首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The azide functional group has assumed a prominent role in chemical biology efforts in recent years. Azides may be readily introduced into proteins upon replacement of methionine residues with the non-canonical amino acid azidohomoalanine (AHA). This protocol describes a synthetic route to AHA based on the copper-catalyzed conversion of amines to azides. An alternate protocol for the preparation of AHA is presented in a companion paper. The synthesis and purification of AHA via the route described herein can be completed in 3-4 days.  相似文献   

2.
The vesicle trafficking SYNTAXIN OF PLANTS132 (SYP132) drives hormone-regulated endocytic traffic to suppress the density and function of plasma membrane (PM) H+-ATPases. In response to bacterial pathogens, it also promotes secretory traffic of antimicrobial pathogenesis-related (PR) proteins. These seemingly opposite actions of SYP132 raise questions about the mechanistic connections between the two, likely independent, membrane trafficking pathways intersecting plant growth and immunity. To study SYP132 and associated trafficking of PM H+-ATPase 1 (AHA1) and PATHOGENESIS-RELATED PROTEIN1 (PR1) during pathogenesis, we used the virulent Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) bacteria for infection of Arabidopsis (Arabidopsis thaliana) plants. SYP132 overexpression suppressed bacterial infection in plants through the stomatal route. However, bacterial infection was enhanced when bacteria were infiltrated into leaf tissue to bypass stomatal defenses. Tracking time-dependent changes in native AHA1 and SYP132 abundance, cellular distribution, and function, we discovered that bacterial pathogen infection triggers AHA1 and SYP132 internalization from the plasma membrane. AHA1 bound to SYP132 through its regulatory SNARE Habc domain, and these interactions affected PM H+-ATPase traffic. Remarkably, using the Arabidopsis aha1 mutant, we discovered that AHA1 is essential for moderating SYP132 abundance and associated secretion of PR1 at the plasma membrane for pathogen defense. Thus, we show that during pathogenesis SYP132 coordinates AHA1 with opposing effects on the traffic of AHA1 and PR1.

Coordination between SNARE SYP132 and plasma membrane H+-ATPase AHA1 moderates SNARE abundance during pathogenesis with opposing effects on trafficking of AHA1 and antimicrobial pathogenesis-related protein 1.  相似文献   

3.
Antigen-binding fragments (Fab) and F(ab′)2 antibodies serve as alternative formats to full-length anti-bodies in therapeutic and immune assays. They provide the advantage of small size, short serum half-life, and lack of effector function. Several proteases associated with invasive diseases are known to cleave antibodies in the hinge-region, and this results in anti-hinge antibodies (AHA) toward the neoepitopes. The AHA can act as surrogate Fc and reintroduce the properties of the Fc that are otherwise lacking in antibody fragments. While this response is desired during the natural process of fighting disease, it is commonly unwanted for therapeutic antibody fragments. In our study, we identify a truncation in the lower hinge region of the antibody that maintains efficient proteolytic cleavage by IdeS protease. The resulting neoepitope at the F(ab′)2 C-terminus does not have detectable binding of pre-existing AHA, providing a practical route to produce F(ab′)2 in vitro by proteolytic digestion when the binding of pre-existing AHA is undesired. We extend our studies to the upper hinge region of the antibody and provide a detailed analysis of the contribution of C-terminal residues of the upper hinge of human IgG1, IgG2 and IgG4 to pre-existing AHA reactivity in human serum. While no pre-existing antibodies are observed toward the Fab of IgG2 and IgG4 isotype, a significant response is observed toward most residues of the upper hinge of human IgG1. We identify a T225L variant and the natural C-terminal D221 as solutions with minimal serum reactivity. Our work now enables the production of Fab and F(ab′)2 for therapeutic and diagnostic immune assays that have minimal reactivity toward pre-existing AHA.  相似文献   

