首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbonyl sulfide (COS), a substrate for carbonic anhydrase, inhibited alkalization of the medium, O2 evolution, dissolved inorganic carbon accumulation, and photosynthetic CO2 fixation at pH 7 or higher by five species of unicellular green algae that had been air-adapted for forming a CO2-concentrating process. This COS inhibition can be attributed to inhibition of external HCO3 conversion to CO2 and OH by the carbonic anhydrase component of an active CO2 pump. At a low pH of 5 to 6, COS stimulated O2 evolution during photosynthesis by algae with low CO2 in the media without alkalization of the media. This is attributed to some COS hydrolysis by carbonic anhydrase to CO2. Although COS had less effect on HCO3 accumulation at pH 9 by a HCO3 pump in Scenedesmus, COS reduced O2 evolution probably by inhibiting internal carbonic anhydrases. Because COS is hydrolyzed to CO2 and H2S, its inhibition of the CO2 pump activity and photosynthesis is not accurate, when measured by O2 evolution, by NaH14CO3 accumulation, or by 14CO2 fixation.  相似文献   

2.
Carbon oxysulfide (COS) was reinvestigated as an inhibitor of active inorganic carbon transport in cells of Synechococcus PCC7942 adapted to growth at low inorganic carbon. COS inhibited both CO2 and HCO3 transport processes in a reversible (in the short term) and mixed competitive manner. The inhibition of COS was established using both silicone oil centrifugation experiments and O2-evolution studies. The Ki for COS inhibition was 29 micromolar for CO2 transport and 110 micromolar for HCO3 transport. These results support a model of inorganic carbon transport with a central CO2 pump and an inducible HCO3 utilizing accessory protein which supplies CO2 to the primary pump.  相似文献   

3.
Light-dependent inorganic C (Ci) transport and accumulation in air-grown cells of Synechococcus UTEX 625 were examined with a mass spectrometer in the presence of inhibitors or artificial electron acceptors of photosynthesis in an attempt to drive CO2 or HCO3 uptake separately by the cyclic or linear electron transport chains. In the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the cells were able to accumulate an intracellular Ci pool of 20 mm, even though CO2 fixation was completely inhibited, indicating that cyclic electron flow was involved in the Ci-concentrating mechanism. When 200 μm N,N-dimethyl-p-nitrosoaniline was used to drain electrons from ferredoxin, a similar Ci accumulation was observed, suggesting that linear electron flow could support the transport of Ci. When carbonic anhydrase was not present, initial CO2 uptake was greatly reduced and the extracellular [CO2] eventually increased to a level higher than equilibrium, strongly suggesting that CO2 transport was inhibited and that Ci accumulation was the result of active HCO3 transport. With 3-(3,4-dichlorophenyl)-1,1-dimethylurea-treated cells, Ci transport and accumulation were inhibited by inhibitors of CO2 transport, such as COS and Na2S, whereas Li+, an HCO3-transport inhibitor, had little effect. In the presence of N,N-dimethyl-p-nitrosoaniline, Ci transport and accumulation were not inhibited by COS and Na2S but were inhibited by Li+. These results suggest that CO2 transport is supported by cyclic electron transport and that HCO3 transport is supported by linear electron transport.  相似文献   

4.
Mass spectrometry has been used to confirm the presence of an active transport system for CO2 in Synechococcus UTEX 625. Cells were incubated at pH 8.0 in 100 micromolar KHCO3 in the absence of Na+ (to prevent HCO3 transport). Upon illumination the cells rapidly removed almost all the free CO2 from the medium. Addition of carbonic anhydrase revealed that the CO2 depletion resulted from a selective uptake of CO2, rather than a total uptake of all inorganic carbon species. CO2 transport stopped rapidly (<3 seconds) when the light was turned off. Iodoacetamide (3.3 millimolar) completely inhibited CO2 fixation but had little effect on CO2 transport. In iodoacetamide poisoned cells, transport of CO2 occurred against a concentration gradient of about 18,000 to 1. Transport of CO2 was completely inhibited by 10 micromolar diethylstilbestrol, a membrane-bound ATPase inhibitor. Studies with DCMU and PSI light indicated that CO2 transport was driven by ATP produced by cyclic or pseudocyclic photophosphorylation. Low concentrations of Na+ (<100 microequivalents per liter), but not of K+, stimulated CO2 transport as much as 2.4-fold. Unlike Na+-dependent HCO3 transport, the transport of CO2 was not inhibited by high concentrations (30 milliequivalents per liter) of Li+. During illumination, the CO2 concentration in the medium remained far below its equilibrium value for periods up to 15 minutes. This could only happen if CO2 transport was continuously occurring at a rapid rate, since the continuing dehydration of HCO3 to CO2 would rapidly raise the CO2 concentration to its equilibrium value if transport ceased. Measurement of the rate of dissolved inorganic carbon accumulation under these conditions indicated that at least part of the continuing CO2 transport was balanced by HCO3 efflux.  相似文献   

