首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolonged mechanical ventilation (MV) with O2-rich gas inhibits lung growth and causes excess, disordered accumulation of lung elastin in preterm infants, often resulting in chronic lung disease (CLD). Using newborn mice, in which alveolarization occurs postnatally, we designed studies to determine how MV with either 40% O2 or air might lead to dysregulated elastin production and impaired lung septation. MV of newborn mice for 8 h with either 40% O2 or air increased lung mRNA for tropoelastin and lysyl oxidase, relative to unventilated controls, without increasing lung expression of genes that regulate elastic fiber assembly (lysyl oxidase-like-1, fibrillin-1, fibrillin-2, fibulin-5, emilin-1). Serine elastase activity in lung increased fourfold after MV with 40% O2, but not with air. We then extended MV with 40% O2 to 24 h and found that lung content of tropoelastin protein doubled, whereas lung content of elastin assembly proteins did not change (lysyl oxidases, fibrillins) or decreased (fibulin-5, emilin-1). Quantitative image analysis of lung sections showed that elastic fiber density increased by 50% after MV for 24 h, with elastin distributed throughout the walls of air spaces, rather than at septal tips, as in control lungs. Dysregulation of elastin was associated with a threefold increase in lung cell apoptosis (TUNEL and caspase-3 assays), which might account for the increased air space size previously reported in this model. Our findings of increased elastin synthesis, coupled with increased elastase activity and reduced lung abundance of proteins that regulate elastic fiber assembly, could explain altered lung elastin deposition, increased apoptosis, and defective septation, as observed in CLD.  相似文献   

2.
Failed alveolar formation and excess, disordered elastin are key features of neonatal chronic lung disease (CLD). We previously found fewer alveoli and more elastin in lungs of preterm compared with term lambs that had mechanical ventilation (MV) with O(2)-rich gas for 3 wk (MV-3 wk). We hypothesized that, in preterm more than in term lambs, MV-3 wk would reduce lung expression of growth factors that regulate alveolarization (VEGF, PDGF-A) and increase lung expression of growth factors [transforming growth factor (TGF)-alpha, TGF-beta(1)] and matrix molecules (tropoelastin, fibrillin-1, fibulin-5, lysyl oxidases) that regulate elastin synthesis and assembly. We measured lung expression of these genes in preterm and term lambs after MV for 1 day, 3 days, or 3 wk, and in fetal controls. Lung mRNA for VEGF, PDGF-A, and their receptors (VEGF-R2, PDGF-Ralpha) decreased in preterm and term lambs after MV-3 wk, with reduced lung content of the relevant proteins in preterm lambs with CLD. TGF-alpha and TGF-beta(1) expression increased only in lungs of preterm lambs. Tropoelastin mRNA increased more with MV of preterm than term lambs, and expression levels remained high in lambs with CLD. In contrast, fibrillin-1 and lysyl oxidase-like-1 mRNA increased transiently, and lung abundance of other elastin-assembly genes/proteins was unchanged (fibulin-5) or reduced (lysyl oxidase) in preterm lambs with CLD. Thus MV-3 wk reduces lung expression of growth factors that regulate alveolarization and differentially alters expression of growth factors and matrix proteins that regulate elastin assembly. These changes, coupled with increased lung elastase activity measured in preterm lambs after MV for 1-3 days, likely contribute to CLD.  相似文献   

