首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Myoglobin was isolated from the radular muscle of the chitonLiolophura japonica, a primitive archigastropodic mollusc.Liolophura contains three monomeric myoglobins (I, II, and III), and the complete amino acid sequence of myoglobin I has been determined. It is composed of 145 amino acid residues, and the molecular mass was calculated to be 16,070 D. The E7 distal histidine, which is replaced by valine or glutamine in several molluscan globins, is conserved inLiolophura myoglobin. The autoxidation rate at physiological conditions indicated thatLiolophura oxymyoglobin is fairly stable when compared with other molluscan myoglobins. The amino acid sequence ofLiolophura myoglobin shows low homology (11–21%) with molluscan dimeric myoglobins and hemoglobins, but shows higher homology (26–29%) with monomeric myoglobins from the gastropodic molluscsAplysia, Dolabella, andBursatella. A phylogenetic tree was constructed from 19 molluscan globin sequences. The tree separated them into two distinct clusters, a cluster for muscle myoglobins and a cluster for erythrocyte or gill hemoglobins. The myoglobin cluster is divided further into two subclusters, corresponding to monomeric and dimeric myoglobins, respectively.Liolophura myoglobin was placed on the branch of monomeric myoglobin lineage, showing that it diverged earlier from other monomeric myoglobins. The hemoglobin cluster is also divided into two subclusters. One cluster contains homodimeric, heterodimeric, tetrameric, and didomain chains of erythrocyte hemoglobins of the blood clamsAnadara, Scapharca, andBarbatia. Of special interest is the other subcluster. It consists of three hemoglobin chains derived from the bacterial symbiont-harboring clamsCalyptogena andLucina, in which hemoglobins are supposed to play an important role in maintaining the symbiosis with sulfide bacteria.  相似文献   

2.
The complete amino acid sequence of myoglobin from the triturative stomach of gastropodic molluscBursatella leachii has been determined. It is composed of 146 amino acid residues, is acetylated at the N-terminus, and contains a single histidine residue at position 95 which corresponds to the heme-binding proximal histidine. The E7 distal histidine, which is conserved widely in myoglobins and hemoglobins, is replaced by valine inBursatella myoglobin. The amino acid sequence ofBursatella myoglobin shows strong homology (73–84%) with those ofAplysia andDolabella myoglobins.  相似文献   

3.
The cDNA for the unusual 41 kD myoglobin of the abaloneNordotis madaka was amplified by polymerase chain reaction (PCR), and the cDNA-derived amino acid sequence of 378 residues was determined. As with the myoglobin of the related abaloneSulculus diversicolor (Suzuki and Takagi,J. Mol. Biol. 228, 698–700, 1992), the sequence ofNordotis myoglobin showed no significant homology with any other globins, but showed high homology (35% identity) with vertebrate indoleamine 2,3-dioxygenase, a tryptophan degrading enzyme containing heme. The amino acid sequence homology betweenNordotis andSulculus myoglobins was 87%. These results support our previous idea that the abalone myoglobins evolved from a gene for indoleamine dioxygenase, but not from a globin gene, and therefore all of the hemoglobins and myoglobins are not homologous. Thus, abalone myoglobins appear to be a typical case of convergent evolution.  相似文献   

4.
Myoglobin was isolated from the radular muscle of the archaegastropod molluscOmphalius pfeifferi (Trochidae). The molecular mass was estimated by SDS-PAGE to be about 40 kDa, 2.5 times larger than that of usual myoglobin. The cDNA forOmphalius myoglobin was amplified by polymerase chain reaction, and the cDNA-derived amino acid sequence of 375 residues was determined, of which 73 residues were identified directly by the chemical sequencing of internal peptides. The amino acid sequence ofOmphalius myoglobin showed no significant homology with any other usual 16-kDa globins, but showed 84% and 36% identities with indoleamine dioxygenase-like myoglobins fromBattilus (Turbinidae) andSulculus (Haliotiidae), respectively. It also shows significant homology (26% identity) with human indoleamine 2,3-dioxygenase, a tryptophan-degrading enzyme containing heme. The distribution of indoleamine dioxygenase-like myoglobins suggests that they must have arisen exclusively along the specified lineage including the three families Haliotiidae, Turbinidae, and Trochidae of Archaegastropoda in molluscan evolution.  相似文献   