5.
In high inorganic carbon grown (1% CO2 [volume/volume]) cells of the cyanobacterium Synechococcus PCC7942, the carbonic anhydrase (CA) inhibitor, ethoxyzolamide (EZ), was found to inhibit the rate of CO2 uptake and to reduce the final internal inorganic carbon (Ci) pool size reached. The relationship between CO2 fixation rate and internal Ci concentration in high Ci grown cells was little affected by EZ. This suggests that in intact cells internal CA activity was unaffected by EZ. High Ci grown cells readily took up CO2 but had little or no capacity for HCO3 uptake. These cells appear to possess a CO2 utilizing Ci pump that has a CA-like function associated with the transport step such that HCO3 is the species delivered to the cell interior. This CA-like step may be the site of inhibition by EZ. Low Ci grown cells possess both CO2 uptake and HCO3 uptake activities and EZ inhibited both activities to a similar degree, suggesting that a common step in CO2 and HCO3 uptake (such as the Ci pump) may have been affected. The inhibitor had no apparent effect on internal CO2/HCO3 equilibria (internal CA function) in low Ci grown cells.  相似文献   

6.
Light-induced acidification by the cyanobacterium Anabaena variabilis is biphasic (a fast phase I and slow phase II) and shown to be sodium-dependent with an optimum concentration of 40 to 60 millimolar Na+. Cells grown under low CO2 concentrations at pH 9 (i.e. mainly HCO3 present in the medium) exhibited the slow phase II of proton efflux only, while cells grown under low CO2 concentrations at pH 6.3 (i.e. CO2 and HCO3 present) exhibited both phases. Light-induced proton release of phase I was dependent on inorganic carbon available in the bathing medium with an apparent Km for CO2 of 20 to 70 micromolar. As was concluded from the CO2 dependence of acidification measured at different pH of the bathing medium, bicarbonate inhibited phase-I acidification noncompetetively. Acidification was inhibited by acetazolamide, an inhibitor of carbonic anhydrase. Apparently, acidification of phase I is due to a light-dependent uptake of CO2 being converted to HCO3 by a carbonic anhydrase-like function of the HCO3-transport system (M Volokita, D Zenvirth, A Kaplan, L Reinhold 1984 Plant Physiol 76: 599-602) before or during entering the cell, thus releasing one proton per CO2 converted to HCO3.  相似文献   

7.
The active transport of CO2 in the cyanobacterium Synechococcus UTEX 625 was inhibited by H2S. Treatment of the cells with up to 150 micromolar H2S + HS at pH 8.0 had little effect on Na+-dependent HCO3 transport or photosynthetic O2 evolution, but CO2 transport was inhibited by more than 90%. CO2 transport was restored when H2S was removed by flushing with N2. At constant total H2S + HS concentrations, inhibition of CO2 transport increased as the ratio of H2S to HS increased, suggesting a direct role for H2S in the inhibitory process. Hydrogen sulfide does not appear to serve as a substrate for transport. In the presence of H2S and Na+ -dependent HCO3 transport, the extracellular CO2 concentration rose considerably above its equilibrium level, but was maintained far below its equilibrium level in the absence of H2S. The inhibition of CO2 transport, therefore, revealed an ongoing leakage from the cells of CO2 which was derived from the intracellular dehydration of HCO3 which itself had been recently transported into the cells. Normally, leaked CO2 is efficiently transported back into the cell by the CO2 transport system, thus maintaining the extracellular CO2 concentration near zero. It is suggested that CO2 transport not only serves as a primary means of inorganic carbon acquisition for photosynthesis but also serves as a means of recovering CO2 lost from the cell. A schematic model describing the relationship between the CO2 and HCO3 transport systems is presented.  相似文献   

