首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The hydrocarbon isoprene is emitted in large quantities from numerous plant species, and has a substantial impact on atmospheric chemistry. Temperature affects isoprene emission at several levels: the temperature at which emission is measured, the temperature at which leaves develop, and the temperatures to which a mature leaf is exposed in the days prior to emission measurement. The molecular regulation of the response to the last of these factors was investigated in this study. When plants were grown at 20 degrees C and moved from 20 to 30 degrees C and back, or grown at 30 degrees C and moved from 30 to 20 degrees C and back, their isoprene emission peaked within 3 h of the move and stabilized over the following 3 d. Trees that developed at 20 degrees C and experienced 30 degrees C episodes had higher isoprene emission capacities than did leaves grown exclusively at 20 degrees C, even 2 weeks after the last 30 degrees C episode. The levels and extractable activities of isoprene synthase protein, which catalyses the synthesis of isoprene, and those of dimethylallyl diphosphate (DMADP), its substrate, alone could not explain observed variations in isoprene emission. Therefore, we conclude that control of isoprene emission in mature leaves is shared between isoprene synthase protein and DMADP supply.  相似文献   

3.
We present a physiological model of isoprene (2-methyl-1,3-butadiene) emission which considers the cost for isoprene synthesis, and the production of reductive equivalents in reactions of photosynthetic electron transport for Liquidambar styraciflua L. and for North American and European deciduous temperate Quercus species. In the model, we differentiate between leaf morphology (leaf dry mass per area, MA, g m ? 2) altering the content of enzymes of isoprene synthesis pathway per unit leaf area, and biochemical potentials of average leaf cells determining their capacity for isoprene emission. Isoprene emission rate per unit leaf area ( μ mol m ? 2 s ? 1) is calculated as the product of MA, the fraction of total electron flow used for isoprene synthesis ( ? , mol mol ? 1), the rate of photosynthetic electron transport (J) per unit leaf dry mass (Jm, μ mol g ? 1 s ? 1), and the reciprocal of the electron cost of isoprene synthesis [mol isoprene (mol electrons ? 1)]. The initial estimate of electron cost of isoprene synthesis is calculated according to the 1-deoxy- D -xylulose-5-phosphate pathway recently discovered in the chloroplasts, and is further modified to account for extra electron requirements because of photorespiration. The rate of photosynthetic electron transport is calculated by a process-based leaf photosynthesis model. A satisfactory fit to the light-dependence of isoprene emission is obtained using the light response curve of J, and a single value of ? , that is dependent on the isoprene synthase activity in the leaves. Temperature dependence of isoprene emission is obtained by combining the temperature response curves of photosynthetic electron transport, the shape of which is related to long-term temperature during leaf growth and development, and the specific activity of isoprene synthase, which is considered as essentially constant for all plants. The results of simulations demonstrate that the variety of temperature responses of isoprene emission observed within and among the species in previous studies may be explained by different optimum temperatures of J and/or limited maximum fraction of electrons used for isoprene synthesis. The model provides good fits to diurnal courses of field measurements of isoprene emission, and is also able to describe the changes in isoprene emission under stress conditions, for example, the decline in isoprene emission in water-stressed leaves.  相似文献   

4.
This study aims to identify how climate change may influence total emissions of monoterpene and isoprene from boreal forest canopies. The whole of Finland is assumed to experience an annual mean temperature (T) increase of 4 °C and a precipitation increase of 10% by the year 2100. This will increase forest resources throughout the country. At the same time, the proportions of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) in southern Finland (60°≤ latitude < 65°N) will be reduced from the current 40–50% to less than 10–20%, with increased dominance of birches (Betula pendula and Betula pubescens). In northern Finland (65°≤ latitude < 70°N), the proportions of Norway spruce and Scots pine will be balanced at a level of about 40% as the result of an increase in Norway spruce from the current 21% to 37% and a concurrent reduction in Scots pine from 63% to 40%. The proportion of birches is predicted to increase from the current 17% to 23%, but these will become the dominant species only on the most fertile sites. Total mean emissions of monoterpene by Scots pine will be reduced by 80% in southern Finland, but will increase by 62% in the north. Emissions from Norway spruce canopies will increase by 4% in the south but by 428% in the north, while those from birch canopies will increase by about 300% and 113%, respectively. Overall emissions of monoterpene over the whole country amount to about 950 kg km?2 y?1 under current temperature conditions and will increase by 17% to 1100 kg km?2 y?1 with elevated temperature and precipitation, mainly because of an increase at northern latitudes. Under current conditions, emissions of isoprene follow the spatial distribution of spruce canopies (the only isoprene‐emitting tree species that forms forests in Finland) with four times higher emissions in the south than in the north. The elevated temperature and the changes in the areal distribution of Norway spruce will result in increases in isoprene emissions of about 37% in southern Finland and 435% in northern Finland. Annual mean isoprene emissions from Norway spruce canopies over the whole country will increase by about 60% up to the year 2100.  相似文献   