3.
Mechanical ventilation (MV) with O(2)-rich gas (MV-O(2)) offers life-saving treatment for newborn infants with respiratory failure, but it also can promote lung injury, which in neonates translates to defective alveolar formation and disordered lung elastin, a key determinant of lung growth and repair. Prior studies in preterm sheep and neonatal mice showed that MV-O(2) stimulated lung elastase activity, causing degradation and remodeling of matrix elastin. These changes yielded an inflammatory response, with TGF-β activation, scattered elastic fibers, and increased apoptosis, culminating in defective alveolar septation and arrested lung growth. To see whether sustained inhibition of elastase activity would prevent these adverse pulmonary effects of MV-O(2), we did studies comparing wild-type (WT) and mutant neonatal mice genetically modified to express in their vascular endothelium the human serine elastase inhibitor elafin (Eexp). Five-day-old WT and Eexp mice received MV with 40% O(2) (MV-O(2)) for 24-36 h. WT and Eexp controls breathed 40% O(2) without MV. MV-O(2) increased lung elastase and MMP-9 activity, resulting in elastin degradation (urine desmosine doubled), TGF-β activation (pSmad-2 increased 6-fold), apoptosis (cleaved-caspase-3 increased 10-fold), and inflammation (NF-κB activation, influx of neutrophils and monocytes) in lungs of WT vs. unventilated controls. These changes were blocked or blunted during MV-O(2) of Eexp mice. Scattered lung elastin and emphysematous alveoli observed in WT mice after 36 h of MV-O(2) were attenuated in Eexp mice. Both WT and Eexp mice showed defective VEGF signaling (decreased lung VEGF-R2 protein) and loss of pulmonary microvessels after lengthy MV-O(2), suggesting that elafin's beneficial effects during MV-O(2) derived primarily from preserving matrix elastin and suppressing lung inflammation, thereby enabling alveolar formation during MV-O(2). These results suggest that degradation and remodeling of lung elastin can contribute to defective lung growth in response to MV-O(2) and might be targeted therapeutically to prevent ventilator-induced neonatal lung injury.  相似文献   

4.
Prematurely born infants who require oxygen therapy often develop bronchopulmonary dysplasia (BPD), a debilitating disorder characterized by pronounced alveolar hypoplasia. Hyperoxic injury is believed to disrupt critical signaling pathways that direct lung development, causing BPD. We investigated the effects of normobaric hyperoxia on transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP) signaling in neonatal C57BL/6J mice exposed to 21% or 85% O(2) between postnatal days P1 and P28. Growth and respiratory compliance were significantly impaired in pups exposed to 85% O(2), and these pups also exhibited a pronounced arrest of alveolarization, accompanied by dysregulated expression and localization of both receptor (ALK-1, ALK-3, ALK-6, and the TGF-beta type II receptor) and Smad (Smads 1, 3, and 4) proteins. TGF-beta signaling was potentiated, whereas BMP signaling was impaired both in the lungs of pups exposed to 85% O(2) as well as in MLE-12 mouse lung epithelial cells and NIH/3T3 and primary lung fibroblasts cultured in 85% O(2). After exposure to 85% O(2), primary alveolar type II cells were more susceptible to TGF-beta-induced apoptosis, whereas primary pulmonary artery smooth muscle cells were unaffected. Exposure of primary lung fibroblasts to 85% O(2) significantly enhanced the TGF-beta-stimulated production of the alpha(1) subunit of type I collagen (Ialpha(1)), tissue inhibitor of metalloproteinase-1, tropoelastin, and tenascin-C. These data demonstrated that hyperoxia significantly affects TGF-beta/BMP signaling in the lung, including processes central to septation and, hence, alveolarization. The amenability of these pathways to genetic and pharmacological manipulation may provide alternative avenues for the management of BPD.  相似文献   

5.
Background:Vascular endothelial growth factor (VEGF) is one of the primary angiogenesis regulators in solid cancers. Brain solid tumors are life-threatening diseases in which angiogenesis is an important phase of tumor development and progression. In the present study, VEGF-A and VEGF receptor (VEGF-R1) gene expression was evaluated in CNS brain tumors.Methods:VEGF-A and VEGF-R1 expression was quantified using real-time PCR on fresh biopsies of 38 supratentorial brain tumors compared to 30 non-tumoral tissues. Then, the correlations were investigated with clinic-pathological and demographic factors of the patients.Results:PCR product sequencing confirmed the validity of qRT-PCR. Although VEGF-A and VEGF-R1 expression showed increasing trends with the progression of cell proliferation in different stages of astrocytoma, VEGF-R1 did not meet the 95% confidence interval in other brain tumors. An increasing trend in VEGF-A expression and a declining trend in VEGF-R1 expression from Stage I to II were observed in meningioma. VEGF-A and VEGF-R1 expression had no significant correlation with age and gender. Although peritumoral brain edema (PTBE) in astrocytoma was significantly associated with tumor stages, VEGF-A and VEGF-R1 were not correlated with PTBE in meningioma and metastasis.Conclusion:VEGF-A is a valuable factor for the prognosis of PTBE and malignancy in astrocytoma and is helpful in monitoring treatment approaches.Key Words: Angiogenesis, Brain edema, Brain neoplasm, Peritumoral brain, VEGF, VEGFR1  相似文献   