4.
The plasma membrane of higher plants contains a H(+)-ATPase as its major ion pump. This enzyme belongs to the P-type family of cation-translocating enzymes and generates the proton-motive force that drives solute uptake across the plasma membrane. In Arabidopsis thaliana the plasma membrane H(+)-ATPase is encoded by a multigene family (Harper, J. F., Surowy, T. K., and Sussman, M. R. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 1234-1238). The complete genomic sequence of a third Arabidopsis H(+)-ATPase isoform (referred to as AHA2) is presented here, and the predicted protein sequence is compared with previously published AHA1, AHA3, and tobacco Nicotiana plumbaginifolia NP1 isoforms. The AHA2 gene is most similar to AHA1, with predicted proteins containing 95% amino acid identity. The mRNA start site and 5'-untranslated sequence for AHA2 were determined from cDNA amplified by the polymerase chain reaction. The 5' region contains a 23-base pair (bp) polypyrimidine sequence and a short upstream reading frame. In comparison with the 16 introns reported in AHA3, AHA2 is missing one intron in the 5'-untranslated region and a second intron in the C-terminal coding region. An unusually large intron for Arabidopsis (greater than 1000 bp) is present at the beginning of the coding sequence of both AHA2 and AHA3. In the 3'-untranslated sequence of AHA1 and AHA2 but not AHA3, there is a 65-bp region of 85% identity and a second shorter region of 16-bp identity harboring an unusual putative poly(A) addition signal (dTTTGAAGAAACAAGGC). Northern blot analysis indicates that AHA2 mRNA relative to total cellular RNA is expressed at significantly higher levels in root tissue as compared with shoot tissue.  相似文献   

5.
Recombinant Arisaema heterophyllum agglutinin (AHA) was expressed in Escherichia coli as N-terminal His-tagged fusions. After induction with isopropylthio-beta-D-galactoside, the recombinant AHA was purified by metal-affinity chromatography. The purified AHA protein was incorporated into artificial diet at 0.1% (w/v) concentration in insect bioassay trial and the result showed that artificial diet containing AHA could significantly inhibit the growth of the third-instar nymphs of peach potato aphid (Myzus persicae). This study suggested that AHA could be an effective candidate for the control of peach potato aphid, one of the most serious sap-sucking insect pests causing significant yield loss of crops.  相似文献   

6.
The mutagenicity of the base analogue, 2-amino-N6-hydroxyadenine (AHA), was tested in Salmonella typhimurium TA100 and TA98 and in Chinese hamster lung (CHL) cells. AHA showed very potent mutagenicity in TA100 without S9 mix, inducing 25,000 revertants/micrograms. The mutagenicity increased about 2-fold upon addition of S9 mix containing 10 microliters S9. AHA was found to be one of the strongest mutagens for TA100. Addition of S9 mix containing 100 microliters S9 induced no significant increase of revertants with AHA at amounts up to 50 ng per plate. AHA was also mutagenic for the frameshift mutant, TA98, without S9 mix, the mutagenicity for TA98 being about 1/1000 of that for TA100. When the mutagenicity of AHA was tested in CHL cells, with diphtheria toxin resistance (DTr) as a selective marker in the absence of S9 mix with a 3-h treatment of cells, DTr mutants increased dose-dependently at concentrations of 2.5-15 micrograms/ml. When cells were incubated with AHA for 24 h, a 200-fold increase in the number of DTr mutants was observed; the mutagenicity was 500-fold higher than that of ethyl methanesulfonate. This marked increase of mutagenicity by prolonged incubation may indicate that AHA induces mutations mainly after incorporation into DNA. The addition of a small amount of S9 increased the mutagenicity obtained with a 3-h treatment 2-fold, but a larger amount of S9 decreased the mutagenicity as was found with S. typhimurium TA100.  相似文献   