5.
Myoglobin was isolated from the radular muscle of the archaegastropod molluscOmphalius pfeifferi (Trochidae). The molecular mass was estimated by SDS-PAGE to be about 40 kDa, 2.5 times larger than that of usual myoglobin. The cDNA forOmphalius myoglobin was amplified by polymerase chain reaction, and the cDNA-derived amino acid sequence of 375 residues was determined, of which 73 residues were identified directly by the chemical sequencing of internal peptides. The amino acid sequence ofOmphalius myoglobin showed no significant homology with any other usual 16-kDa globins, but showed 84% and 36% identities with indoleamine dioxygenase-like myoglobins fromBattilus (Turbinidae) andSulculus (Haliotiidae), respectively. It also shows significant homology (26% identity) with human indoleamine 2,3-dioxygenase, a tryptophan-degrading enzyme containing heme. The distribution of indoleamine dioxygenase-like myoglobins suggests that they must have arisen exclusively along the specified lineage including the three families Haliotiidae, Turbinidae, and Trochidae of Archaegastropoda in molluscan evolution.  相似文献   

6.
The cDNA for the unusual 41 kD myoglobin of the abaloneNordotis madaka was amplified by polymerase chain reaction (PCR), and the cDNA-derived amino acid sequence of 378 residues was determined. As with the myoglobin of the related abaloneSulculus diversicolor (Suzuki and Takagi,J. Mol. Biol. 228, 698–700, 1992), the sequence ofNordotis myoglobin showed no significant homology with any other globins, but showed high homology (35% identity) with vertebrate indoleamine 2,3-dioxygenase, a tryptophan degrading enzyme containing heme. The amino acid sequence homology betweenNordotis andSulculus myoglobins was 87%. These results support our previous idea that the abalone myoglobins evolved from a gene for indoleamine dioxygenase, but not from a globin gene, and therefore all of the hemoglobins and myoglobins are not homologous. Thus, abalone myoglobins appear to be a typical case of convergent evolution.  相似文献   

7.
The complete amino acid sequence of myoglobin from the triturative stomach of gastropodic molluscBursatella leachii has been determined. It is composed of 146 amino acid residues, is acetylated at the N-terminus, and contains a single histidine residue at position 95 which corresponds to the heme-binding proximal histidine. The E7 distal histidine, which is conserved widely in myoglobins and hemoglobins, is replaced by valine inBursatella myoglobin. The amino acid sequence ofBursatella myoglobin shows strong homology (73–84%) with those ofAplysia andDolabella myoglobins.  相似文献   

8.
The blood clamBarbatia virescens has a heterodimeric hemoglobin in erythrocytes. Interestingly, the congeneric clamsB. reeveana andB. lima contain quite different hemoglobins: tetramer and polymeric hemoglobin consisting of unusual didomain chain. The complete amino acid sequence of chain I ofB. virescens has been determined. The sequence was mainly determined from CNBr peptides and their subpeptides, and the alignment of the peptides was confirmed by sequencing of PCR-amplified cDNA forB. virescens chain I. The cDNA-derived amino acid sequence matched completely with the sequence proposed from protein sequencing.B. virescens chain I is composed of 156 amino acid residues, and the molecular mass was calculated to be 18,387 D, including a heme group. The sequence ofB. virescens chain I showed 35–42% sequence identity with those of the related clamAnadara trapezia and the congeneric clamB. reeveana. An evolutionary tree forAnadara andBarbatia chains clearly indicates that all of the chains are evolved from one ancestral globin gene, and that the divergence of chains has occurred in each clam after the speciation. The evolutionary rate for clam hemoglobins was estimated to be about four times faster than that of vertebrate hemoglobin. We suggest that blood clam hemoglobin is a physiologically less important molecule when compared with vertebrate hemoglobins, and so it evolved rapidly and resulted in a remarkable diversity in quaternary and subunit structure within a relatively short period.  相似文献   

9.
Summary The monomeric hemoglobins ofChironomus tentans andC. pallidivittatus have been isolated and separated into their respective components by gel chromatography on Sephadex G-75 and ion-exchange chromatography on DEAE-Sephacel. The amino acid compositions of the purified components are given. The sequence of the 30 N-terminal amino acid residues of one of the monomeric components (Hb I fromC. pallidivittatus) was determined and found to be identical in almost all of its parts with the monomeric hemoglobins ofC. thummi (CTT III and CTT IV).Antibodies against the monomeric hemoglobins Hb I and Hb IIc and the dimeric fraction were highly specific and no cross reaction between dimeric and monomeric hemoglobins could be demonstrated. The antibodies against the monomers crossreact with the monomeric hemoglobins CTT III and CTT IV ofC. thummi. Taken together with genetic data, the immunological results indicate that divergence of monomeric from dimeric forms was an early event in the evolution of the various hemoglobins inChironomus.  相似文献   

