields than the wild type and the other mutants in the whole range of D studied. We conclude that the onset of fermentative metabolism in yeast growing in chemostat cultures is related with glucose repression.  相似文献   

13.
1. A rapid-sampling technique was used to obtain perchloric acid extracts of cells growing in a chemostat culture, so that meaningful values for ATP content could be obtained in spite of the fact that the turnover time for the total ATP content was about 1sec. 2. For steady-state growth, it was found that, in a glucose-limited chemostat culture, the ATP/ADP concentration ratio was approximately constant with changes in dissolved-oxygen tensions above the critical value, but fell when the culture was grown under oxygen-limited conditions and was at a minimum in anaerobically grown cultures. The steady-state ATP content was lower in cells growing under nitrogen-limited conditions with glucose in excess than in glucose-limited cells. The steady-state ATP content was independent of growth rate at growth rates over 0.1hr.(-1). 3. When the respiration rate of the cells was stimulated by lowering the oxygen tension the ATP content did not increase, indicating either an increased turnover rate of ATP or a fall in the P/O ratio. The sudden addition of extra glucose or succinate to a glucose-limited culture increased the respiration rate of the cells, but the ATP content quickly returned to the steady-state value after initial perturbations. This control over ATP content is explained in terms of regulation by adenine nucleotides of the catabolism and anabolism of glucose. An exception to this control over ATP content was found when the respiration rate was stimulated by addition of an antifoam.  相似文献   

14.
The synthesis of isocitrate lyase was induced by the presence of ethanol in the chemostat reaching a specific activity of 200 mU·mg-1 at this induced state. In glucoselimited, derepressed cells, 20 mU·mg-1 were detected and under repressed conditions isocitrate lyase activity was not detected.The sensitivity of gluconeogenic enzymes: cytoplasmic malate dehydrogenase; fructose 1,6-bisphosphatase and isocitrate lyase as well as the mitochondrial enzymes NADH dehydrogenase and succinate cytochrome c oxidase to glucose and galactose repression were studied in chemostat cultures. Our results show that galactose was less effective as a repressor than glucose. Malate dehydrogenase was completely inactivated by glucose, whereas galactose only produced a 78% decrease of specific activity. Fructose 1,6-bisphosphatase and isocitrate lyase were completely inactivated by both sugars but at different rate. Glucose produced an 85% decrease of specific activity of the mitochondrial enzymes whereas galactose only decrease an 67%.  相似文献   

15.
Growth characteristics of batch and continuous cultures of the pink facultative methylotrophMethylobacterium sp. MB1 were determined. The response of a chemostat culture to a pulse increase of methanol concentration was studied. Malate, succinate and oxaloacetate additions to the methanol-supplemented medium decreased batch culture growth inhibition by methanol. The carotenoid content in cells grown in a chemostat decreased with increasing growth rate. The key enzyme activities of C1-metabolism were measured in a chemostat culture at different dilution rates.  相似文献   

16.
Glucose metabolism has been studied in two strains ofAcinetobacter calcoaceticus. Strain LMD 82.3, was able to grow on glucose and possessed glucose dehydrogenase (EC 1.1.99.17). Glucose oxidation by whole cells was stimulated by PQQ, the prosthetic group of glucose dehydrogenase. PQQ not only increased the rate of glucose oxidation and gluconic acid production but also shortened the lag phase for growth on glucose. Strain LMD 79.41 also possessed glucose dehydrogenase but was unable to grow on glucose. Batch cultures and carbon-limited chemostat cultures growing on acetate in the presence of glucose oxidized the sugar to gluconic acid, which was not further metabolized. However, after prolonged cultivation on mixtures of acetate and glucose, carbon-limited chemostat cultures suddenly acquired the capacity to utilize gluconate. This phenomenon was accompanied by the appearance of gluconate kinase and a repression of isocitrate lyase synthesis. In contrast to the starter culture, cells from chemostats which had been fully adapted to gluconate utilization, were able to utilize glucose as a sole carbon and energy source in liquid and solid media.  相似文献   