5.
Gaps in our knowledge of the geographical distribution of species represent a fundamental challenge to biogeographers and conservation biologists alike, and are particularly pervasive in the tropics. Here we highlight the case of the Rufous‐thighed Kite Harpagus diodon, a South American raptor commonly mapped as resident across half the continent. Recent observations at migration watch points have indicated it may be partially migratory in the southernmost parts of its range. To investigate this possibility, we collated contemporary and historical specimen records, published sight records and ‘digital vouchers’ – photographs and sound‐recordings archived online (from citizen science initiatives) – and explored the spatiotemporal distribution of records. We were unable to trace any documented records of this species from Amazonia during the austral summer (October–March), or records from the Atlantic Forest biome during the peak of the Austral winter (June–August), and all proven breeding records stem from the Atlantic Forest region. We compared this pattern with that of a ‘control’ species, the congeneric Double‐toothed Kite H. bidentatus, again using specimens and digital vouchers. For this species we found no evidence of seasonality between biomes and can disregard spatiotemporal variation in observer effort as a cause of seasonal biases. We consider that all populations of Rufous‐thighed Kites are fully migratory, wintering in Equatorial forests in the Amazonian basin. We provide evidence that this pattern was previously obscured by erroneous undocumented records and poor or erroneous specimen metadata, and its discovery was primarily facilitated by digital vouchers. This discovery requires a reassessment of the species’ global conservation status as an Atlantic Forest breeding endemic, threatened by habitat loss and degradation, as it was previously considered to be resident across large swathes of undisturbed Amazonian Forest on the Guiana Shield. The bulk of the digital voucher data used to elucidate this pattern were extracted from a Brazilian citizen science initiative WikiAves, which may serve as a model for collating biodiversity data in megadiverse countries and help catalyse environmental awareness.  相似文献   

6.
The current worldwide concern about tropical deforestation raises questions about the sustainability of avian populations in isolated forest fragments. One of the most important issues concerns the sizes of forest fragments necessary to maintain populations and the genetic variation within them. We address this by: (1) using mtDNA sequence variation to infer aspects of the population structure of four species of understory birds from four sites in southern Costa Rican rainforest; and (2) determining whether forest fragmentation that has occurred in the last 50 years has had an effect on the amount of within-population variation for the species in question. High levels of between-population differentiation (D xy ) were found over a relatively small geographic scale (<130 km) for white-breasted wood-wren (Henicorhina leucosticta), bicolored antbird (Gymnopithys leucaspis), and gray-headed tanager (Eucometis penicillata), suggesting that these species are highly sedentary and exhibit strong female philopatry. No mtDNA variation was found in Plain Antvireo (Dysithamnus mentalis). In all three of the polymorphic species there was a significant decrease in mtDNA nucleotide diversity in populations isolated by forest fragmentation as compared to populations in contiguous primary forest. Even in relatively large (250–1000 ha) forest reserves, sedentary avian species have lost roughly half (range 43–85) of the nucleotide diversity in mtDNA over a relatively short period of time. Our results indicate that sedentary avian species in forest fragments isolated by clearing have undergone severe reductions in effective population size due to population bottlenecks perpetuated by prolonged isolation and potential edge effects.  相似文献   

