首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小G蛋白RhoA是细胞内信号转导的重要成分,参与对细胞的多种功能活动的调控。溶血磷脂酸(lysophosphatidic acid,LPA)与多种细胞的G蛋白偶连受体结合而发挥作用,除刺激细胞增殖外,还通过活化RhoA,诱导细胞骨架改变。cAMP是经典的第二信使,其下游激酶PKA可抑制RhoA活性,因此,cAMP在许多细胞活动中对RhoA有拮抗作用。  相似文献   

2.
小G蛋白RhoA是细胞内信号转导的重要成分,参与对细胞的多种功能活动的调控。溶血磷脂酸(lysophosphatidicacid,LPA)与多种细胞的G蛋白偶连受体结合而发挥作用,除刺激细胞增殖外,还通过活化RhoA,诱导细胞骨架改变。cAMP是经典的第二信使,其下游激酶PKA可抑制RhoA活性,因此,cAMP在许多细胞活动中对RhoA有拮抗作用。本实验采用人前列腺癌细胞株PC-3,以绿色荧光蛋白(GreenFluorescentProtein,GFP)分别和不同RhoA结构(野生型RhoA、RhoA63L和RhoA188A)的cDNA共同转染细胞,在显微镜下(200倍视野)观察记录未转染细胞和转染细胞在LPA和cAMP作用下的形态变化,研究RhoA和cAMP/PKA介导的信号转导在调控癌细胞形态改变中的作用。  相似文献   

3.
The cross talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and RhoA-mediated signal transductions and the effect of this cross talk on biologic features of human prostate and gastric cancer cells were investigated. In the human gastric cancer cell line, SGC-7901, lysophosphatidic acid (LPA) increased RhoA activity in a dose-dependent manner. The cellular permeable cAMP analog, 8-chlorophenylthio-cAMP (CPT-cAMP), inhibited the LPA-induced RhoA activation and caused phosphorylation of RhoA at serine(188). Immunofluorescence microscopy, Western blotting, and green fluorescent protein (GFP)-tagged RhoA location assay in live cells revealed that RhoA was distributed in both the cytoplasm and nucleus of SGC-7901 cells. Treatment with LPA and/or CPT-cAMP did not induce obvious translocation of RhoA in the cells. The LPA treatment caused formation of F-actin in SGC-7901 cells, and CPT-cAMP inhibited the formation. In a modified Boyden chamber assay, LPA stimulated the migration of SGC-7901 cells, and CPT-cAMP dose-dependently inhibited the stimulating effect of LPA. In soft agar assay, LPA stimulated early proliferation of SGC-7901 cells, and CPT-cAMP significantly inhibited the growth of LPA-stimulated cells. In the prostate cancer cell line, PC-3, LPA caused morphologic changes from polygonal to round, and transfection with plasmid DNA encoding constitutively active RhoA(63L) caused a similar change. Treatment with CPT-cAMP inhibited the changes in both cases. However, in PC-3 cells transfected with a plasmid encoding mutant RhoA188A, LPA induced rounding, but CPT-cAMP could not prevent the change. Results of this experiment indicated that cAMP/PKA inhibited RhoA activation, and serine188 phosphorylation on RhoA was necessary for PKA to exert its inhibitory effect on RhoA activation. The cross talk between cAMP/PKA and RhoA-mediated signal transductions had significant affect on biologic features of gastric and prostate cancer cells, such as morphologic and cytoskeletal change, migration, and anchorage-independent growth. The results may be helpful in implementing novel therapeutic strategies for invasive and metastatic prostate and gastric cancers.  相似文献   