8.
Ogawa T  Kaplan A 《Plant physiology》1987,83(4):888-891
The pH of the medium during CO2 uptake into the intracellular inorganic carbon (Ci) pool of a high CO2-requiring mutant (E1) and wild type of Anacystis nidulans R2 was measured. Experiments were performed under conditions where photosynthetic CO2 fixation is inhibited. There was an acidification of the medium during CO2 uptake in the light and an alkalization during CO2 efflux after darkening. A one to one stoichiometry existed between the amounts of H+ appearing in the medium and CO2 taken up into the intracellular Ci pool, regardless of the carbon species transported. The results indicate that (a) CO2 is taken up simultaneously with an efflux of equimolar H+, probably produced as a result of CO2 hydration during transport and (b) HCO3 produced by hydration of CO2 in the medium was transported into the cells without accompanying net flux of H+ or OH. The influx and efflux of Ci during Ci transport produced nonequilibrium between CO2 and HCO3 in the medium, with the concentration of HCO3 being higher than that expected under equilibrium conditions. The nonequilibrium was present even under the conditions where the influx of Ci is compensated by its efflux. The direction of this nonequilibrium suggested that efflux of HCO3 occurs during uptake of Ci.  相似文献   

9.
A mass spectrometer was used to simultaneously follow the time course of photosynthetic O2 evolution and CO2 depletion of the medium by cells of the cyanobacterium Synechococcus leopoliensis UTEX 625. Analysis of the data indicated that both CO2 and HCO3 were simultaneously and continuously transported by the cells as a source of substrate for photosynthesis. Initiation of HCO3 transport by Na+ addition had no effect on ongoing CO2 transport. This result is interpreted to indicate that the CO2 and HCO3 transport systems are separate and distinctly different transport systems. Measurement of CO2-dependent photosynthesis indicated that CO2 uptake involved active transport and that diffusion played only a minor role in CO2 acquisition in cyanobacteria.  相似文献   

10.
Scenedesmus cells grown on high CO2, when adapted to air levels of CO2 for 4 to 6 hours in the light, formed two concentrating processes for dissolved inorganic carbon: one for utilizing CO2 from medium of pH 5 to 8 and one for bicarbonate accumulation from medium of pH 7 to 11. Similar results were obtained with assays by photosynthetic O2 evolution or by accumulation of dissolved inorganic carbon inside the cells. The CO2 pump with K0.5 for O2 evolution of less than 5 micromolar CO2 was similar to that previously studied with other green algae such as Chlamydomonas and was accompanied by plasmalemma carbonic anhydrase formation. The HCO3 concentrating process between pH 8 to 10 lowered the K0.5 (DIC) from 7300 micromolar HCO3 in high CO2 grown Scenedesmus to 10 micromolar in air-adapted cells. The HCO3 pump was inhibited by vanadate (Ki of 150 micromolar), as if it involved an ATPase linked HCO3 transporter. The CO2 pump was formed on low CO2 by high-CO2 grown cells in growth medium within 4 to 6 hours in the light. The alkaline HCO3 pump was partially activated on low CO2 within 2 hours in the light or after 8 hours in the dark. Full activation of the HCO3 pump at pH 9 had requirements similar to the activation of the CO2 pump. Air-grown or air-adapted cells at pH 7.2 or 9 accumulated in one minute 1 to 2 millimolar inorganic carbon in the light or 0.44 millimolar in the dark from 150 micromolar in the media, whereas CO2-grown cells did not accumulate inorganic carbon. A general scheme for concentrating dissolved inorganic carbon by unicellular green algae utilizes a vanadate-sensitive transporter at the chloroplast envelope for the CO2 pump and in some algae an additional vanadate-sensitive plasmalemma HCO3 transporter for a HCO3 pump.  相似文献   

