首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our report provides evidence that fluorescent carbocyanine dyes (diI and diO) can be used in experimental anatomical studies of the fixed autopsy human brain. The dyes transported in both anterograde and retrograde directions, providing labeling of axons with collaterals and neurons including dendrites. To study the retrograde labeling of pyramidal neurons and anterogradely labeling of afferent fibers in human motor cortex, we applied diI and diO to the white matter, I and III layers of cortex. During 2 months there was no evidence of passive diffusion from labeled fibers and neurons to other neurons or glia. This method will be useful for identifying alterations of neuronal connections associated with neurological and psychiatric disorders.  相似文献   

2.
In turtles (Testudo horsfieldi, Emys orbicularis), immunoreactivity to calbindin (CB), parvalbumin (PV), calretinin (CR) and co-localization of CB and PV were studied in neurons of the visual thalamic nuclei (Rot, GLd) projecting to the telencephalon using a combination of immunohistochemical and tracer methods. The prevalence of CB-immunoreactive (-ir) neurons in Rot, CB-ir and CR-ir neurons in GLd, and a smaller number of PV-ir neurons in both nuclei was shown. Double immunofluorescent labeling revealed that within both nuclei PV and CB are colocalized in most PV-ir and fewer CB-ir neurons. After injection of horseradish peroxidase into the Rot and GLs telencephalic projection fields, retrograde labeling was found in corresponding thalamic projection neurons immunoreactive to all the three proteins. After introduction of the fluorescent tracer Fluo-gold into the same telencephalic regions, retrograde labeling was detected in Rot and GLd neurons immunoreactive only to PV and CB as well as in neurons with colocalization of both proteins. These findings provide further evidence that in turtles the CB component prevails in the rotundo-telencephalic pathway while the CB/CR component is dominant in the geniculotelencephalic pathway. The role of functional specialization in segregation of neurons expressing distinct types of calcium-binding proteins is postulated.  相似文献   

3.
P A St John 《Life sciences》1991,49(26):2013-2021
The carbocyanine dye DiIC18(3) ("DiI") is commonly used for both anterograde and retrograde labeling of neurons, including live neurons in situ and in vitro. In the present experiments, DiIC18(3) was used to label motoneurons in the spinal cords and sensory neurons in the dorsal root ganglia of embryonic rats. When the neurons from these regions were placed in culture, the neurons labeled by the dye were found to die rapidly, suggesting that DiIC18(3) can be toxic to neurons of these types. A related dye, DiIC12(3), was found to be equally suitable for labeling these neurons, and was found not to have detectable toxic effects in vitro.  相似文献   

4.
Physiological studies on functionally identified myenteric neurons are scarce because of technical limitations. We combined retrograde labeling, cell culturing, and fluorescent intracellular Ca(2+) concentration ([Ca(2+)](i)) signaling to study excitatory neurotransmitter responsiveness of myenteric motor neurons. 1, 1-Didodecyl-3,3,3',3'-tetramethyl indocarbocyanine (DiI) was used to label circular muscle motor neurons of the guinea pig ileum. DiI-labeled neurons were easily detectable in cultures prepared from these segments. The excitatory neurotransmitters (10(-5) M) acetylcholine, substance P, and serotonin induced a transient rise in [Ca(2+)](i) in subsets of DiI-labeled neurons (66.7, 56.5, and 84. 3%, respectively). DiI-labeled motor neurons were either inhibitory (23.8%) or excitatory (76.2%) as assessed by staining for nitric oxide synthase or choline acetyltransferase. Compared with excitatory motor neurons, significantly fewer inhibitory neurons in culture responded to acetylcholine (0 vs. 69%) and substance P (12.5 vs. 69.2%). We conclude that combining retrograde labeling and Ca(2+) imaging allows identification of differential receptor expression in functionally identified neurons in culture.  相似文献   

5.
Evidence is presented which is consistent with a specific retrograde labeling of GABAergic neurons following [3H]-GABA application in their zone of termination. [3H]-GABA injection in the pigeon Wulst leads to perikaryal retrograde labeling in the ipsilateral thalamic visual relay, n. dorsolateralis anterior thalami, pars lateralis (DLLv). This result gives further support to the biochemical evidence of the existence, in the pigeon, of a GABAergic projection from DLLv to the ipsilateral visual Wulst.  相似文献   