4.
Lysophosphatidic acid (LPA) is a serum-borne phospholipid that activates its own G protein-coupled receptors present in numerous cell types. In addition to stimulating cell proliferation, LPA also induces cytoskeletal changes and promotes cell migration in a RhoA- and Rac-dependent manner. Whereas RhoA is activated via Galpha(12/13)-linked Rho-specific guanine nucleotide exchange factors, it is unknown how LPA receptors may signal to Rac. Here we report that the prototypic LPA(1) receptor (previously named Edg2), when expressed in B103 neuroblastoma cells, mediates transient activation of RhoA and robust, prolonged activation of Rac leading to cell spreading, lamellipodia formation, and stimulation of cell migration. LPA-induced Rac activation is inhibited by pertussis toxin and requires phosphoinositide 3-kinase activity. Strikingly, LPA fails to activate Rac in cell types that lack the Rac-specific exchange factor Tiam1; however, enforced expression of Tiam1 restores LPA-induced Rac activation in those cells. Tiam1-deficient cells show enhanced RhoA activation, stress fiber formation, and cell rounding in response to LPA, consistent with Tiam1/Rac counteracting RhoA. We conclude that LPA(1) receptors couple to a G(i)-phosphoinositide 3-kinase-Tiam1 pathway to activate Rac, with consequent suppression of RhoA activity, and thereby stimulate cell spreading and motility.  相似文献   

5.
Cyclic phosphatidic acid (1-acyl-sn-glycerol-2,3-cyclic phosphate; cPA) is a naturally occurring analog of lysophosphatidic acid (LPA) with a variety of distinctly different biological activities from those of LPA. In contrast to LPA, a potent inducer of tumor cell invasion, palmitoyl-cPA inhibits FBS- and LPA-induced transcellular migration and metastasis. To prevent the conversion of cPA to LPA we synthesized cPA derivatives by stabilizing the cyclic phosphate ring; to prevent the cleavage of the fatty acid we generated alkyl ether analogs of cPA. Both sets of compounds were tested for inhibitory activity on transcellular tumor cell migration. Carba derivatives, in which the phosphate oxygen was replaced with a methylene group at either the sn-2 or the sn-3 position, showed much more potent inhibitory effects on MM1 tumor cell transcellular migration and the pulmonary metastasis of B16-F0 melanoma than the natural pal-cPA. The antimetastatic effect of carba-cPA was accompanied by the inhibition of RhoA activation and was not due to inhibition of the activation of LPA receptors.  相似文献   

6.
Mechanisms by which beta-adrenergic receptor (beta AR) agonists inhibit proliferation of human airway smooth muscle (HASM) cells were investigated because of their potential relevance to smooth muscle hyperplasia in asthma. We hypothesized that beta AR agonists would inhibit mitogenesis in HASM cells via the beta 2AR, an increase in cAMP, and PKA activation. HASM cells were treated for 24 h with various agents and then analyzed for [3H]thymidine incorporation as a measure of cell proliferation. EGF stimulated proliferation by approximately 10-fold. The nonselective beta AR agonist isoproterenol and the beta 2AR-selective agonists albuterol and salmeterol inhibited EGF-stimulated proliferation by more than 50%, with half-maximal effects at 4.8 nM, 110 nM, and 6.7 nM, respectively. A beta 2AR-selective antagonist inhibited the isoproterenol effect with 100-fold greater potency than a beta 1AR-selective antagonist, confirming beta 2AR involvement in the inhibition of proliferation. The cAMP-elevating agents PGE2 and forskolin decreased EGF-induced proliferation, suggesting cAMP as the mediator. beta 2AR agonists and forskolin also inhibited proliferation stimulated by lysophosphatidic acid (LPA) as well as the synergistic proliferation stimulated by LPA+EGF. Importantly, PKA-selective cAMP analogs did not inhibit proliferation at concentrations that maximally activated PKA (10-100 microM), whereas a cAMP analog selective for the exchange protein directly activated by cAMP (EPAC), 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, maximally inhibited proliferation at a concentration that did not activate PKA (10 microM). These data show that beta 2AR agonists and other cAMP-elevating agents decrease proliferation in HASM cells via a PKA-independent mechanism, and they provide pharmacological evidence for involvement of EPAC or an EPAC-like cAMP effector protein instead.  相似文献   