11.
Active CO(2) Transport by the Green Alga Chlamydomonas reinhardtii   总被引:6,自引:6,他引:0       下载免费PDF全文
Mass spectrometric measurements of dissolved free 13CO2 were used to monitor CO2 uptake by air grown (low CO2) cells and protoplasts from the green alga Chlamydomonas reinhardtii. In the presence of 50 micromolar dissolved inorganic carbon and light, protoplasts which had been washed free of external carbonic anhydrase reduced the 13CO2 concentration in the medium to close to zero. Similar results were obtained with low CO2 cells treated with 50 micromolar acetazolamide. Addition of carbonic anhydrase to protoplasts after the period of rapid CO2 uptake revealed that the removal of CO2 from the medium in the light was due to selective and active CO2 transport rather than uptake of total dissolved inorganic carbon. In the light, low CO2 cells and protoplasts incubated with carbonic anhydrase took up CO2 at an apparently low rate which reflected the uptake of total dissolved inorganic carbon. No net CO2 uptake occurred in the dark. Measurement of chlorophyll a fluorescence yield with low CO2 cells and washed protoplasts showed that variable fluorescence was mainly influenced by energy quenching which was reciprocally related to photosynthetic activity with its highest value at the CO2 compensation point. During the linear uptake of CO2, low CO2 cells and protoplasts incubated with carbonic anhydrase showed similar rates of net O2 evolution (102 and 108 micromoles per milligram of chlorophyll per hour, respectively). The rate of net O2 evolution (83 micromoles per milligram of chlorophyll per hour) with washed protoplasts was 20 to 30% lower during the period of rapid CO2 uptake and decreased to a still lower value of 46 micromoles per milligram of chlorophyll per hour when most of the free CO2 had been removed from the medium. The addition of carbonic anhydrase at this point resulted in more than a doubling of the rate of O2 evolution. These results show low CO2 cells of Chlamydomonas are able to transport both CO2 and HCO3 but CO2 is preferentially removed from the medium. The external carbonic anhydrase is important in the supply to the cells of free CO2 from the dehydration of HCO3.  相似文献   

12.
Cells of a high CO2-requiring mutant (E1) and wild type of Synechococcus PCC7942 were incubated with COS in the light, then suspended in COS-free medium and their CO2 exchange was measured using an open gas-analysis system under the conditions where photosynthetic CO2 fixation is inhibited. When the suspension of cells untreated with COS was illuminated, the rate of CO2 uptake was high and addition of carbonic anhydrase during illumination released a large amount of CO2 from the medium into the gas phase. The COS treatment in the light markedly reduced the rate of CO2 uptake by the cells and the amount of CO2 released by carbonic anhydrase. Incubation of cells with COS in the dark had no effect on the CO2-exchange profile. The COS concentration required for 50% inhibition of CO2 uptake was about 25 micromolar when the concentration of inorganic carbon (Ci) in the medium was 60 micromolar; higher Ci concentrations reduced the inhibitory effect of COS. Measurement of Ci uptake in E1 cells by a silicone oil centrifugation method also indicated marked reduction of the activities of 14CO2 and H14CO3 uptake in the cells treated with COS in the light. The results demonstrated that COS is a potent inhibitor of Ci transport.  相似文献   

13.
We have measured the exchange of 18O between CO2 and H2O in stirred suspensions of Chlorella vulgaris (UTEX 263) using a membrane inlet to a mass spectrometer. The depletion of 18O from CO2 in the fluid outside the cells provides a method to study CO2 and HCO3 kinetics in suspensions of algae that contain carbonic anhydrase since 18O loss to H2O is catalyzed inside the cells but not in the external fluid. Low-CO2 cells of Chlorella vulgaris (grown with air) were added to a solution containing 18O enriched CO2 and HCO3 with 2 to 15 millimolar total inorganic carbon. The observed depletion of 18O from CO2 was biphasic and the resulting 18C content of CO2 was much less than the 18O content of HCO3 in the external solution. Analysis of the slopes showed that the Fick's law rate constant for entry of HCO3 into the cell was experimentally indistinguishable from zero (bicarbonate impermeable) with an upper limit of 3 × 10−4 s−1 due to our experimental errors. The Fick's law rate constant for entry of CO2 to the sites of intracellular carbonic anhydrase was large, 0.013 per second, but not as great as calculated for no membrane barrier to CO2 flux (6 per second). The experimental value may be explained by a nonhomogeneous distribution of carbonic anhydrase in the cell (such as membrane-bound enzyme) or by a membrane barrier to CO2 entry into the cell or both. The CO2 hydration activity inside the cells was 160 times the uncatalyzed CO2 hydration rate.  相似文献   