6.
Purification and refolding of vascular endothelial growth factor-B   总被引:1,自引:0,他引:1       下载免费PDF全文
Vascular endothelial growth factor (VEGF)-A interacts with the receptor tyrosine kinases VEGF-R1 and R2, and the importance of this interaction in endothelial cell (EC) function and blood vessel development has been well documented. Other ligands that interact differentially with these receptors and that are structurally related to VEGF-A include VEGF-B, VEGF-C, VEGF-D, and placenta growth factor (PLGF). Compared with VEGF-A, relatively little is known about the biological role of the VEGF-R1 specific ligand, VEGF-B. Two splice variant isoforms that differ at the COOH-terminus and which retain unique solubility characteristics are widely expressed throughout embryonic and postnatal development. Recent analysis of mice with a targeted deletion of the VEGF-B gene has revealed a defect in heart development and function consistent with an important role in vascularization of the myocardium (Bellomo D et al., 2000, Circ Res 86:E29-E35). To facilitate further characterization of VEGF-B, we have developed a protocol for expression and purification of refolded recombinant protein from Escherichia coli inclusion bodies (IBs). The approach developed resolves a number of significant issues associated with VEGF-B, including the ability to heterodimerize with endogenous VEGF-A when co-expressed in mammalian cells, a complex secondary structure incorporating inter- and intrachain disulfide bonds and hydrophobic characteristics that preclude the use of standard chromatographic resins. The resulting purified disulfide-linked homodimer was demonstrated to bind to VEGF-R1 and to compete with VEGF-A for binding to this receptor.  相似文献   

7.
Neonatal exposure to hyperoxia alters lung development in mice. We tested if retinoic acid (RA) treatment is capable to affect lung development after hyperoxic injury and to maintain structural integrity of lung. The gene of vascular endothelial growth factor A (VEGF-A) is one of the RA-responsive genes. Newborn BALB/c mice were exposed to room air, 40 % or 80 % hyperoxia for 7 days. One half of animals in each group received 500 mg/kg retinoic acid from day 3 to day 7 of the experiment. At the end of experiment we assessed body weight (BW), lung wet weight (LW), the wet-to-dry lung weight ratio (W/D) and the expression of mRNA for VEGF-A and G3PDH genes. On day 7 the hyperoxia-exposed sham-treated mice (group 80) weighed 20 % less than the room air-exposed group, whereas the 80 % hyperoxic group treated with RA weighed only 13 % less than the normoxic group. W/D values in 80 and 80A groups did not differ, although they both differed from the control group and from 40 groups. There was a significant difference between 40 and 40A groups, but the control group was different from 40 group but not from 40A groups. The 80 and 80A groups had mRNA VEGF-A expression lowered to 64 % and 41 % of the control group. RA treatment of normoxic and mild hyperoxic groups increased mRNA VEGF-A expression by about 50 %. We conclude that the retinoic acid treatment of newborn BALB/c mice exposed for 7 days to 80 % hyperoxia reduced the growth retardation in the 80 % hyperoxic group, reduced the W/D ratio in the 40 % but not in the 80 % hyperoxic group. Higher VEGF-A mRNA expression in the 80 % hyperoxic group treated with RA was not significant compared to the 80 % hyperoxic group.  相似文献   

8.

Background

Angiogenesis and lymphangiogenesis are classical features of granuloma formation in pulmonary tuberculosis (PTB). In addition, the angiogenic factor—VEGF-A is a known biomarker for PTB.

Aims/Methodology

To examine the association of circulating angiogenic factors with PTB, we examined the systemic levels of VEGF-A, VEGF-C, VEGF-D, VEGF-R1, VEGF-R2 and VEGF-R3in individuals with PTB, latent TB (LTB) or no TB infection (NTB).

Results

Circulating levels of VEGF-A, VEGF-C andVEGF-R2 were significantly higher in PTB compared to LTB or NTB individuals. Moreover, the levels of VEGF-A, VEGF-C and VEGF-R2 were significantly higher in PTB with bilateral and/or cavitary disease. The levels of these factors also exhibited a significant positive relationship with bacterial burdens in PTB. ROC analysis revealed VEGF-A and VEGF-R2 as markers distinguishing PTB from LTB or NTB. Finally, the circulating levels of all the angiogenic factors examined were significantly reduced following successful chemotherapy.