7.
Cyclic AMP (cAMP) is a pleiotropic second messenger that regulates numerous cellular processes. In vascular smooth muscle cells (VSMCs), these include cell proliferation, migration, and contractility. Here we show that cAMP-elevating agents induce dramatic morphological changes in VSMCs, characterized by cell rounding and formation of long branching processes. The stellate morphology is associated with disassembly of actin stress fibers and lamellipodia, loss of focal adhesions, and the formation of small F-actin rings. Because of the importance of Rho family GTPases in regulating actin dynamics, we analyzed their individual roles in the cAMP phenotype. We found that pharmacological or genetic inhibition of Rac mimics cAMP effect in inducing a stellate morphology of VSMCs. Expression of activated Rac1 prevents forskolin-induced cAMP stellation, suggesting that cAMP affects cell morphology by inhibiting Rac function. Consistent with this, treatment with forskolin inhibits agonist-stimulated Rac activation in VSMCs. We further show that activated Rac1 containing the F37A effector loop substitution fails to rescue the cAMP phenotype. Our results suggest that cAMP modulates the morphology of VSMCs by inhibiting a Rac-dependent signaling pathway.  相似文献   

8.
Polyunsaturated fatty acids (PUFAs) have important pharmacological effects on mammalian cells. Here, we show that carboxyl group-containing PUFAs inhibit lysophosphatidic acid (LPA)-induced focal adhesion formation, thereby inhibiting migration and adhesion. Carboxyl group-containing PUFAs inhibit LPA-induced calcium mobilization, whereas ethyl ester-group containing PUFAs have no effect. In addition, carboxyl group-containing PUFAs functionally inhibit LPA-dependent RhoA activation. Given these results, we suggest that PUFAs may inhibit LPA-induced calcium/RhoA signaling pathways leading to focal adhesion formation. Carboxyl group-containing PUFAs may have a functional role in this regulatory mechanism.  相似文献   

9.
Action mechanism of lipopolysaccharide (LPS), interleukin-1β (IL-1β), and lysophosphatidic acid (LPA) to regulate motility, an important process of astrogliosis, was investigated in rat astrocytes. While LPA exerted no significant effect on the cell migration, the prior treatment of the cells with LPS or IL-1β resulted in the appearance of migration activity in response to LPA. The LPS induction of the migration response to LPA was associated with the production of IL-1β precursor protein and inhibited by the IL-1 receptor antagonist. The IL-1β treatment also allowed LPA to activate Rac1. The LPA-induced Rac1 activation and migration were inhibited by pertussis toxin, a small interfering RNA specific to LPA(1) receptors, and LPA(1) receptor antagonists, including Ki16425. However, the IL-1β treatment had no appreciable effect on LPA(1) receptor mRNA expression and LPA-induced activation of ERK, Akt, and proliferation. The induction of the migration response to LPA by IL-1β was inhibited by a constitutively active RhoA. Moreover, LPA significantly activated RhoA through the LPA(1) receptor in the control cells but not in the IL-1β-treated cells. These results suggest that IL-1β inhibits the LPA(1) receptor-mediated Rho signaling through the IL-1 receptor, thereby disclosing the LPA(1) receptor-mediated G(i) protein/Rac/migration pathway.  相似文献   