7.
Apolipoprotein (a) (apo(a)) is a component of the atherogenic lipoprotein, Lp(a). The efficiency with which apo(a) escapes the endoplasmic reticulum (ER) and is secreted by the liver is a major determinant of plasma Lp(a) levels. Apo(a) contains a series of domains homologous to plasminogen kringle (K) 4, each of which possesses a potential lysine-binding site. By using primary mouse hepatocytes expressing a 17K4 human apo(a) protein, we found that high concentrations (25-200 mM) of the lysine analog, 6-aminohexanoic acid (6AHA), increased apo(a) secretion 8-14-fold. This was accompanied by a decrease in apo(a) presecretory degradation. 6AHA inhibited accumulation of apo(a) in the ER induced by the proteasome inhibitor, lactacystin. Thus, 6AHA appeared to inhibit degradation by increasing apo(a) export from the ER. Significantly, 6AHA overcame the block in apo(a) secretion induced by the ER glucosidase inhibitor, castanospermine. 6AHA may therefore circumvent the requirement for calnexin and calreticulin interaction in apo(a) secretion. Sucrose gradients and a gel-based folding assay were unable to detect any influence of 6AHA on apo(a) folding. However, non-covalent or small, disulfide-dependent changes in apo(a) conformation would not be detected in these assays. Proline also increased the efficiency of apo(a) secretion. We propose that 6AHA and proline can act as chemical chaperones for apo(a).  相似文献   

8.
A collaborative study was designed to assess the mutagenicity of 2-amino-N6-hydroxylaminopurine (AHA) in a wide variety of eukaryotic assays systems in terms of potency and specificity. Earlier studies in Salmonella and Neurospora had shown that AHA was an extremely potent mutagen which appeared to cause predominantly AT to GC base-pair transitions. This discovery was viewed as an unusual opportunity to explore the general utility of different eukaryotic assay systems for genetic risk assessment. The objective was to determine whether AHA would show comparable potency and specificity in those eukaryotic organisms used to evaluate mutagenic potential of environmental chemicals for the human population. The data presented in this report show that AHA was mutagenic in all the eukaryotic assays utilized; however, the level of effect was found to be assay system-dependent. In addition, in assays where other base analogs were used as positive controls, differences in relative potency were observed from those obtained in the earlier studies with Salmonella and Neurospora. When alkylating agents were used as positive controls in the higher eukaryotic assays, AHA was found to have a mutagenic potency comparable to ethylnitrosourea (ENU), ethyl methanesulfonate (EMS) or methyl methanesulfonate (MMS) for many of the assays. With regard to mutagenic specificity, AHA appears to induce gene/point mutations in eukaryotic organisms, resulting predominantly from base-pair substitutions, predominantly AT to GC base-pair transitions; however, there was some unexplained variation in the ratio of these base-pair transitions and other transitions and transversions as a function of assay system. In addition, studies on the induction of micronuclei have shown that AHA induces chromosomal damage at high concentrations and low levels of survival.  相似文献   

9.
6-Aminohexanoic acid (6AHA) is a vital polymer building block for Nylon 6 production and an FDA-approved orphan drug. However, its production from cyclohexane is associated with several challenges, including low conversion and yield, and severe environmental issues. We aimed at overcoming these challenges by developing a bioprocess for 6AHA synthesis. A mixed-species approach turned out to be most promising. Thereby, Pseudomonas taiwanensis VLB120 strains harbouring an upstream cascade converting cyclohexane to either є-caprolactone (є-CL) or 6-hydroxyhexanoic acid (6HA) were combined with Escherichia coli JM101 strains containing the corresponding downstream cascade for the further conversion to 6AHA. ε-CL was found to be a better ‘shuttle molecule’ than 6HA enabling higher 6AHA formation rates and yields. Mixed-species reaction performance with 4 g l-1 biomass, 10 mM cyclohexane, and an air-to-aqueous phase ratio of 23 combined with a repetitive oxygen feeding strategy led to complete substrate conversion with 86% 6AHA yield and an initial specific 6AHA formation rate of 7.7 ± 0.1 U gCDW-1. The same cascade enabled 49% 7-aminoheptanoic acid yield from cycloheptane. This combination of rationally engineered strains allowed direct 6AHA production from cyclohexane in one pot with high conversion and yield under environmentally benign conditions.  相似文献   