7.
Whereas for extra‐tropical regions model estimates of the emission of volatile organic compounds (VOC) predict strong responses to the strong annual cycles of foliar biomass, light intensity and temperature, the tropical regions stand out as a dominant source year round, with only little variability mainly due to the annual cycle of foliar biomass of drought‐deciduous trees. As part of the Large Scale Biosphere Atmosphere Experiment in Amazônia (LBA‐EUSTACH), a remote secondary tropical forest site was visited in the dry‐to‐wet season transition campaign, and the trace gas exchange of a strong isoprene emitter and a monoterpene emitter are compared to the wet‐to‐dry season transition investigations reported earlier. Strong seasonal differences of the emission capacity were observed. The standard emission factor for isoprene emission of young mature leaves of Hymenaea courbaril was about twofold in the end of the dry season (111.5 μgC g?1 h?1 or 41.2 nmol m?2 s?1) compared to old mature leaves investigated in the end of the wet season (45.4 μgC g?1 h?1 or 24.9 nmol m?2 s?1). Standardized monoterpene emission rate of Apeiba tibourbou were 2.1 and 3.6 μgC g?1 h?1 (or 0.3 and 0.8 nmol m?2 s‐1), respectively. This change in species‐specific VOC emission capacity was mirrored by a concurrent change in the ambient mixing ratios. The growth conditions vary less in tropical areas than in temperate regions of the world, and the seasonal differences in emission strength could not be reconciled solely with meteorological data of instantaneous light intensity and temperature. Hence the inadequacy of using a single standard emission factor to represent an entire seasonal cycle is apparent. Among a host of other potential factors, including the leaf developmental stage, water and nutrient status, and abiotic stresses like the oxidative capacity of the ambient air, predominantly the long‐term growth temperature may be applied to predict the seasonal variability of the isoprene emission capacity. The dry season isoprene emission rates of H. courbaril measured at the canopy top were also compared to isoprene emissions of the shade‐adapted species Sorocea guilleminiana growing in the understory. Despite the difference in VOC emission composition and canopy position, one common algorithm was able to predict the diel emission pattern of all three tree species.  相似文献   

8.
将来源于银白杨的异戊二烯合成酶基因按照大肠杆菌密码子偏爱性进行优化,克隆到表达载体pACYCDu-et-1上,在大肠杆菌BL21(DE3)中异源表达,采用镍柱亲和层析纯化重组蛋白并测定其异戊二烯合成酶活性,通过摇瓶发酵实验对重组菌产异戊二烯进行进一步研究。结果显示:银白杨异戊二烯合成酶在大肠杆菌中能够高效表达,经过镍柱纯化后,电泳检测到特异性表达条带;该重组异戊二烯合成酶能够催化异戊二烯的合成,重组菌的异戊二烯产量可达到60μg/L。  相似文献   

9.
Subsistence hunting has been a vital activity for local people across Neotropical rain forests (NRF). While providing a reliable source of protein, subsistence hunting also reflected the strong relationships that connected local people with the species and ecosystems in which they inhabited. However, the social and ecological context in which subsistence hunting can be sustainable has been altered. The relatively small groups that hunted in large and mostly undisturbed forests, using traditional weapons, have been replaced by a growing population using fragmented habitats and modern hunting methods. Thus, subsistence hunting is less likely to be sustainable, threatening the food security of local people and the persistence of species with critical roles in the functioning of NRF. Managing subsistence hunting in this changing context will require a more efficient combination of tools which might include banning the hunting of large and sensitive species, strengthening protected areas, alternatives to reduce the role of wildlife protein on local people's subsistence and, in some cases, voluntary resettlements of local people, from areas that could still be used as refuge for endangered species.  相似文献   

10.
Controls on isoprene emission from trees in a subtropical dry forest   总被引:5,自引:1,他引:4  
Isoprene emission from vegetation is the single most important source of photochemically active reduced compounds to the atmosphere. We present the first controlled-environment measurements of isoprene emission from leaves of tropical forest trees. Our studies were conducted in the Guanica State Forest in Puerto Rico. We report the effects of temperature and light variations on biogenic isoprene emissions during 1995. Maximum emission rates varied among species from 0 to 268 nmol m?2 s?1. Values at the upper end of this range of maximum emission rates are 2–3 times higher than values reported from any temperate taxa. Isoprene emission showed strong sensitivity to light and temperature variations. In contrast to temperate plants, whose emissions tend to saturate at a light intensity of ~1000 μmol m?2 s?1, emissions from the tropical species increased with light intensity up to 2500 μmol m?2 s?1. The temperature optima for emissions from these plants were similar to those previously reported for temperate plants: ~40 °C. The high maximum emission rates and lack of light saturation indicate that estimates of isoprene emission from tropical forests need to be revised upwards.  相似文献   