17.
Summary The possibility that decreased mitochondrial function in anaerobic cultures of Saccharomyces cerevisiae is due to catabolite repression rather than anaerobiosis has been examined using a glucose-limited chemostat. Respiration, cytochromes, ubiquinone and a number of soluble and bound mitochondrial enzymes were measured in cells and cell-free homogenates. Derepression by growth in the chemostat under anaerobic conditions resulted in only small increases in the activity of bound enzymes, and in the amount of ubiquinone and respiration, compared with cells grown batch-wise (repressed). The extent of these increases was much smaller than that seen when cells were grown under aerobic conditions whether repressed or derepressed.  相似文献   

18.
P/O ratios were measured in membrane particles obtained from cells of Micrococcus denitrificans, while growing on different carbon sources. The membrane particles obtained from cells growing actively on glucose, succinate, ethanol and propanol as the carbon and energy sources catalyzed oxidative phosphorylation and yielded respective P/O ratios of 1.4, 1.2, 0.8, and 0.5 with NADH, and 0.8, 0.6, 0.6, and 0.5 with succinate as the electron donors. Not such a difference in P/O ratio is observed in intact resting cells grown with different carbon sources. It is concluded that the influence of the carbon source is probably directed towards the efficiency of oxidative phosphorylation in membrane particles and not in the growing cells.For the aerobic carbon source-limited chemostat cultures the following maximum growth yields were determined: 40.2 and 34.2 for succinate and oxgen, 41.7 and 36.5 for malate and oxygen, 81.4 and 39.4 for mannitol and oxygen, and 77.8 and 43.4 for gluconate and oxygen respectively. With a mathematical model (de K waadsteniet et al., in press) the P/O ratio was valued at 1.4–1.7. Y ATP at =0.2 was valued at 8.7–10.9; Y ATP max at 9.6–13.2 and m e at 0.6–4.5 for the most precise experiment (gluconate-limited). The calculation of these growth parameters has been discussed.  相似文献   

19.
The levels of leucine-forming enzymes in Escherichia coli K-12 varied over a several thousand-fold range, depending upon conditions of growth. The highest levels were achieved by growing auxotrophs in a chemostat under conditions of leucine limitation. Under such conditions, enzyme levels were increased 45- to 90-fold relative to cells grown in minimal medium containing leucine (the latter values arbitrarily called 1). Leucine operon-specific messenger ribonucleic acid levels were elevated to about the same extent as enzyme levels in cells grown in a chemostat. Growth in media of greater complexity resulted in progressively lower levels of leucine-forming enzymes, reaching a value of less than 0.02 for growth in a medium containing tryptone broth and yeast extract. The levels of leucine operon-specified enzymes and messenger ribonucleic acid were also measured in strains containing about 25 copies of plasmid pCV1(ColE1-leu) per chromosome. For such strains grown in minimal medium, enzyme levels were proportional to the number of plasmids per cell. Furthermore, they followed the same trends as those described above upon derepression in a chemostat or upon repression following growth in rich media. Leucine messenger ribonucleic acid, measured both by pulse-labeling and hybridization-competition experiments, was roughly proportional to enzyme levels over this entire range. For a plasmid-containing strain grown in a chemostat under conditions of leucine limitation (about 100 plasmids per chromosome), about 27% of pulse-labeled ribonucleic acid was coded for by genes in or adjacent to the leucine operon, and 10% of the total protein was β-isopropylmalate dehydrogenase.  相似文献   

20.
The activity of glycerol kinase is rate-limiting in the metabolism of glycerol by cells of Escherichia coli. A mutant strain producing a glycerol kinase resistant to inhibition by fructose-1,6-diphosphate grows faster than its wild-type parent on glycerol as the sole source of carbon and energy. The amount of intracellular fructose-1,6-diphosphate was determined for wild-type cells growing exponentially on glycerol. The water content of such cells was also determined, allowing calculation of the intracellular concentration of fructose-1,6-diphosphate. This value, 1.7 mm, is adequate to exert substantial inhibition on the wild-type glycerol kinase. The desensitization of glycerol kinase to feedback inhibition also enhances the power of glycerol to exert catabolite repression, both on the enzymes of the glycerol system itself and on those of the lactose system. However, desensitization of glycerol kinase alone does not eliminate the phenomenon of diauxic growth in a glucose-glycerol medium. Biphasic growth in such a medium is abolished if the altered enzyme is produced constitutively. The constitutive production of the mutant kinase at high levels, however, renders the cells vulnerable to glycerol. Thus, when the cells have been grown on a carbon source with a low power for catabolite repression, e.g., succinate, sudden exposure to glycerol leads to overconsumption of the nutrient and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号