14.
The nature of the inorganic carbon (Ci) species actively taken up by cyanobacteria CO2 or HCO3 has been investigated. The kinetics of CO2 uptake, as well as that of HCO3 uptake, indicated the involvement of a saturable process. The apparent affinity of the uptake mechanism for CO2 was higher than that for HCO3. Though the calculated Vmax was the same in both cases, the maximum rate of uptake actually observed was higher when HCO3 was supplied. Ci uptake was far more sensitive to the carbonic anhydrase inhibitor ethoxyzolamide when CO2 was the species supplied. Observations of photosynthetic rate as a function of intracellular Ci level (following supply of CO2 or HCO3 for 5 seconds) led to the inference that HCO3 is the species which arrives at the inner membrane surface, regardless of the species supplied. When the two species were supplied simultaneously, mutual inhibition of uptake was observed.

On the basis of these and other results, a model is proposed postulating that a carboic anhydrase-like subunit of the Ci transport apparatus binds CO2 and releases HCO3 at or near a membrane porter. The latter transports HCO3 ions to the cell interior.

  相似文献   

15.
The possibility of HCO3 transport in the blue-green alga (cyanobacterium) Coccochloris peniocystis has been investigated. Coccochloris photosynthesized most rapidly in the pH range 8 to 10, where most of the inorganic C exists as HCO3. If photosynthesis used only CO2 from the external solution the rate of photosynthesis would be limited by the rate of HCO3 dehydration to CO2. Observed rates of photosynthesis at alkaline pH were as much as 48-fold higher than could be supported by spontaneous dehydration of HCO3 in the external solution. Assays for extracellular carbonic anhydrase were negative. The evidence strongly suggests that HCO3 was a direct C source for photosynthesis.  相似文献   

16.
The active transport of CO2 in Synechococcus UTEX 625 was measured by mass spectrometry under conditions that preclude HCO3 transport. The substrate concentration required to give one half the maximum rate for whole cell CO2 transport was determined to be 0.4 ± 0.2 micromolar (mean ± standard deviation; n = 7) with a range between 0.2 and 0.66 micromolar. The maximum rates of CO2 transport ranged between 400 and 735 micromoles per milligram of chlorophyll per hour with an average rate of 522 for seven experiments. This rate of transport was about three times greater than the dissolved inorganic carbon saturated rate of photosynthetic O2 evolution observed under these conditions. The initial rate of chlorophyll a fluorescence quenching was highly correlated with the initial rate of CO2 transport (correlation coefficient = 0.98) and could be used as an indirect method to detect CO2 transport and calculate the substrate concentration required to give one half the maximum rate of transport. Little, if any, inhibition of CO2 transport was caused by HCO3 or by Na+-dependent HCO3 transport. However, 12CO2 readily interfered with 13CO2 transport. CO2 transport and Na+-dependent HCO3 transport are separate, independent processes and the high affinity CO2 transporter is not only responsible for the initial transport of CO2 into the cell but also for scavenging any CO2 that may leak from the cell during ongoing photosynthesis.  相似文献   

17.
Utilization of Inorganic Carbon by Ulva lactuca   总被引:2,自引:0,他引:2  
Drechsler Z  Beer S 《Plant physiology》1991,97(4):1439-1444
Thalli discs of the marine macroalga Ulva lactuca were given inorganic carbon in the form of HCO3, and the progression of photosynthetic O2 evolution was followed and compared with predicted O2 evolution as based on calculated external formation of CO2 (extracellular carbonic anhydrase was not present in this species) and its carboxylation (according to the Km(CO2) of ribulose-1,5-bisphosphate carboxylase/oxygenase), at two different pHs, assuming a photosynthetic quotient of 1. The Km(inorganic carbon) was some 2.5 times lower at pH 5.6 than at the natural seawater pH of 8.2, whereas Vmax was similar under the two conditions, indicating that the unnaturally low pH per se had no adverse effect on U. lactuca's photosynthetic performance. These results, therefore, could be evaluated with regard to differential CO2 and HCO3 utilization. The photosynthetic performance observed at the lower pH largely followed that predicted, with a slight discrepancy probably reflecting a minor diffusion barrier to CO2 uptake. At pH 8.2, however, dehydration rates were too slow to supply CO2 for the measured photosynthetic response. Given the absence of external carbonic anhydrase activity, this finding supports the view that HCO3 transport provides higher than external concentrations of CO2 at the ribulose-1,5-bisphosphate carboxylase/oxygenase site. Uptake of HCO3 by U. lactuca was further indicated by the effects of potential inhibitors at pH 8.2. The alleged band 3 membrane anion exchange protein inhibitor 4,4′-diisothiocyanostilbene-2,2′disulphonate reduced photosynthetic rates only when HCO3 (but not CO2) could be the extracellular inorganic carbon form taken up. A similar, but less drastic, HCO3-competitive inhibition of photosynthesis was obtained with Kl and KNO3. It is suggested that, under ambient conditions, HCO3 is transported into cells at defined sites either via facilitated diffusion or active uptake, and that such transport is the basis for elevated internal [CO2] at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation.  相似文献   