6.
The purpose of the present study was to determine the interrelationship between the thalamic afferents arising from the cerebellum (Cb) and the internal segment of the globus pallidus (GPi) with the neurons projecting to the primary motor cortex (MI) and to the supplementary motor area (SMA). We combined fluorescent retrograde tracers with a double anterograde labeling technique. Multiple injections of a combination of Diamidino Yellow and Fast Blue were made into either the MI or SMA hand/arm representation as determined by intracortical microstimulation. In the same animal, biotinylated dextran amine was injected into the GPi and horseradish peroxidase conjugated to wheat germ agglutinin was injected into the contralateral cerebellar nuclei. The results revealed that the cerebellar and pallidal thalamic territories are largely separate. The ventral anterior nucleus (VA) and the ventral lateral nucleus pars oralis (VLo) contained a greater density of pallidal labeling while a greater density of cerebellar label was observed more caudally in the ventral posterior lateral nucleus pars oralis (VPLo) as well as in nucleus X (X). Moreover, we observed that the greatest coincidence of retrograde cell labeling was within the pallidal thalamic territory following the SMA injections and within the cerebellar thalamic territory following the MI injections. However, interdigitating foci of pallidal and cerebellar label were also observed particularly in the ventral lateral nucleus pars oralis (VLo) and the ventral lateral nucleus pars caudalis (VLc). In both VLo and VLc, we additionally observed coincidence between the cerebellar labeling and SMA projection neurons as well as between pallidal labeling and MI projection neurons. These data suggest that while MI primarily receives inputs originating from Cb and SMA primarily receives inputs originating from GPi, it also appears that MI and SMA receive secondary afferents arising from GPi and Cb, respectively.  相似文献   

7.
Fast blue (FB), rhodamine microspheres (RH), horseradish peroxidase (HRP), and wheat germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) were used as retrograde tracers to study the innervation of the rat superficial pineal gland (SP). One of the tracers was injected into the gland of each animal. All four retrograde tracers injected into the gland always labeled neurons in the superior cervical ganglia (SCG). No retrograde labeling was ever seen in the suprachiasmatic nuclei, paraventricular hypothalamic nuclei, lateral hypothalamus, habenular nuclei, amygdalar nuclei, or superior salivatory nuclei. Retrograde labeling was seen in the anterior hypothalamic nuclei, anterior thalamic nuclei, lateral geniculate bodies, and midbrain tectal structures when a tracer spread from the injection site to the overlying cortex, tectum, or commissures. Control studies included injection of tracer into the subarachnoid space around the SP or into structures adjacent to the SP. Only the injection of FB or WGA-HRP into the subarachnoid space labeled neurons in the SCG. This labeling was probably due to the spread of tracer to the choroid plexus. These results agree with recent work confirming the existence of a direct projection of the SCG into the interstitium around pinealocytes. The evidence does not substantiate an innervation originating in the habenular nuclei; the superior salivatory nuclei; or any other diencephalic, midbrain, pontine, or medullary structure.  相似文献   

8.
Following horseradish peroxidase iontophoretic application into the main olfactory bulb (MOB) retrograde neuronal labeling was examined in the telencephalon in the frog. Labeled neurons, the sources of the MOB afferents are found in the mitral cell layer of the contralateral MOB, pallial and some subpallial areas. Very heavy labeling is observed in the pars ventralis of the lateral pallium, and to a lesser extent in the medial pallium, pars dorsalis of the lateral pallium and in the dorsal pallium. In subpallium labeled neurons are found in the eminentia postolfactoria, the rostral part of the medial septal nucleus, and in the nucleus of the ventro-medial telencephalic wall, which is probably homologous to the nucleus of the diagonal band (Broca) of mammals. No labelled neurons were found in the caudal portion of the MOB granular layer, usually referred to as the anterior olfactory nucleus. The arrangement of the MOB centrifugal innervation in amphibians is discussed in comparison with that in mammals.  相似文献   

9.
Axonal transport is an essential process that carries cargoes in the anterograde direction to the synapse and in the retrograde direction back to the cell body. We have developed a novel in vivo method to exclusively mark and dynamically track retrogradely moving compartments carrying specific endogenous synaptic vesicle proteins in the Caenorhabditis elegans model. Our method is based on the uptake of a fluorescently labeled anti-green fluorescent protein (GFP) antibody delivered in an animal expressing the synaptic vesicle protein synaptobrevin-1::GFP in neurons. We show that this method largely labels retrogradely moving compartments. Very little labeling is observed upon blocking vesicle exocytosis or if the synapse is physically separated from the cell body. The extent of labeling is also dependent on the dyenin-dynactin complex. These data support the interpretation that the labeling of synaptobrevin-1::GFP largely occurs after vesicle fusion and the major labeling likely takes place at the synapse. Further, we observe that the retrograde compartment carrying synaptobrevin contains synaptotagmin but lacks the endosomal marker RAB-5. This labeling method is very general and can be readily adapted to any transmembrane protein on synaptic vesicles with a GFP tag inside the vesicle and can also be extended to other model systems.  相似文献   