10.
Lysophosphatidic acid (LPA) is a bioactive phospholipid that affects various biological functions, such as cell proliferation, migration, and survival, through LPA receptors. Among them, the motility of cancer cells is an especially important activity for invasion and metastasis. Recently, AMP-activated protein kinase (AMPK), an energy-sensing kinase, was shown to regulate cell migration. However, the specific role of AMPK in cancer cell migration is unknown. The present study investigated whether LPA could induce AMPK activation and whether this process was associated with cell migration in ovarian cancer cells. We found that LPA led to a striking increase in AMPK phosphorylation in pathways involving the phospholipase C-β3 (PLC-β3) and calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) in SKOV3 ovarian cancer cells. siRNA-mediated knockdown of AMPKα1, PLC-β3, or (CaMKKβ) impaired the stimulatory effects of LPA on cell migration. Furthermore, we found that knockdown of AMPKα1 abrogated LPA-induced activation of the small GTPase RhoA and ezrin/radixin/moesin proteins regulating membrane dynamics as membrane-cytoskeleton linkers. In ovarian cancer xenograft models, knockdown of AMPK significantly decreased peritoneal dissemination and lung metastasis. Taken together, our results suggest that activation of AMPK by LPA induces cell migration through the signaling pathway to cytoskeletal dynamics and increases tumor metastasis in ovarian cancer.  相似文献   

11.
The enhanced migration found in tumor cells is often caused by external stimuli and the sequential participation of cytoskeleton‐related signaling molecules. However, until now, the molecular connection between the lysophosphatidic acid (LPA) receptor and nonmuscle myosin II (NM II) has not been analyzed in detail for LPA‐induced migration. Here, we demonstrate that LPA induces migration by activating the LPA1 receptor which promotes phosphorylation of the 20 kDa NM II light chain through activation of Rho kinase (ROCK). We show that LPA‐induced migration is insensitive to pertussis toxin (PTX) but does require the LPA1 receptor as determined by siRNA and receptor antagonists. LPA activates ROCK and also increases GTP‐bound RhoA activity, concomitant with the enhanced membrane recruitment of RhoA. LPA‐induced migration and invasion are attenuated by specific inhibitors including C3 cell‐permeable transferase and Y‐27632. We demonstrate that NM II plays an important role in LPA‐induced migration and invasion by inhibiting its cellular function with blebbistatin and shRNA lentivirus directed against NM II‐A or II‐B. Inhibition or loss of either NM II‐A or NM II‐B in 4T1 cells results in a decrease in migration and invasion. Restoration of the expression of NM II‐A or NM II‐B also rescued LPA‐induced migration. Taken together, these results suggest defined pathways for signaling through the LPA1 receptor to promote LPA‐mediated NM II activation and subsequent cell migration in 4T1 breast cancer cells. J. Cell. Physiol. 226: 2881–2893, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

12.
We have previously shown that the transcellular migration of rat ascites hepatoma (AH130-MM1) cells through a cultured mesothelial cell monolayer (MCL) is triggered with lysophosphatidic acid (LPA) that stimulates actin polymerization and myosin light chain phosphorylation through the activation of Rho-ROCK (Rho-kinase) cascade. When, however, the motility of MM1 cells on a glass surface was tested by phagokinetic track motility assay, LPA failed to induce the motility. Nevertheless, when the glass had been coated with fibronectin (FN), LPA could induce phagokinetic motility which was accompanied by transformation of MM1 cells to fusiform-shape and assembly of focal adhesion. beta1 integrin, the counter receptor of FN, was expressed on MM1 cells. Anti-FN antibody, anti-beta1 integrin antibody and cyclo-GRGDSPA remarkably suppressed LPA-induced phagokinetic motility. These antibodies suppressed LPA-induced transcellular migration through MCL, as well. These results indicate that actin polymerization and phosphorylation of myosin light chain through Rho activation are insufficient for inducing motility but the cooperative FN/beta1 integrin-mediated adhesion is necessary for both the phagokinetic motility and transcellular migration of MM1 cells.  相似文献   