18.
Equations have been developed which quantitatively predict the theoretical time-course of photosynthetic 14C incorporation when CO2 or HCO3 serves as the sole source of exogenous inorganic carbon taken up for fixation by cells during steady state photosynthesis. Comparison between the shape of theoretical (CO2 or HCO3) and experimentally derived time-courses of 14C incorporation permits the identification of the major species of inorganic carbon which crosses the plasmalemma of photosynthetic cells and facilitates the detection of any combined contribution of CO2 and HCO3 transport to the supply of intracellular inorganic carbon. The ability to discriminate between CO2 or HCO3 uptake relies upon monitoring changes in the intracellular specific activity (by 14C fixation) which occur when the inorganic carbon, present in the suspending medium, is in a state of isotopic disequilibrium (JT Lehman 1978 J Phycol 14: 33-42). The presence of intracellular carbonic anhydrase or some other catalyst of the CO2-HCO3 interconversion reaction is required for quantitatively accurate predictions. Analysis of equations describing the rate of 14C incorporation provides two methods by which any contribution of HCO3 ions to net photosynthetic carbon uptake can be estimated.  相似文献   

19.
The induction of a high-affinity state of the CO2-concentration mechanism was investigated in two cyanobacterial species, Synechococcus sp. strain PCC7002 and Synechococcus sp. strain PCC7942. Cells grown at high CO2 concentrations were resuspended in low-CO2 buffer and illuminated in the presence of carbonic anhydrase for 4 to 10 min until the inorganic C compensation point was reached. Thereafter, more than 95% of a high-affinity CO2-concentration mechanism was induced in both species. Mass-spectrometric analysis of CO2 and HCO3 fluxes indicated that only the affinity of HCO3 transport increased during the fast-induction period, whereas maximum transport activities were not affected. The kinetic characteristics of CO2 uptake remained unchanged. Fast induction of high-affinity HCO3 transport was not inhibited by chloramphenicol, cantharidin, or okadaic acid. In contrast, fast induction of high-affinity HCO3 transport did not occur in the presence of K252a, staurosporine, or genistein, which are known inhibitors of protein kinases. These results show that induction of high-affinity HCO3 transport can occur within minutes of exposure to low-inorganic-C conditions and that fast induction may involve posttranslational phosphorylation of existing proteins rather than de novo synthesis of new protein components.  相似文献   

20.
Miller AG  Canvin DT 《Plant physiology》1989,91(3):1044-1049
When studying active CO2 and HCO3 transport by cyanobacteria, it is often useful to be able to inhibit concomitant CO2 fixation. We have found that glycolaldehyde was an efficient inhibitor of photosynthetic CO2 fixation in Synechococcus UTEX 625. Glycolaldehyde did not inhibit inorganic carbon accumulation due to either active CO2 or HCO3 transport. When glycolaldehyde (10 millimolar) was added to rapidly photosynthesizing cells, CO2 fixation was stopped within 15 seconds. The quenching of chlorophyll a fluorescence remained high (≤ 82% control) when CO2 fixation was completely blocked by glycolaldehyde. This quenching was relieved upon the addition of a glucose oxidase oxygentrap. This is consistent with our previous finding that q-quenching in the absence of CO2 fixation was due to O2 photoreduction. Photosynthetic CO2 fixation was also inhibited by d,l,-glyceraldehyde but a sixfold higher concentration was required. Glycolaldehyde acted much more rapidly than iodoacetamide (15 seconds versus 300 seconds) and did not cause the onset of net O2 evolution often observed with iodoacetamide. Glycolaldehyde will be a useful inhibitor when it is required to study CO2 and HCO3 transport without the complication of concomitant CO2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号