10.
Plasma membrane H+‐ATPase pumps build up the electrochemical H+ gradients that energize most other transport processes into and out of plant cells through channel proteins and secondary active carriers. In Arabidopsis thaliana, the AUTOINHIBITED PLASMA MEMBRANE H+‐ATPases AHA1, AHA2 and AHA7 are predominant in root epidermal cells. In contrast to other H+‐ATPases, we find that AHA7 is autoinhibited by a sequence present in the extracellular loop between transmembrane segments 7 and 8. Autoinhibition of pump activity was regulated by extracellular pH, suggesting negative feedback regulation of AHA7 during establishment of an H+ gradient. Due to genetic redundancy, it has proven difficult to test the role of AHA2 and AHA7, and mutant phenotypes have previously only been observed under nutrient stress conditions. Here, we investigated root and root hair growth under normal conditions in single and double mutants of AHA2 and AHA7. We find that AHA2 drives root cell expansion during growth but that, unexpectedly, restriction of root hair elongation is dependent on AHA2 and AHA7, with each having different roles in this process.  相似文献   

11.
Anti-histone antibodies (AHA) are spontaneously produced in NZB/NZW mice as part of their autoimmune disease. IgM AHA are usually not detected until after 4 mo of age, and older female mice switch to the production of IgG AHA. We studied the in vitro production of AHA by spleen cells from young (less than or equal to 12-wk-old) NZB/NZW mice. Despite the absence of elevated serum AHA activity, spleen cells from these mice demonstrated marked spontaneous autoantibody production in culture. In kinetic studies, little in vitro production was detectable after 1 day of culture, and maximal accumulation occurred on day 5. Elevated AHA production was apparent by cells from 2-wk-old NZB/NZW mice, and an age-dependent increase in autoantibody production was also noted. Only AHA of the IgM class were detected in cultures of young spleen cells. The in vitro production of IgM AHA in culture was T cell dependent, depletion of T cells resulting in a 70 to 90% reduction in production, which was corrected by the readdition of T cells. In cultures where both IgM AHA and total IgM secretion were measured, a much greater T cell dependence for AHA production was apparent. The requirement for T cells could also be partially replaced by factors present in concanavalin A supernatant. AHA secretion was induced by lipopolysaccharide by using cells from both NZB/NZW and non-autoimmune mice. Although production was greater with NZB/NZW cells, the difference was much less than that for spontaneous production. Thus, AHA-secreting cells that are dependent on in vitro T cell help are present in young NZB/NZW mice. These studies may help define the mechanisms responsible for selective autoantibody secretion in lupus-like disease.  相似文献   

12.
非核糖体肽是微生物体内一类具有天然生物活性的次生代谢物,由非核糖体肽合成酶催化生成。而AHA2474和AHA2476是嗜水气单胞菌ATCC7966中两个编码非核糖体肽合成酶的基因。利用同源重组技术分别构建了AHA2474、AHA2476基因缺失株,并对其生理特性进行测定。结果表明,与野生株相比,缺失株的溶血性和胞外蛋白酶活性均显著增强,而产铁能力明显减弱;在缺铁条件下,缺失株的生长能力较弱,补充铁离子后又能恢复生长。同时在过氧化氢应激下ΔAHA2474菌株具有更大的耐受性。以上研究结果提示AHA2474和AHA2476基因可能通过影响铁离子动态平衡过程来调控该菌的生理特性,同时也表明非核糖体肽在该菌致病性方面起作用,为探究该菌的致病机制及防治策略提供理论依据。  相似文献   

13.
Phosphorylation is an important posttranslational modification of proteins in living cells and primarily serves regulatory purposes. Several methods were employed for isolating phosphopeptides from proteolytically digested plasma membranes of Arabidopsis thaliana. After a mass spectrometric analysis of the resulting peptides we could identify 10 different phosphorylation sites in plasma membrane H(+)-ATPases AHA1, AHA2, AHA3, and AHA4/11, five of which have not been reported before, bringing the total number of phosphosites up to 11, which is substantially higher than reported so far for any other P-type ATPase. Phosphosites were almost exclusively (9 of 10) in the terminal regulatory domains of the pumps. The AHA2 isoform was subsequently expressed in the yeast Saccharomyces cerevisiae. The plant protein was phosphorylated at multiple sites in yeast, and surprisingly, seven of nine of the phosphosites identified in AHA2 were identical in the plant and fungal systems even though none of the target sequences in AHA2 show homology to proteins of the fungal host. These findings suggest an unexpected accessibility of the terminal regulatory domain of plasma membrane H(+)-ATPase to protein kinase action.  相似文献   