13.
Lysophosphatidic acid (LPA), a lipid mediator enriched in serum, stimulates cell migration, proliferation and other functions in many cell types. LPA acts on six known G protein-coupled receptors, termed LPA(1-6), showing both overlapping and distinct signaling properties. Here we show that, unexpectedly, LPA and serum almost completely inhibit the transwell migration of B16 melanoma cells, with alkyl-LPA(18:1) being 10-fold more potent than acyl-LPA(18:1). The anti-migratory response to LPA is highly polarized and dependent on protein kinase A (PKA) but not Rho kinase activity; it is associated with a rapid increase in intracellular cAMP levels and PIP3 depletion from the plasma membrane. B16 cells express LPA(2), LPA(5) and LPA(6) receptors. We show that LPA-induced chemorepulsion is mediated specifically by the alkyl-LPA-preferring LPA(5) receptor (GPR92), which raises intracellular cAMP via a noncanonical pathway. Our results define LPA(5) as an anti-migratory receptor and they implicate the cAMP-PKA pathway, along with reduced PIP3 signaling, as an effector of chemorepulsion in B16 melanoma cells.  相似文献   

14.
Cells of the vertebrate neural crest (crest cells) are an invaluable model system to address cell fate specification. Crest cells are amenable to tissue culture, and they differentiate to a variety of neuronal and nonneuronal cell types. Earlier studies have determined that bone morphogenetic proteins (BMP-2, -4, and -7) and agents that elevate intracellular cyclic AMP (cAMP) stimulate the development of the sympathoadrenal (SA, adrenergic) lineage in neural crest cultures. To investigate whether interactive mechanisms between signaling pathways influence crest cell differentiation, we characterized the combinatorial effects of BMP-2 and cAMP-elevating agents on the development of quail trunk neural crest cells in primary culture. We report that the cAMP signaling pathway modulates both positive and negative signals influencing the development of SA cells. Specifically, we show that moderate activation of cAMP signaling promotes, in synergy with BMP-2, SA cell development and the expression of the SA lineage-determining gene Phox2a. By contrast, robust activation of cAMP signaling opposes, even in the presence of BMP-2, SA cell development and the expression of the SA lineage-determining ASH-1 and Phox2 genes. We conclude that cAMP signaling acts as a bimodal regulator of SA cell development in neural crest cultures.  相似文献   

15.
The purpose of this study was to determine whether cyclic AMP (cAMP) plays any direct or indirect role in the antiproliferative effect of mouse L-cell interferon in Swiss 3T3 cells. Firstly, we found that interferon did not affect intracellular levels of cAMP in these cells in the absence or the presence of cAMP-elevating agents. Secondly, we examined the effect of interferon on the stimulation of DNA synthesis of quiescent 3T3 cells by a range of cyclic AMP-elevating agents, including cholera toxin, cAMP derivatives, and prostaglandin E, added in the presence of insulin or vasopressin. Interferon inhibited cyclic AMP-stimulated DNA synthesis as measured by incorporation of radioactive thymidine into acid-insoluble material and autoradiographic analysis of the fraction of labelled cells. Dose-response curves and kinetics of inhibition were identical to those obtained in cultures stimulated by combinations of growth factors that do not increase the intracellular level of cAMP. The inhibition by interferon of cAMP-stimulated DNA synthesis was also observed in secondary cultures of mouse embryo fibroblasts, where cAMP-elevating agents provide a mitogenic signal in the absence of other added growth factors. These results show that the inhibitory effect of interferon on DNA synthesis in Swiss 3T3 cells is not mediated by cyclic AMP.  相似文献   

16.
We have observed that stimulation of human natural killer cells with dibutyryl cAMP (Bt2cAMP) reproduced the effects of ADP ribosylation of the GTP binding protein RhoA by Clostridium botulinum C3 transferase: both agents induced similar morphological changes, inhibited cell motility and blocked the cytolytic function. We demonstrate here that cAMP-dependent protein kinase A (PKA) phosphorylates RhoA in its C-terminal region, on serine residue 188. This phosphorylation does not affect the ability of recombinant RhoA to bind guanine nucleotides, nor does it modify its intrinsic GTPase activity. However, treatment of cells with Bt2cAMP results in the translocation of membrane-associated RhoA towards the cytosol. Experiments using purified membrane preparations indicated that Rho-GDP dissociation inhibitor, which can complex phosphorylated RhoA in its GTP-bound state, was the effector of this translocation. Taken together, these data suggest that PKA phosphorylation of RhoA is a central event in mediating the cellular effects of cAMP, and support the existence of an alternative pathway for terminating RhoA signalling whereby GTP-bound RhoA, when phosphorylated, could be separated from its putative effector(s) independently of its GTP/GDP cycling.  相似文献   