11.
There is considerable interest in modeling isoprene emissions from terrestrial vegetation, because these emissions exert a principal control over the oxidative capacity of the troposphere. We used a unique field experiment that employs a continuous gradient in CO2 concentration from 240 to 520 ppmv to demonstrate that isoprene emissions in Eucalyptus globulus were enhanced at the lowest CO2 concentration, which was similar to the estimated CO2 concentrations during the last Glacial Maximum, compared with 380 ppmv, the current CO2 concentration. Leaves of Liquidambar styraciflua did not show an increase in isoprene emission at the lowest CO2 concentration. However, isoprene emission rates from both species were lower for trees grown at 520 ppmv CO2 compared with trees grown at 380 ppmv CO2. When grown in environmentally controlled chambers, trees of Populus deltoides and Populus tremuloides exhibited a 30–40% reduction in isoprene emission rate when grown at 800 ppmv CO2, compared with 400 ppmv CO2. P. tremuloides exhibited a 33% reduction when grown at 1200 ppmv CO2, compared with 600 ppmv CO2. We used current models of leaf isoprene emission to demonstrate that significant errors occur if the CO2 inhibition of isoprene is not taken into account. In order to alleviate these errors, we present a new model of isoprene emission that describes its response to changes in atmospheric CO2 concentration. The model logic is based on assumed competition between cytosolic and chloroplastic processes for pyruvate, one of the principal substrates of isoprene biosynthesis.  相似文献   

12.

Background and Aims

Isoprene is the most important volatile organic compound emitted by land plants in terms of abundance and environmental effects. Controls on isoprene emission rates include light, temperature, water supply and CO2 concentration. A need to quantify these controls has long been recognized. There are already models that give realistic results, but they are complex, highly empirical and require separate responses to different drivers. This study sets out to find a simpler, unifying principle.

Methods

A simple model is presented based on the idea of balancing demands for reducing power (derived from photosynthetic electron transport) in primary metabolism versus the secondary pathway that leads to the synthesis of isoprene. This model''s ability to account for key features in a variety of experimental data sets is assessed.

Key results

The model simultaneously predicts the fundamental responses observed in short-term experiments, namely: (1) the decoupling between carbon assimilation and isoprene emission; (2) a continued increase in isoprene emission with photosynthetically active radiation (PAR) at high PAR, after carbon assimilation has saturated; (3) a maximum of isoprene emission at low internal CO2 concentration (ci) and an asymptotic decline thereafter with increasing ci; (4) maintenance of high isoprene emissions when carbon assimilation is restricted by drought; and (5) a temperature optimum higher than that of photosynthesis, but lower than that of isoprene synthase activity.

Conclusions

A simple model was used to test the hypothesis that reducing power available to the synthesis pathway for isoprene varies according to the extent to which the needs of carbon assimilation are satisfied. Despite its simplicity the model explains much in terms of the observed response of isoprene to external drivers as well as the observed decoupling between carbon assimilation and isoprene emission. The concept has the potential to improve global-scale modelling of vegetation isoprene emission.  相似文献   

13.
The tropical African tree species Acacia nigrescens Oliv. was grown in environmentally controlled growth chambers at three CO2 concentrations representative of the Last Glacial Maximum (~180 ppmv), the present day (~380 ppmv), and likely mid‐21st century (~600 ppmv) CO2 concentrations. Isoprene (C5H8) emissions, per unit leaf area, were greater at lower‐than‐current CO2 levels and lower at higher‐than‐current CO2 levels relative to controls grown at 380 ppmv CO2. Changes in substrate availability and isoprene synthase (IspS) activity were identified as the mechanisms behind the observed leaf‐level emission response. In contrast, canopy‐scale emissions remained unaltered between the treatments as changes in leaf‐level emissions were offset by changes in biomass and leaf area. Substrate concentration and IspS activity‐CO2 responses were used in a biochemical model, coupled to existing isoprene emission algorithms, to model isoprene emissions from A. nigrescens grown for over 2 years at three different CO2 concentrations. The addition of the biochemical model allowed for the use of emission factors measured under present day CO2 concentrations across all three CO2 treatments. When isoprene emissions were measured from A. nigrescens in response to instantaneous changes in CO2 concentration, the biochemical model satisfactorily represented the observed response. Therefore, the effect of changes in atmospheric CO2 concentration on isoprene emission at any timescale can be modelled and predicted.  相似文献   