10.
Examination of repaired spinal cord tracts has usually required separate groups of animals for anterograde and retrograde tracing owing to the incompatibility of techniques such as tissue fixation. However, anterograde and retrograde labeling of different animals subjected to the same repair may not allow accurate examination of that repair strategy because widely variable results can occur in animals subjected to the same strategy. We have developed a reliable method of labeling spinal cord motor tracts bidirectionally in the same animal using DiI, a lipophilic dye, to anterogradely label the corticospinal tract and Fluoro-Gold (FG) to retrogradely label cortical and brainstem neurons of several spinal cord motor tracts in normal and injured adult rats. Other tracer combinations (lipophilic dyes or fluorescent dextrans) were also investigated but were less effective. We also developed methods to minimize autofluorescence with the DiI/FG technique, and found that the DiI/FG technique is compatible with decalcification and immunohistochemistry for several markers relevant for studies of spinal cord regeneration. Thus, the use of anterograde DiI and retrograde FG is a novel technique for bidirectional labeling of the motor tracts of the adult spinal cord with fluorescent tracers and should be useful for demonstrating neurite regeneration in studies of spinal cord repair.(J Histochem Cytochem 49:1111-1122, 2001)  相似文献   

11.
The specificity of the retrograde axonal transport of 3H-serotonin (3H-5-HT) was radioautographically studied in the afferents to the olfactory bulb (O.B.). Injections of 3H-5-HT of different concentrations (10(-2), 10(-3), 10(-4) and 10(-5) M) were performed into the O.B. of catron pretreated rats. Following injection of 3H-5-HT (10(-2) M), a cytoplasmic perikaryal labeling was observed in the bulk of afferents to the O.B. (aminergic and non-aminergic neurons). When lower concentrations of 3H-5-HT (10(-5) M) were injected into the O.B., the retrograde labeling was only seen in the raphe dorsalis (RD) serotoninergic perikarya. The specificity of the uptake-retrograde transport of 3H-5-HT seems to depend on the selectivity of uptake by nerve terminals.  相似文献   

12.
Summary Horseradish peroxidase (HRP) applied to lesioned neurons in the retina and thoracic ganglia of the flies Musca, Calliphora and Drosophila labeled axon terminals, dendrites and perikarya of the severed neurons after anterograde or retrograde passage. In addition, HRP reaction product secondarily labeled intact neurons that are contiguous with injured nerve cells. In many cases labeling of optic lobe neurons remote from primarily filled ones was also seen (here called tertiary labeling). HRP labeling was extensive and both primarily and transneuronally filled neurons could be resolved in almost as much detail as Golgi-impregnated or cobalt-silver-labeled cells. Electron microscopy showed that in both primarily and secondarily filled neurons, reaction product was distributed diffusely in the cytoplasm.Transneuronal uptake of HRP was specific to certain types of neurons in the brain and thus displayed certain pathways. The pathways resolved by transneuronal labeling with HRP extend from the optic lobes to the thoracic ganglia and include visual neurons previously identified electrophysiologically and anatomically.Transneuronal HRP uptake, although believed to occur in vivo, could not be shown to be dependent on synaptic activity. Three other heme peptides tested were taken up by injured neurons, but showed no transneuronal labeling: lactoperoxidase, cytochrome c, and microperoxidase.  相似文献   

13.
Sensory innervation of lingual musculature was studied in young adult Wistar rats using retrograde labeling by horseradish peroxidase (HRP) and combined silver impregnation and acetylcholinesterase (AchE) methods. Intra-lingual injection of HRP resulted in labeling of neuronal somata in the trigeminal, superior vagal, and second cervical spinal (C2) ganglia. When HRP was directly applied to the proximal stump of severed hypoglossal nerve, labeling occurred only in the cervical and superior vagal ganglia. Morphometric analysis revealed that the labeled neurons were of the small-sized category in all ganglia. However, in the trigeminal and C2 ganglia, labeling occurred also among the medium-sized neurons. Combined silver and AchE preparations from lingual muscles revealed the absence of typical muscle spindles. Instead, there were free and spiral nerve terminals in the interstitium, and epilemmal knob-like or bouton-like endings surrounding non-encapsulated muscle fibers. These terminals showed AchE -ve reaction in contrast to the motor ones. Few ganglionic cells were scattered along the hypoglossal nerve with uniform AchE +ve reaction in their perikarya. This indicates that medium-sized neurons in the trigeminal and C2 ganglia, and probably sensory neurons along the hypoglossal nerve mediate lingual muscle sensibility perceived by atypical sensory terminals.  相似文献   