14.
An agarose gel modified with N-(ω-aminohexytl)-L -aspartic acid (AHA) and spiropyran compound (AHA–spiropyran gel) was prepared and the photocontrolled binding and releasing of asparaginase were investigated with the AHA–spiropyran gel. Asparaginase was bound on the AHA–spiropyran gel under visible light and was released in the dark. The optimum conditions for photocontrolled binding and releasing of asparaginase were a 0.05M phosphate buffer concentration and pH 7.0. Seventy-five percent of the bound asparaginase was released from the AHA–spiropyran gel column in the dark. Ninetyfold purification of asparaginase was performed with the AHA–spiropyran gel Column.  相似文献   

15.
Two complementary assays were employed to examine the mutagenicity of 2-amino-N6-hydroxyadenine (AHA) in Drosophila melanogaster. A lambda phage-based shuttle vector system, utilizing the supF transfer RNA gene of Escherichia coli, questioned the mutagenicity of AHA in established cell cultures derived from somatic tissue while the standard sex-linked recessive lethal assay measured mutational events in vivo. Consistent with studies in other systems, AHA appears strongly mutagenic when cells are exposed directly. Conversely, in vivo studies suggest that AHA is not a strong mutagen. Further studies will determine if AHA is weakly or not mutagenic in vivo and, using the supF system, what the nature of the mutational events at the molecular level is.  相似文献   

16.
Yamaya T  Filner P 《Plant physiology》1981,67(6):1133-1140
Urease activity of tobacco XD cells (1U cells) had undergone a 4-fold increase (4U cells) during a year of growth on urea (Skokut and Filner 1980 Plant Phvsiol 65: 995-1003). A clone of 4U cells gave rise to 12U cells during another year of growth on urea. The doubling time of 12U cells on urea is 2.2 days, compared to about 4 days for 1U cells, while 1U and 12U cells double in 2 days on nitrate. Acetohydroxamic acid (AHA), a specific inhibitor/reversible inactivator of jack bean urease, affects tobacco cell urease similarly. Fifty per cent inhibition of growth by AHA occurred at 20 micromolar in 1U cells growing on urea and at 165 micromolar in 12U cells growing on urea, but at 600 micromolar for either 1U or 12U cells growing on nitrate. When 12U cells were grown on urea with 100 micromolar AHA, extractable urease activity decreased 80% within 2.5 hours and remained at this level for 2 weeks; the doubling time increased to 3.7 days, and intracellular urea rose 2-fold, compared to 12U cells grown on urea without AHA. Urease of 12U cells inactivated by AHA in vivo could be reactivated to its pre-AHA level by incubation at 30 C after extraction and separation from free AHA. AHA inhibited incorporation of 15N from [15N]urea into Kjeldahl nitrogen in the cells, in spite of the increased intracellular urea. These results indicate that AHA acts primarily by inhibiting urease action, rather than by inhibition of formation of urease protein or of uptake of urea. Because 12U cells are 8 times more tolerant of AHA than 1U cells, it is likely that growth on urea in the presence of AHA should select strongly for cells with high urease.  相似文献   

17.
Polarized growth in pollen tubes results from exocytosis at the tip and is associated with conspicuous polarization of Ca(2+), H(+), K(+), and Cl(-) -fluxes. Here, we show that cell polarity in Nicotiana tabacum pollen is associated with the exclusion of a novel pollen-specific H(+)-ATPase, Nt AHA, from the growing apex. Nt AHA colocalizes with extracellular H(+) effluxes, which revert to influxes where Nt AHA is absent. Fluorescence recovery after photobleaching analysis showed that Nt AHA moves toward the apex of growing pollen tubes, suggesting that the major mechanism of insertion is not through apical exocytosis. Nt AHA mRNA is also excluded from the tip, suggesting a mechanism of polarization acting at the level of translation. Localized applications of the cation ionophore gramicidin A had no effect where Nt AHA was present but acidified the cytosol and induced reorientation of the pollen tube where Nt AHA was absent. Transgenic pollen overexpressing Nt AHA-GFP developed abnormal callose plugs accompanied by abnormal H(+) flux profiles. Furthermore, there is no net flux of H(+) in defined patches of membrane where callose plugs are to be formed. Taken together, our results suggest that proton dynamics may underlie basic mechanisms of polarity and spatial regulation in growing pollen tubes.  相似文献   