10.
The abalone Sulculus diversicolor contains abundant myoglobin in its buccal mass. The myoglobin is homodimeric and the molecular mass of the constituent polypeptide chain is 41,000 Da. The amino acid sequence and gene structure are highly homologous with those of a vertebrate tryptophan-degrading enzyme, indoleamine dioxygenase (IDO). Thus Sulculus myoglobin evolved from an IDO gene, and represents a typical case of functional convergence. The oxygen equilibrium properties of Sulculus myoglobin were examined and compared with those of myoglobins from other sources. It binds oxygen reversibly, and the P50 was determined to be 3.8 mmHg at 20°C and pH 7.4, showing that the oxygen affinity of Sulculus myoglobin is significantly lower than those of usual 16 kDa myoglobins. It also displays no cooperativity (nmax: 1.02–1.06) and no alkaline Bohr effect between pH 7.0 and 7.9. The cDNA-derived amino acid sequences of vertebrate IDOs, molluscan IDO-like myoglobins and a homolog in the yeast Saccharomyces were aligned, and several amino acid residues were proposed as candidates for key residues to control the function of IDO or myoglobin.  相似文献   

11.
Gastropod mollusc myoglobins provide interesting clues to the evolution of this family of proteins. In addition to conventional monomeric myoglobins, this group also has dimeric and unusual indoleamine dioxygenase-like myoglobins. We isolated myoglobin from the radular muscle of living gastropod mollusc Theliostyla albicilla. The myoglobin appeared to be present in an oxidized met-form, a physiologically inactive form that is not capable of binding oxygen. Under the same extraction conditions, myoglobins mainly of the physiologically active oxy-form have been isolated from other molluscs. The complete amino acid sequence of 157 residues of Theliostyla myoglobin shows that it has a long N-terminal extension of seven residues and contains three functional key residues: CD1-Phe, E7-His, and F8-His. The metmyoglobin can easily be reduced to a ferrous state with Na(2)S(2)O(4). The autoxidation rate of the oxy-form was comparable to other molluscan myoglobins over a wide pH range, and Theliostyla myoglobin was shown to be stable as an oxygen-binding protein. Thus, the predominantly met-form of myoglobin in Theliostyla can be attributed to the incomplete functioning of the myoglobin reduction system in the radular muscle. Although the function of Theliostyla myoglobin is unclear, it may be a scavenger of H(2)O(2).  相似文献   

12.
Summary Hagfish hemoglobin has three main components, one of which is Hb III. It is monomeric and consists of 148 amino acid residues (M = 17 350). Its complete primary structure, previously published, is discussed here. The proximal amino acid (F8) of the heme linkage is histidine as always in the hemoglobins, but the regularly expected distal histidine E7 is substituted by glutamine. This substitution, leading to a new kind of heme linkage, has hitherto only been demonstrated in opossum hemoglobin. It is suggested that E7, Gln, is directed out of the heme pocket, and that the adjacent Ell, Ile, is directed toward the inside of the pocket, giving the distal heme contact instead of histidine.Myxine Hb III has an additional tail of 9 amino acid residues at its N-terminal end, as has the hemoglobin ofLampetra fluviatilis. The genetic codes ofMyxine andLampetra hemoglobins show 117 differences, in spite of many morphological resemblances between hagfish and lamprey. Their primary hemoglobin structures show differences substantial enough to bo compatible with the divergence of the two families some 400–500 million years ago.  相似文献   

13.
The primitive invertebrate, Phoronopsis viridis, of the phylum Phoronida, has intra-cellular hemoglobins composed of four unique polypeptide chains, two of which associate to form hetero- and homodimers and two which do not associate at all. The CO-derivatives of the associating chains are completely dimeric; removal of the ligand does not result in further aggregation as it does in several other invertebrate hemoglobins. Oxidation of the associating hemoglobins is accompanied by dissociation to monomers, but the cyanide derivative of the methemoglobin is dimeric. The four polypeptide chains all have molecular weights of about 16,000 as determined by iron content and gel electrophoresis with sodium dodecyl sulfate. The two associating chains form three components with isoelectric points at pH 5.6, 5.9, and 6.9 whereas those for the two monomeric chains are at pH 6.2 and 7.9. The chains have been characterized by amino acid composition, tryptic peptide patterns, and the amino acid sequence of the NH2-terminal segment. The oxygen equilibrium of a dimeric fraction has been determined at pH 7.5 and 20 °C; the pressure of half-saturation is 2.3 mm Hg.  相似文献   