14.
Excitotoxicity has been involved in the pathogenesis of several neurodegenerative disorders. Using intrastriatal quinolinic acid (QUIN) injection as an animal model of Huntington's disease, we attempt to identify the neurotransmitter phenotype of striatal projection neurons protected by neurturin (NRTN). Control or NRTN-secreting cell lines were grafted in the striatum before QUIN injection and striatal projection neurons were examined by retrograde Fluorogold labeling and in situ hybridization. Intrastriatal grafting of NRTN-secreting cell line selectively prevented the loss of striatopallidal neurons and also the decrease in the mRNA levels for their markers (glutamic acid decarboxylase 67 and preproenkephalin) induced by QUIN, without affecting striatonigral neurons. Thus, our findings show that NRTN is a selective neuroprotective factor for striatopallidal neurons, suggesting that it might be a candidate for the treatment of movement disorders in which this neuronal population is affected.  相似文献   

15.
The aim of experiments was to characterize the neurons of the autonomic chain that innervates the nipple and the mammary gland of lactating rats using retrograde transynaptic virus labeling and neurotransmitter and neuropeptide immunohistochemistry. Two days after injection of green fluorescence protein labeled virus in two nipples and underlying mammary glands, labeling was observed in the ipsilateral paravertebral sympathetic trunk and the lateral horn. Three days after inoculation the labeling appeared in the brain stem and the hypothalamic paraventricular nucleus. Above the spinal cord the labeling was bilateral. A subpopulation of virus labeled cells in the paraventricular nuclei synthesized oxytocin. Labeled neurons in the lateral horn showed cholinergic immunoreactivity. These cholinergic neurons innervated the paravertebral ganglia where the virus labeled neurons were partially noradrenergic. The noradrenergic fibers in the mammary gland innervate the smooth muscle wall of vessels, but not the mammary gland in rats. The neurons in the lateral horn receive afferents from the brain stem, and paraventricular nucleus and these afferents are noradrenergic and oxytocinergic. New findings in our work: Some oxytocinergic fibers may descend to the neurons of the lateral horn which innervate noradrenergic neurons in the paravertebral sympathetic trunk, and in turn these noradrenergic neurons reach the vessels of the mammary gland.  相似文献   

16.
Rabies pseudotyped lentiviral vectors have great potential in gene therapy, not least because of their ability to transduce neurons following their distal axonal application. However, very little is known about the molecular processes that underlie their retrograde transport and cell transduction. Using multiple labeling techniques and confocal microscopy, we demonstrated that pseudotyping with rabies virus envelope glycoprotein (RV-G) enabled the axonal retrograde transport of two distinct subtypes of lentiviral vector in motor neuron cultures. Analysis of this process revealed that these vectors trafficked through Rab5-positive endosomes and accumulated within a non-acidic Rab7 compartment. RV-G pseudotyped vectors were co-transported with both the tetanus neurotoxin-binding fragment and the membrane proteins thought to mediate rabies virus endocytosis (neural cell adhesion molecule, nicotinic acetylcholine receptor, and p75 neurotrophin receptor), thus demonstrating that pseudotyping with RV-G targets lentiviral vectors for transport along the same pathway exploited by several toxins and viruses. Using motor neurons cultured in compartmentalized chambers, we demonstrated that axonal retrograde transport of these vectors was rapid and efficient; however, it was not able to transduce the targeted neurons efficiently, suggesting that impairment in processes occurring after arrival of the viral vector in the soma is responsible for the low transduction efficiency seen in vivo, which suggests a novel area for improvement of gene therapy vectors.  相似文献   