17.
Rho GTPases participate in a wide variety of signal transduction pathways regulating the actin cytoskeleton, gene expression, cellular migration and proliferation. The aim of this study was to evaluate the role of Rho GTPases in signal transduction pathways during acinus formation in a human salivary gland (HSG) cell line initiated by extracellular matrix (ECM; Matrigel) alone or in combination with epidermal growth factor, basic fibroblast growth factor and lysophosphatidic acid (LPA). Immunohistochemical and Western blotting analyses showed that HSG cells contained RhoA, RhoB, Rac1 and Cdc42 proteins. All growth factors enhanced the effects of ECM on acinus formation, in a pathway dependent on PI3-kinase and Rho GTPases. The role of ROCK, a major RhoA effector, seemed limited to cortical actin polymerization. LPA stimulated cell migration and acinus formation in a PI3-kinase-independent pathway. The results suggest that Rho proteins are important for epithelial-mesenchymal interactions during salivary gland development.This work was supported by FAPESP (grant numbers: 97/09507-6, 01/09047-2).  相似文献   

18.
Astrocytes in the CNS undergo morphological changes and start to proliferate after breakdown of the blood–brain barrier. In culture, proliferating astrocytes have a flat, polygonal shape. When treated with cAMP-raising agents, astrocytes adopt a stellate, process-bearing morphology resembling theirin vivoappearance. Stellation is accompanied by loss of actin stress fibers and focal adhesions. Lysophosphatidic acid (LPA), a blood-borne mitogen that signals through its cognate G protein-coupled receptor, stimulates DNA synthesis in astrocytes and causes rapid reversal of cAMP-induced stellation. LPA reversal of stellation is initiated by f-actin reassembly and tyrosine phosphorylation of focal adhesion proteins such as paxillin. Botulinum C3 toxin, which inactivates the Rho GTPase, mimics cAMP-raising agents in inducing stellation, f-actin disassembly, paxillin dephosphorylation, and growth arrest. However, unlike cAMP-induced stellation, C3-induced stellation cannot be reversed by LPA. Conversely, astrocytes expressing activated RhoA fail to undergo cAMP-induced stellation. Thus, RhoA controls astrocyte morphology in that active RhoA directs LPA reversal of stellation, while inactivation of RhoA is sufficient to induce stellation.  相似文献   

19.
20.
Epithelial ovarian cancer (EOC) is asymptomatic at early stages and is often diagnosed late when tumor cells are highly metastatic. Lysophosphatidic acid (LPA) has been implicated in ovarian oncogenesis as levels of this lipid are elevated in patient ascites and plasma. Because the underlying mechanism governing LPA regulation of matrix metalloproteinase-2 (MMP-2) activation remains undefined, we investigated the relationship between LPA-induced changes in actin microfilament organization and MMP-2 enzymatic activity. We report that when cells were cultured at a high density, LPA mediated stress fiber and focal adhesion disassembly and significantly repressed RhoA activity in EOC cells. Inhibition of Rho-kinase/ROCK enhanced both LPA-stimulated loss of stress fibers and pro-MMP-2 activation. In contrast, expression of the constitutively active RhoA(G14V) mutant diminished LPA-induced pro-MMP-2 activation. LPA had no effects on membrane type 1-MMP or tissue inhibitor of metalloproteinase-2 expression, but up-regulated MMP-2 levels, contributing to the induction of MMP-2 activation. Interestingly, when cells were cultured at a low density, stress fibers were present after LPA stimulation, and ROCK activity was required for EOC cell migration. Collectively, these results were consistent with a model in which LPA stimulates the metastatic dissemination of EOC cells by initiating loss of adhesion and metalloproteinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号