14.
The blood clamBarbatia virescens has a heterodimeric hemoglobin in erythrocytes. Interestingly, the congeneric clamsB. reeveana andB. lima contain quite different hemoglobins: tetramer and polymeric hemoglobin consisting of unusual didomain chain. The complete amino acid sequence of chain I ofB. virescens has been determined. The sequence was mainly determined from CNBr peptides and their subpeptides, and the alignment of the peptides was confirmed by sequencing of PCR-amplified cDNA forB. virescens chain I. The cDNA-derived amino acid sequence matched completely with the sequence proposed from protein sequencing.B. virescens chain I is composed of 156 amino acid residues, and the molecular mass was calculated to be 18,387 D, including a heme group. The sequence ofB. virescens chain I showed 35–42% sequence identity with those of the related clamAnadara trapezia and the congeneric clamB. reeveana. An evolutionary tree forAnadara andBarbatia chains clearly indicates that all of the chains are evolved from one ancestral globin gene, and that the divergence of chains has occurred in each clam after the speciation. The evolutionary rate for clam hemoglobins was estimated to be about four times faster than that of vertebrate hemoglobin. We suggest that blood clam hemoglobin is a physiologically less important molecule when compared with vertebrate hemoglobins, and so it evolved rapidly and resulted in a remarkable diversity in quaternary and subunit structure within a relatively short period.  相似文献   

15.
The heterodont clam Calyptogena kaikoi, living in the cold-seep area at a depth of 3761 m of the Nankai Trough, Japan, has abundant hemoglobins and myoglobins in erythrocytes and adductor muscle, respectively. Two types of hemoglobins (Hb I and Hb II) were isolated, and the complete amino acid sequences of Hb I (145 residues) and Hb II (137 residues) were obtained with combination of cDNA and protein sequencing. The amino acid sequences of C. kaikoi Hbs I and II differed from homologous chains of the congeneric clam Calyptogena soyoae in eight and five positions, respectively. The distal (E7) His, one of the functionally important residues in hemoglobin and myoglobin, was replaced by Gln in hemoglobins of C. kaikoi. A phylogenetic analysis of clam hemoglobins indicates that the evolutionary rate of Calyptogena hemoglobins is rather faster than those of other clams, suggesting that the mutation rate might be accelerated in the deep-sea animals around the areas of cold seeps or hydrothermal vents. On the other hand, it was found unexpectedly that two myoglobins Mbs I and II, isolated from the red adductor muscle, are identical in amino acid sequence Hbs I and II, respectively. Thus it was assumed that genes for Hbs I and II are also expressed in the muscle of C. kaikoi in substitution for myoglobin gene. This suggests that the major physiological role of globins in C. kaikoi is storage of oxygen under the low oxygen conditions, rather than circulating of oxygen.  相似文献   

16.
The complete amino acid sequence of the myoglobin from Aplysia juliana, a species distributed world-wide, has been determined and compared with the sequence of the myoglobin of Aplysia limacina, a Mediterranean species, and of Aplysia kurodai, a Japanese and Asian species. Unlike mammalian myoglobins, Aplysia myoglobins contain only a single histidine residue, lacking the distal one, the homology being 76% between A. juliana and A. limacina, 74% between A. juliana and A. kurodai, and 83% between A. limacina and A. kurodai. The hydropathy profiles of the Aplysia myoglobins are very similar, but completely different from that of sperm whale myoglobin, taken as the reference.  相似文献   