18.
3 purine analogs were tested for their mutagenic activities in the ad-3 forward-mutation test in heterokaryon 12 (H-12) of Neurospora crassa. In growing cultures of H-12, the N-hydroxylaminopurines 2-amino-6-N-hydroxylaminopurine (AHA) and 6-N-hydroxylaminopurine (HAP) are potent and strong mutagens, respectively, whereas 2-aminopurine (AP) is a weak mutagen. AHA and HAP are about equally mutagenic at low doses, but AHA is more mutagenic than HAP at high doses. Despite their potent mutagenicity in growing cultures, AHA and HAP are not mutagenic in nongrowing conidia under the conditions of our experiments. AHA is the most potent mutagen tested in the ad-3 forward-mutation test in N. crassa. At the highest dose tested (30 micrograms/ml), it gave an ad-3 mutant frequency of 0.7 X 10(-2), about a 12,000-fold increase over the average spontaneous ad-3 mutant frequency. The potent mutagenicity of AHA may make it (and possibly HAP) especially useful for obtaining specific-locus mutations in other organisms.  相似文献   

19.
Robertson WR  Clark K  Young JC  Sussman MR 《Genetics》2004,168(3):1677-1687
The plasma membrane proton pump (H(+)-ATPase) found in plants and fungi is a P-type ATPase with a polypeptide sequence, structure, and in vivo function similar to the mammalian sodium pump (Na(+), K(+)-ATPase). Despite its hypothetical importance for generating and maintaining the proton motive force that energizes the carriers and channels that underlie plant nutrition, genetic evidence for such a central function has not yet been reported. Using a reverse genetic approach for investigating each of the 11 isoforms in the Arabidopsis H(+)-ATPase (AHA) gene family, we found that one member, AHA3, is essential for pollen formation. A causative role for AHA3 in male gametogenesis was proven by complementation with a normal transgenic gene and rescue of the mutant phenotype back to wild type. We also investigated the requirement for phosphorylation of the penultimate threonine, which is found in most members of the AHA family and is thought to be involved in regulating catalytic activity. We demonstrated that a T948D mutant form of the AHA3 gene rescues the mutant phenotype in knockout AHA3 plants, but T948A does not, providing the first in planta evidence in support of the model in which phosphorylation of this amino acid is essential.  相似文献   

20.
Many heterologous membrane proteins expressed in the yeast Saccharomyces cerevisiae fail to reach their normal cellular location and instead accumulate in stacked internal membranes. Arabidopsis thaliana plasma membrane H(+)-ATPase isoform 2 (AHA2) is expressed predominantly in yeast internal membranes and fails to complement a yeast strain devoid of its endogenous H(+)-ATPase Pma1. We observed that phosphorylation of AHA2 in the heterologous host and subsequent binding of 14-3-3 protein is crucial for the ability of AHA2 to substitute for Pma1. Thus, mutants of AHA2, complementing pma1, showed increased phosphorylation at the penultimate residue (Thr(947)), which creates a binding site for endogenous 14-3-3 protein. Only a pool of ATPase in the plasma membrane is phosphorylated. Double mutants carrying in addition a T947A substitution lost their ability to complement pma1. However, mutants affected in both autoinhibitory regions of the C-terminal regulatory domain complemented pma1 irrespective of their ability to become phosphorylated at Thr(947). This demonstrates that it is the activity status of the mutant enzyme and neither redirection of trafficking nor 14-3-3 binding per se that determines the ability of H(+)-pumps to rescue pma1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号