17.
Choline acetyltransferase (ChAT, EC 2.3.1.6) synthesizes a neurotransmitter, acetylcholine in cholinergic neurons. ChAT is considered to be the most specific marker for cholinergic neurons. To obtain a better marker of the neurons, as the first step, we isolated a partial ChAT cDNA from the goldfish (Carassius auratus) brain by RT-PCR methods. The partial cDNA of the goldfish ChAT was composed of 718 nucleotides. The amino acid sequence of the goldfish ChAT is approximately 70% identical to those of mammalian and chicken ChAT. Northern blot analysis demonstrated that ChAT mRNA was expressed in the brain and the spinal cord of the goldfish, and much abundant in the spinal cord. In the spinal cord of the goldfish, ChAT-positive neurons were detected mainly in the ventral horn by in situ hybridization. In addition, fluorescence in situ hybridization combined with a retrograde labeling by using True Blue demonstrated ChAT mRNA positive neurons were exactly motoneurons. In the cord, putative presynaptic sympathetic neurons were also labeled.  相似文献   

18.
In the rodent vibrissal system, active sensation and sensorimotor integration are mediated in part by connections between barrel cortex and vibrissal motor cortex. Little is known about how these structures interact at the level of neurons. We used Channelrhodopsin-2 (ChR2) expression, combined with anterograde and retrograde labeling, to map connections between barrel cortex and pyramidal neurons in mouse motor cortex. Barrel cortex axons preferentially targeted upper layer (L2/3, L5A) neurons in motor cortex; input to neurons projecting back to barrel cortex was particularly strong. Barrel cortex input to deeper layers (L5B, L6) of motor cortex, including neurons projecting to the brainstem, was weak, despite pronounced geometric overlap of dendrites with axons from barrel cortex. Neurons in different layers received barrel cortex input within stereotyped dendritic domains. The cortico-cortical neurons in superficial layers of motor cortex thus couple motor and sensory signals and might mediate sensorimotor integration and motor learning.  相似文献   

19.
Eight methods for the electron microscopic demonstration of horseradish peroxidase (HRP) labeling have been compared in adjacent series of vibratome sections of mouse lumbar spinal cord. The tracer, a HRP-wheat germ agglutinin (WGA) conjugate, was injected into the gastrocnemius muscle complex. Following retrograde axonal transport to the lumbar motor neurons and transganglionic anterograde transport of the tracer to the dorsal horn, the HRP activity was demonstrated in eight series of adjacent sections of lumbar spinal cord using eight methods. These included procedures using tetramethylbenzidine (TMB), benzidine dihydrochloride (BDHC), o-tolidine, paraphenylenediamine-pyrocatechol (PPD-PC), and 4 methods using 3,3'-diaminobenzidine (DAB). All eight methods were able to demonstrate both retrograde labeling of motor neurons and transganglionic anterograde transport into the dorsal horn. However, there were differences in the appearance of the various reaction products under the electron microscope. In addition, differences in the distribution of the reaction products were observed by both light and electron microscopy. The largest distribution of reaction product was observed with TMB. BDHC and o-tolidine were next, followed by the DAB procedures and PPD-PC. The TMB, BDHC, and o-tolidine reaction products were all found to be suitable for electron microscopy. The TMB reaction product was electron dense and had a very distinctive crystalloid appearance that made identification of HRP-labeled neuronal profiles easy and unequivocal.  相似文献   

20.
Cholera toxin B subunit (CTB) has been extensively used in the past for monosynaptic mapping. For decades, it was thought to lack the ability of transneuronal tracing. In order to investigate whether biotin conjugates of CTB (b-CTB) would pass through transneurons in the rat spinal cord, it was injected into the crushed left sciatic nerve. For experimental control, the first order afferent neuronal projections were defined by retrograde transport of fluorogold (FG, a non-transneuronal labeling marker as an experimental control) injected into the crushed right sciatic nerve in the same rat. Neurons containing b-CTB or FG were observed in the dorsal root ganglia (DRG) at the L4-L6 levels ipsilateral to the tracer injection. In the spinal cord, b-CTB labeled neurons were distributed in all laminae ipsilaterally between C7 and S1 segments, but labeling of neurons at the cervical segment was abolished when the T10 segment was transected completely. The interneurons, distributed in the intermediate gray matter and identified as gamma-aminobutyric acid-ergic (GABAergic), were labeled by b-CTB. In contrast, FG labeling was confined to the ventral horn neurons at L4-L6 spinal segments ipsilateral to the injection. b-CTB immunoreactivity remained to be restricted to the soma of neurons and often appeared as irregular patches detected by light and electron microscopy. Detection of monosialoganglioside (GM1) in b-CTB labeled neurons suggests that GM1 ganglioside may specifically enhance the uptake and transneuronal passage of b-CTB, thus supporting the notion that it may be used as a novel transneuronal tracer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号