Conclusion

Therefore, our data demonstrate that PTB is associated with elevated levels of circulating angiogenic factors, possibly reflecting vascular and endothelial dysfunction. In addition, some of these circulating angiogenic factors could prove useful as biomarkers to monitor disease severity, bacterial burden and therapeutic responses.  相似文献   

9.
Angiogenesis is heavily influenced by VEGF-A and its family of receptors, particularly VEGF receptor 2 (VEGF-R2). Like most cell surface proteins, VEGF-R2 is glycosylated, although the function of VEGF-R2 with respect to its glycosylation pattern is poorly characterized. Galectin-3, a glycan binding protein, interacts with the EGF and TGFβ receptors, retaining them on the plasma membrane and altering their signal transduction. Because VEGF-R2 is glycosylated and both galectin-3 and VEGF-R2 are involved with angiogenesis, we hypothesized that galectin-3 binds VEGF-R2 and modulates its signal transduction as well. Employing a Western blot analysis approach, we found that galectin-3 induces phosphorylation of VEGF-R2 in endothelial cells. Knockdown of galectin-3 and Mgat5, an enzyme that synthesizes high-affinity glycan ligands of galectin-3, reduced VEGF-A mediated angiogenesis in vitro. A direct interaction on the plasma membrane was detected between galectin-3 and VEGF-R2, and this interaction was dependent on the expression of Mgat5. Using immunofluorescence and cell surface labeling, we found an increase in the level of internalized VEGF-R2 in both Mgat5 and galectin-3 knockdown cells, suggesting that galectin-3 retains the receptor on the plasma membrane. Finally, we observed reduced suture-induced neovascularization in the corneas of Gal3(-/-) and Mgat5(-/-) mice. These findings are consistent with the hypothesis that, like its role with the EGF and TGFβ receptors, galectin-3 contributes to the plasma membrane retention and proangiogenic function of VEGF-R2.  相似文献   

10.
Vascular endothelial growth factor-A (VEGF-A) signaling directs both vasculogenesis and angiogenesis. However, the role of VEGF-A ligand signaling in the regulation of epithelial-mesenchymal interactions during early mouse lung morphogenesis remains incompletely characterized. Fetal liver kinase-1 (Flk-1) is a VEGF cognate receptor (VEGF-R2) expressed in the embryonic lung mesenchyme. VEGF-A, expressed in the epithelium, is a high affinity ligand for Flk-1. We have used both gain and loss of function approaches to investigate the role of this VEGF-A signaling pathway during lung morphogenesis. Herein, we demonstrate that exogenous VEGF 164, one of the 3 isoforms generated by alternative splicing of the Vegf-A gene, stimulates mouse embryonic lung branching morphogenesis in culture and increases the index of proliferation in both epithelium and mesenchyme. In addition, it induces differential gene and protein expression among several key lung morphogenetic genes, including up-regulation of BMP-4 and Sp-c expression as well as an increase in Flk-1-positive mesenchymal cells. Conversely, embryonic lung culture with an antisense oligodeoxynucleotide (ODN) to the Flk-1 receptor led to reduced epithelial branching, decreased epithelial and mesenchymal proliferation index as well as downregulating BMP-4 expression. These results demonstrate that the VEGF pathway is involved in driving epithelial to endothelial crosstalk in embryonic mouse lung morphogenesis.  相似文献   

11.
Previous work has shown that heterozygocity for a null mutation of the VEGF-A gene, resulting in a 50% reduction in VEGF-A expression, is embryonic lethal at embroyonic day (E) 9.5 in mice. We now show that two- to threefold overexpression of VEGF-A from its endogenous locus results in severe abnormalities in heart development and embryonic lethality at E12.5-E14. The mutant embryos displayed an attenuated compact layer of myocardium, overproduction of trabeculae, defective ventricular septation and abnormalities in remodeling of the outflow track of the heart. In addition, aberrant coronary development was characterized by formation of oversized epicardial vessels, apparently through vasculogenesis. We infer that embryonic survival requires a narrow window of VEGF-A expression.  相似文献   