14.
Sustainable use of tropical forest systems requires continuous monitoring of biological diversity and ecosystem functions. This can be efficiently done with early warning (short-cycle) indicator groups of non-economical insects, whose population levels and resources are readily measured. Twenty-one groups of insects are evaluated as focal indicator taxa for rapid assessment of changes in Neotropical forest systems. Composite environmental indices for heterogeneity, richness, and natural disturbance are correlated positively with butterfly diversity in 56 Neotropical sites studied over many years. Various components of alpha, beta and gamma-diversity show typical responses to increased disturbance and different land-use regimes. Diversity often increases with disturbance near or below natural levels, but some sensitive species and genes are eliminated at very low levels of interference. Agricultural and silvicultural mosaics with over 30% conversion, including selective logging of three or more large trees per hectare, show shifts in species composition with irreversible loss of many components of the butterfly community, indicating non-sustainable land and resource use and reduction of future options. Monitoring of several insect indicator groups by local residents in a species-rich Brazilian Amazon extractive reserve has helped suggest guidelines for cologically, economically, and socially sustainable zoning and use regimes.  相似文献   

15.
We examined the relationships between topography, soil properties and tree species composition in a Neotropical swamp forest in southeastern Brazil. Plots were sampled in the forest, encompassing three different soil ground water regimes along the topographical declivity. All non-climbing plant individuals with trunk height >1.3 m were sampled. A canonical correspondence analysis—CCA—of the species–environmental relationships grouped tree species according to drainage and chemical soil conditions. A total of 86 species were found, being 77 species in the inferior, 40 species in the intermediate and 35 species in the superior topographic section. Some species were among the 10 most abundant ones, both in the overall sampled area and in each topographical section, with alternation events occurring only with their abundance position. However, substantial differences in floristic composition between sections were detected in a fine spatial scale, due to higher number of species, diversity index (H′) and species unique (exclusives) in the inferior topographic section. These higher values can be attributed to its higher spatial heterogeneity that included better drained and seasonally waterlogged soils, higher soil fertility and lower acidity. The increase of the soil water saturation and the uniform conditions derived from the superficial water layer has led to a lower number of species and an increase on the palm trees abundance in the intermediate and superior sections. Our results showed that at a small spatial scale niche differentiation must be an important factor related to the increase of the local diversity. The wide distribution of the most abundant species in the studied area and the increase of local diversity corroborate the pattern of distribution of species in larger scales of swamp forests, in which the most abundant species repeat themselves in high densities in different remnants. However, the floristic composition of each remnant is strongly variable, contributing to the increase of regional diversity.  相似文献   

16.
Avian diversity in the Neotropics has been traditionally attributed to the effect of vicariant forces promoting speciation in allopatry. Recent studies have shown that phylogeographical patterns shared among codistributed species cannot be explained by a single vicariant event, as species responses to a common barrier depend on the biological attributes of each taxon. The open vegetation corridor (OVC) isolates Amazonia and the Andean forests from the Atlantic Forest, creating a notorious pattern of avian taxa that are disjunctly codistributed in these forests. Here, we studied and compared the evolutionary histories of Ramphotrigon megacephalum and Pipraeidea melanonota, two passerines with allopatric populations east and west of the OVC that represent different subspecies. These species differ in their biological attributes: R. megacephalum is a sedentary, forest specialist mostly confined to bamboo understorey, whereas P. melanonota is a seasonal migrant and generalist species that ranges in a variety of closed and semi‐open environments. We performed genetic and genomic analyses, complemented with the study of coloration and behavioural differentiation, to assess population divergence across the OVC. We found that the evolutionary histories of both R. megacephalum and P. melanonota have been shaped by this environmental barrier. However, these species responded in different and asynchronous manners to the establishment of the OVC and to past connections between the currently isolated South American forests, which can be mostly explained by their distinct ecologies and dispersal abilities. Our results support the fact that the biological attributes of species can make their evolutionary histories idiosyncratic.  相似文献   