17.
The cDNAs encoding two dimeric hemoglobins, Hbs I and II, of the deep-sea clam Calyptogena soyoae were amplified by PCR and the complete nucleotide sequences determined. The cDNA-derived amino acid sequences agreed completely with those determined chemically. Many of the molluscan intracellular globin genes have a characteristic four-exon/three-intron structure, with the precoding and two conventional introns conserved widely in animal globin genes. In this work we have determined the exon/intron organization of two hemoglobin genes of the deep-sea clam C. soyoae. Surprisingly, this gene has no precoding intron but instead contains an additional intron in the A-helix (A3.1), together with the two conventional introns (B12.2 and G6.3). This observation suggests that the precoding intron has been lost and the insertion of intron in A-helix occurred in the genes of Calyptogena. Alternatively, the sliding of intron from precoding to A-helix might have occurred.  相似文献   

18.
A genomic clone containing hemoglobin genes was isolated from a species of the chironomid genus Kiefferulus. Eight genes, including an apparent pseudogene, were sequenced and the amino acid sequences of the putative proteins were determined. By comparison to the previously described hemoglobins in the sister-genus Chironomus, they were identified as members of the dimeric Hb VIIB group. The results indicate that the existence of clusters of hemoglobin genes may be a common feature in chironomids and not just confined to Chironomus. The Kiefferulus genes show greatest similarity of amino acid sequence to Hb VIIB-7 from the Chironomus cluster. The results suggest that the ancestral cluster contained at least two gene types, one of which gave rise to VIIB-7 and the Kiefferulus genes while the other gave rise to the other Chironomus VIIB genes. Both clusters appear to have increased in size by duplication or unequal crossing over since the separation of the genera. It also appears that an unrelated gene present in the Chironomus cluster, Hb-Y, arose from a completely independent origin with no apparent equivalent gene anywhere in the genome of Kiefferulus or some other Chironomus species. Correspondence to: J. Martin  相似文献   

19.
Two structurally different monomeric and dimeric types of isocitrate dehydrogenase (IDH; EC 1.1.1.42) isozymes were confirmed to exist in a psychrophilic bacterium, Colwellia psychrerythraea, by Western blot analysis and the genes encoding them were cloned and sequenced. Open reading frames of the genes (icd-M and icd-D) encoding the monomeric and dimeric IDHs of this bacterium, IDH-M and IDH-D, were 2,232 and 1,251 bp in length and corresponded to polypeptides composed of 743 and 416 amino acids, respectively. The deduced amino acid sequences of the IDH-M and IDH-D showed high homology with those of monomeric and dimeric IDHs from other bacteria, respectively. Although the two genes were located in tandem, icd-M then icd-D, on the chromosomal DNA, a Northern blot analysis and primer extension experiment revealed that they are transcribed independent of each other. The expression of the monomeric and dimeric IDH isozyme genes in C. maris, a psychrophilic bacterium of the same genus as C. psychrerythraea, is known to be induced by low temperature and acetate, respectively, but no such induction in the expression of the C. psychrerythraea icd-M and icd-D genes was detected. IDH-M and IDH-D overexpressed in Escherichia coli were purified and characterized. In C. psychrerythraea, the IDH-M isozyme is cold-active whereas IDH-D is mesophilic, which is similar to C. maris that contains both cold-adapted and mesophilic isozymes of IDH. Experiments with chimeric enzymes between the cold-adapted monomeric IDHs of C. psychrerythraea and C. maris (IDH-M and ICD-II, respectively) suggested that the C-terminal region of the C. maris IDH-II is involved in its catalytic activity.  相似文献   

20.
Hemoglobins and myoglobins are some of the best studied proteins. They are distributed in animals, plants and bacteria, and the characteristic two intron-three exon structure is widely conserved in animal globin genes (Jhiang et al., 1988). To date, all of the hemoglobins and myoglobins are believed to have a common origin, and so they are considered to be homologous. We have isolated a completely new type of myoglobin from the red muscle of the abalone Sulculus diversicolor aquatilis. The myoglobin consists of an unusual 41 kDa polypeptide chain, contains one heme per chain and forms a homodimer under physiological conditions. The cDNA-derived amino acid sequence of Sulculus myoglobin showed no significant homology with any other globins, but, surprisingly, showed high homology (35% identity) with human indoleamine 2,3-dioxygenase, a tryptophan degrading enzyme containing heme. This clearly indicates that Sulculus myoglobin evolved from a gene for indoleamine dioxygenase, but not from a globin gene. Sulculus myoglobin lacks the enzyme activity of indoleamine dioxygenase. However, in the presence of tryptophan, the autoxidation rate of oxymyoglobin was greatly accelerated, suggesting that a tryptophan binding site remains near or in the heme cavity as a relic of the molecular evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号