12.
Infection with respiratory syncytial virus (RSV) in children can progress to respiratory distress and acute lung injury necessitating mechanical ventilation (MV). MV enhances apoptosis and inflammation in mice infected with pneumonia virus of mice (PVM), a mouse pneumovirus that has been used as a model for severe RSV infection in mice. We hypothesized that the Fas/Fas ligand (FasL) system, a dual proapoptotic/proinflammatory system involved in other forms of lung injury, is required for enhanced lung injury in mechanically ventilated mice infected with PVM. C57BL/6 mice and Fas-deficient ("lpr") mice were inoculated intratracheally with PVM. Seven or eight days after PVM inoculation, the mice were subjected to 4 h of MV (tidal volume 10 ml/kg, fraction of inspired O(2) = 0.21, and positive end-expiratory pressure = 3 cm H(2)O). Seven days after PVM inoculation, exposure to MV resulted in less severe injury in lpr mice than in C57BL/6 mice, as evidenced by decreased numbers of polymorphonuclear neutrophils in the bronchoalveolar lavage (BAL), and lower concentrations of the proinflammatory chemokines KC, macrophage inflammatory protein (MIP)-1α, and MIP-2 in the lungs. However, when PVM infection was allowed to progress one additional day, all of the lpr mice (7/7) died unexpectedly between 0.5 and 3.5 h after the onset of ventilation compared with three of the seven ventilated C57BL/6 mice. Parameters of lung injury were similar in nonventilated mice, as was the viral content in the lungs and other organs. Thus, the Fas/FasL system was partly required for the lung inflammatory response in ventilated mice infected with PVM, but attenuation of lung inflammation did not prevent subsequent mortality.  相似文献   

13.

Background

Secondary pulmonary alveolar septal formation requires platelet derived growth factor (PDGF-A) and platelet derived growth factor receptor-alpha (PDGFRα), and their regulation influences alveolar septal areal density and thickness. Insufficient PDGFRα expression in lung fibroblasts (LF) results in failed septation.

Methods

Mice in which the endogenous PDGFRα-gene regulates expression of the green fluorescent protein were used to temporally and spatially track PDGFRα-signaling. Transition from the G1/Go to the S-phase of the cell cycle was compared in PDGFRα-expressing and non-expressing LF using flow cytometry. Laser scanning confocal microscopy was used to quantify p27kip1 and forkhead box "other" 3a (FoxO3a) in the nuclei of alveolar cells from mice bearing the PDGFRα-GFP knock-in, and p27kip1 in mice with a conditional deletion of PDGFRα-gene function. The effects of PDGF-A on the phosphorylation and the intracellular location of FoxO3a were examined using Western immuoblotting and immunocytochemistry.

Results

In neonatal mouse lungs, entry of the PDGFRα-expressing LF subpopulation into the S-phase of the cell cycle diminished sooner than in their non-expressing LF counterparts. This preferential diminution was influenced by PDGFRα-mediated signaling, which phosphorylates and promotes cytoplasmic localization of FoxO3a. Comparative observations of LF at different ages during secondary septation and in mice that lack PDGFRα in alveolar LF demonstrated that nuclear localization of the G1 cyclin-dependent kinase inhibitor p27kip1 correlated with reduced LF entry into S-phase.

Conclusions

Nuclear localization of FoxO3a, an important regulator of p27kip1 gene-expression, correlates with diminished proliferation of the PDGFRα-expressing LF subpopulation. These mechanisms for diminishing the effects of PDGFRα-mediated signaling likely regulate secondary septal formation and their derangement may contribute to imbalanced fibroblast cell kinetics in parenchymal lung diseases.  相似文献   