17.
Projected future climatic extremes such as heatwaves and droughts are expected to have major impacts on emissions and concentrations of biogenic volatile organic compounds (bVOCs) with potential implications for air quality, climate and human health. While the effects of changing temperature and photosynthetically active radiation (PAR) on the synthesis and emission of isoprene, the most abundant of these bVOCs, are well known, the role of other environmental factors such as soil moisture stress are not fully understood and are therefore poorly represented in land surface models. As part of the Wytham Isoprene iDirac Oak Tree Measurements campaign, continuous measurements of isoprene mixing ratio were made throughout the summer of 2018 in Wytham Woods, a mixed deciduous woodland in southern England. During this time, the United Kingdom experienced a prolonged heatwave and drought, and isoprene mixing ratios were observed to increase by more than 400% at Wytham Woods under these conditions. We applied the state‐of‐the‐art FORest Canopy‐Atmosphere Transfer canopy exchange model to investigate the processes leading to these elevated concentrations. We found that although current isoprene emissions algorithms reproduced observed mixing ratios in the canopy before and after the heatwave, the model underestimated observations by ~40% during the heatwave–drought period implying that models may substantially underestimate the release of isoprene to the atmosphere in future cases of mild or moderate drought. Stress‐induced emissions of isoprene based on leaf temperature and soil water content (SWC) were incorporated into current emissions algorithms leading to significant improvements in model output. A combination of SWC, leaf temperature and rewetting emission bursts provided the best model‐measurement fit with a 50% improvement compared to the baseline model. Our results highlight the need for more long‐term ecosystem‐scale observations to enable improved model representation of atmosphere–biosphere interactions in a changing global climate.  相似文献   

18.
Emissions of biogenic volatile organic compounds (VOCs) have important roles in ecophysiology and atmospheric chemistry at a wide range of spatial and temporal scales. Tropical regions are a major global source of VOC emissions and magnitude and chemical speciation of VOC emissions are highly plant-species specific. Therefore it is important to study emissions from dominant species in tropical regions undergoing large-scale land-use change, for example, rubber plantations in South East Asia. Rubber trees ( Hevea brasiliensis ) are strong emitters of light-dependent monoterpenes. Measurements of emissions from leaves were made in the dry season in February 2003 and at the beginning of the wet season in May 2005. Major emitted compounds were sabinene, α -pinene and β -pinene, but β -ocimene and linalool also contributed significantly at low temperature and light. Cis -ocimene was emitted with a circadian course independent of photosynthetic active radiation (PAR) and temperature changes with a maximum in the middle of the day. Total isoprenoid VOC emission potential at the beginning of the wet season (94 μg gdw−1 h−1) was almost two orders of magnitude higher than measured in the dry season (2 μg g dw−1 h−1). Composition of total emissions changed with increasing temperature or PAR ramps imposed throughout a day. As well as light and temperature, there was evidence that assimilation rate was also a factor contributing to seasonal regulating emission potential of monoterpenes from rubber trees. Results presented here contribute to a better understanding of an important source of biogenic VOC associated with land-use change in tropical South East Asia.  相似文献   

19.
The growing human population and the increase in per capita food consumption are driving agriculture expansion and affecting natural ecosystems around the world. To balance increasing agriculture production and nature conservation, we must assess the efficiency of land‐use strategies. Soybean production, mainly exported to China and Europe, has become the major driver of deforestation in dry forest/savanna ecosystems of South America. In this article we compared land cover patterns (based on satellite imagery) and land‐use and human population trends (based on government statistics) in regions with two contrasting development pathways in the Chaco dry forests of northern Argentina, since the early 1970s. The area (ca. 13 million hectares) includes one of the largest continuous patches of tropical dry forests and has experienced rapid land‐use change. In the region where land use has been driven by government‐sponsored colonization programs, the expansion of extensive grazing has led to a growing rural population, low food production, and widespread environmental degradation. In contrast, in the region dominated by market‐driven soybean expansion, the rural population has decreased, food production is between 300% and 800% greater, and low‐density extensive cattle production has declined over extensive remaining forested areas, resulting in a land‐use trend that appears to better balance food production and nature conservation.  相似文献   

20.
Our understanding of the human and biophysical dimensions of tropical dry forest change and its cumulative effects is still in the early stages of academic discovery. The papers in this special section on Neotropical dry forests cover a wide range of sites and problems ranging from the use of multispectral and hyperspectral remote sensing platforms to the impact of hurricanes on tropical dry forest regeneration. Here, we present to the scientific community the results of a workshop on which research priorities for tropical dry forests were discussed. This discussion focuses on the need to develop linkages between remote sensing, ecological, and social science research. The incorporation of social sciences into ecological research could contribute dramatically to our understandings of tropical dry forests by providing important contextual information to ecologists, and by helping to develop an important science–policy–public nexus on which environmental management can succeed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号