14.
Malignant tumors and chronic inflammatory diseases induce angiogenesis by overexpressing vascular endothelial growth factor A (VEGF-A/VPF). VEGF-A-induced pathological angiogenesis can be mimicked in immunoincompetent mice with an adenoviral vector expressing VEGF-A164 (Ad-VEGF-A164). The initial step is generation of greatly enlarged “mother” vessels (MV) from preexisting normal venules by a process involving degradation of their rigid basement membranes. Immunohistochemical and Western blot analyses revealed that versican, an extracellular matrix component in the basement membranes of venules, is degraded early in the course of MV formation, resulting in the appearance of a versican N-terminal DPEAAE fragment associated with MV endothelial cells. The protease ADAMTS-1, known to cleave versican near its N terminus to generate DPEAAE, is also upregulated by VEGF-A in parallel with MV formation and localizes to the endothelium of the developing MV. The authors also show that MMP-15 (MT-2 MMP), a protease that activates ADAMTS-1, is upregulated by VEGF-A in endothelial cells in vitro and in vivo. These data suggest VEGF-A initiates MV formation, in part, by inducing the expression of endothelial cell proteases such as ADAMTS-1 and MMP-15 that act in concert to degrade venular basement membrane versican. Thus, versican is actively processed during the early course of VEGF-A-induced pathological angiogenesis.  相似文献   

15.
16.
Mechanical ventilation (MV) of very premature infants contributes to lung injury and bronchopulmonary dysplasia (BPD), the effects of which can be long-lasting. Little is currently known about the ability of the very immature lung to recover from ventilator-induced lung injury. Our objective was to determine the ability of the injured very immature lung to repair in the absence of continued ventilation and to identify potential mechanisms. At 125 days gestational age (days GA, 0.85 of term), fetal sheep were partially exposed by hysterotomy under anesthesia and aseptic conditions; they were intubated and ventilated for 2 h with an injurious MV protocol and then returned to the uterus to continue development. Necropsy was performed at either 1 day (short-term group, 126 days GA, n = 6) or 15 days (long-term group, 140 days GA, n = 5) after MV; controls were unventilated (n = 7-8). At 1 day after MV, lungs displayed signs of injury, including hemorrhage, disorganized elastin and collagen deposition in the distal airspaces, altered morphology, significantly reduced secondary septal crest density, and decreased airspace. Bronchioles had thickened epithelium with evidence of injury and sloughing. Relative mRNA levels of early response genes (connective tissue growth factor, cysteine-rich 61, and early growth response-1) and proinflammatory cytokines [interleukins (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, and transforming growth factor-β] were not different between groups 1 day after MV. At 15 days after MV, lung structure was normal with no evidence of injury. We conclude that 2 h of MV induces severe injury in the very immature lung and that these lungs have the capacity to repair spontaneously in the absence of further ventilation.  相似文献   

17.

Background

Asthma leads to structural changes in the airways, including the modification of extracellular matrix proteins such as tenascin-C. The role of tenascin-C is unclear, but it might act as an early initiator of airway wall remodelling, as its expression is increased in the mouse and human airways during allergic inflammation. In this study, we examined whether Th1 or Th2 cells are important regulators of tenascin-C in experimental allergic asthma utilizing mice with impaired Th1 (STAT4-/-) or Th2 (STAT6-/-) immunity.

Methods

Balb/c wildtype (WT), STAT4-/- and STAT6-/- mice were sensitized with intraperitoneally injected ovalbumin (OVA) followed by OVA or PBS airway challenge. Airway hyperreactivity (AHR) was measured and samples were collected. Real time PCR and immunohistochemistry were used to study cytokines and differences in the expression of tenascin-C. Tenascin-C expression was measured in human fibroblasts after treatment with TNF-α and IFN-γ in vitro.

Results

OVA-challenged WT mice showed allergic inflammation and AHR in the airways along with increased expression of TNF-α, IFN-γ, IL-4 and tenascin-C in the lungs. OVA-challenged STAT4-/- mice exhibited elevated AHR and pulmonary eosinophilia. The mRNA expression of TNF-α and IFN-γ was low, but the expression of IL-4 was significantly elevated in these mice. OVA-challenged STAT6-/- mice had neither AHR nor pulmonary eosinophilia, but had increased expression of mRNA for TNF-α, IFN-γ and IL-4. The expression of tenascin-C in the lungs of OVA-challenged STAT4-/- mice was weaker than in those of OVA-challenged WT and STAT6-/- mice suggesting that TNF-α and IFN-γ may regulate tenascin-C expression in vivo. The stimulation of human fibroblasts with TNF-α and IFN-γ induced the expression of tenascin-C confirming our in vivo findings.

Conclusions

Expression of tenascin-C is significantly attenuated in the airways of STAT4-/- mice, which may be due to the impaired secretion of TNF-α and IFN-γ in these mice.  相似文献   

18.
Patients with acute respiratory distress syndrome are at increased risk for developing multiorgan system dysfunction. The goal of this study was to establish an in vivo murine model to assess the differential effects of ventilation-protective strategies on the development of acute lung injury and systemic organ inflammation. C57B/6 mice were randomized to mechanical ventilation (MV) with conventional, high (17 ml/kg) or protective, low (6 ml/kg) tidal volume (VT) after intratracheal hydrochloric acid or no intervention. Mean arterial pressure was continuously monitored during MV and did not differ between groups. After 4 h, lung injury was assessed by measurement of wet/dry lung weight, lung lavage protein concentration and cell count, and histology. Concentration of IL-6, TNF-alpha, VEGF, and VEGF receptor-2 (VEGFR2) was measured in lung, liver, kidney, and heart. Results were compared with control, spontaneously breathing mice. Lung injury and altered pulmonary cytokine expression were not detected after MV of healthy mice with low or high VT. Although MV did not significantly alter IL-6 or TNF-alpha in systemic organs, VEGF concentration significantly increased in liver and kidney. After acid aspiration, mice ventilated with high VT manifested lung injury and increased IL-6 and VEGFR2 in lung, liver, and kidney, whereas VEGF increased only in liver and kidney. MV with low VT after acid aspiration attenuated lung injury, both IL-6 and VEGFR2 expression in lung and systemic organs, and hepatic, but not renal, increased VEGF. Our data suggest that MV strategy has differential effects on systemic inflammatory changes and thus may selectively predispose to systemic organ dysfunction.  相似文献   

19.
The C-terminal G3 domains of lecticans mediate crosslinking to diverse extracellular matrix (ECM) proteins during ECM assembly, through their C-type lectin (CLD) subdomains. The structure of the rat aggrecan CLD in a Ca(2+)-dependent complex with fibronectin type III repeats 3-5 of rat tenascin-R provides detailed support for such crosslinking. The CLD loops bind Ca2+ like other CLDs, but no carbohydrate binding is observed or possible. This is thus the first example of a direct Ca(2+)-dependent protein-protein interaction of a CLD. Surprisingly, tenascin-R does not coordinate the Ca2+ ions directly. Electron microscopy confirms that full-length tenascin-R and tenascin-C crosslink hyaluronan-aggrecan complexes. The results are significant for the binding of all lectican CLDs to tenascin-R and tenascin-C. Comparison of the protein interaction surface with that of P-selectin in complex with the PGSL-1 peptide suggests that direct protein-protein interactions of Ca(2+)-binding CLDs may be more widespread than previously appreciated.  相似文献   

20.
Lung fibrosis involves the overexpression of ECM proteins, primarily collagen, by alpha-smooth muscle actin (ASMA)-positive cells. Caveolin-1 is a master regulator of collagen expression by cultured lung fibroblasts and of lung fibrosis in vivo. A peptide equivalent to the caveolin-1 scaffolding domain (CSD peptide) inhibits collagen and tenascin-C expression by normal lung fibroblasts (NLF) and fibroblasts from the fibrotic lungs of scleroderma patients (SLF). CSD peptide inhibits ASMA expression in SLF but not NLF. Similar inhibition of collagen, tenascin-C, and ASMA expression was also observed when caveolin-1 expression was upregulated using adenovirus. These observations suggest that the low caveolin-1 levels in SLF cause their overexpression of collagen, tenascin-C, and ASMA. In mechanistic studies, MEK, ERK, JNK, and Akt were hyperactivated in SLF, and CSD peptide inhibited their activation and altered their subcellular localization. These studies and experiments using kinase inhibitors suggest many differences between NLF and SLF in signaling cascades. To validate these data, we determined that the alterations in signaling molecule activation observed in SLF also occur in fibrotic lung tissue from scleroderma patients and in mice with bleomycin-induced lung fibrosis. Finally, we demonstrated that systemic administration of CSD peptide to bleomycin-treated mice blocks epithelial cell apoptosis, inflammatory cell infiltration, and changes in tissue morphology as well as signaling molecule activation and collagen, tenascin-C, and ASMA expression associated with lung fibrosis. CSD peptide may be a prototype for novel treatments for human lung fibrosis that act, in part, by inhibiting the expression of ASMA and ECM proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号