首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Prior studies have shown that fluid secretions from airway submucosal glands in cystic fibrosis (CF) are reduced and hyperviscous, possibly contributing to the pathogenesis of CF airway disease. Because the CF transmembrane conductance regulator (CFTR) protein can transport both chloride and bicarbonate, we investigated whether gland fluid pH is abnormal in early CF, using nasal biopsies from pediatric subjects having minimal CF lung disease. Gland fluid pH, measured in freshly secreted droplets under oil stained with BCECF-dextran, was 6.57 ± 0.09 (mean ± SE) in biopsies from six CF subjects, significantly lower than 7.18 ± 0.06 in eight non-CF biopsies (P < 0.01). To rule out the possibility that the apparent gland fluid hyperacidity in CF results from modification of fluid pH by the airway surface, a microcannulation method was used to measure pH in fluid exiting gland orifices. In pig trachea and human bronchi, gland fluid pH was reduced by up to 0.45 units by CFTR inhibitors, but was not affected by amiloride. Acid base transport in the surface epithelium of pig trachea was studied from pH changes in 300-nl fluid droplets deposited onto the oil-covered airway surface. The droplets had specified ionic composition/pH and/or contained transporter activators/inhibitors. We found evidence for CFTR-dependent bicarbonate transport by the tracheal surface epithelium as well as ATP/histamine-stimulated proton secretion, but not for sodium/proton or chloride/bicarbonate exchange. These results provide evidence for intrinsic hyperacidity in CF gland fluid secretions, which may contribute to CF airway pathology. cystic fibrosis transmembrane conductance regulator; airway; fluorescence microscopy; pH regulation  相似文献   

2.
3.
The transport of D-glucose into rainbow trout (Oncorhynchus mykiss) and river lamprey (Lampetra fluviatilis) hepatocytes, as well as into rainbow trout hepatoblastoma cell line RTH-149 was studied using tracer methods. The half-time for D-glucose equilibration was 15 s for rainbow trout. The half-times for the non-metabolizable D-glucose analog, 3-O-methyl-D-glucose equilibration were 8 s, 37 s and 38 s for rainbow trout, lamprey and RTH-149 cells, respectively. The 3-O-methyl-D-glucose was taken up by rainbow trout hepatocytes by facilitated diffusion in addition to simple diffusion. The uptake showed saturation kinetics with the K(m) of 37 mM and V(max) of 62 mmol kg(-1) cells min(-1). The uptake was sensitive to phloretin and cytochalasin B, but not affected by ouabain. The 3-O-methyl-D-glucose uptake by lamprey hepatocytes and RTH-149 cells showed no indication of saturation up to 160 mM, and was not affected by phloretin, cytochalasin B or ouabain, which suggests the mode of transport to be by passive diffusion. However, immunocytochemical stainings revealed the existence of mammalian type GLUT1 and GLUT2 transporters in all cells studied. The lack of a functioning carrier-mediated glucose uptake in lamprey hepatocytes might be due to its physiological state (prespawning starvation). The minor 3-O-methyl-D-glucose uptake into RTH-149 cells compared to freshly isolated rainbow trout hepatocytes might reflect low metabolic activity of the cell lines. Under the conditions applied the RTH-149 cell line is no suitable in vitro model for glucose transport in fish cells.  相似文献   

4.
Carbonic anhydrases (CA, EC 4.2.1.1.) catalyze reversible hydration of CO2 to HCO3- + H+. Bicarbonate transport proteins, which catalyze the transmembrane movement of membrane-impermeant bicarbonate, function in cooperation with CA. Since CA and bicarbonate transporters share the substrate, bicarbonate, we examined whether novel competitive inhibitors of CA also have direct inhibitory effects on bicarbonate transporters. We expressed the human erythrocyte membrane Cl-/HCO3- exchanger, AE1, in transfected HEK293 cells as a model bicarbonate transporter. AE1 activity was assessed in both Cl-/NO3- exchange assays, which were independent of CA activity, and in Cl-/HCO3- exchange assays. Transport was measured by following changes of intracellular [Cl-] and pH, using the intracellular fluorescent reporter dyes 6-methoxy-N-(3-sulfopropyl)quinolinium and 2',7'-bis-(2-carboxyethyl)-5-(and-6)carboxyfluorescein, respectively. We examined the effect of 16 different carbonic anhydrase inhibitors on AE1 transport activity. Among these 12 were newly-reported compounds; two were clinically used non-steroidal anti-inflammatory drugs (celecoxib and valdecoxib) and two were anti-convulsant drugs (topiramate and zonisamide). Celecoxib and four of the novel compounds significantly inhibited AE1 Cl-/NO3- exchange activity with EC50 values in the range 0.22-2.8 microM. It was evident that bulkier compounds had greater AE1 inhibitory potency. Maximum inhibition using 40 microM of each compound was only 22-53% of AE1 transport activity, possibly because assays were performed in the presence of competing substrate. In Cl-/HCO3- exchange assays, which depend on functional CA to produce transport substrate, 40 microM celecoxib inhibited AE1 by 62+/-4%. We conclude that some carbonic anhydrase inhibitors, including clinically-used celecoxib, will inhibit bicarbonate transport at clinically-significant concentrations.  相似文献   

5.
Anion exchanger proteins facilitate the exchange of bicarbonate for chloride across the plasma membrane. When bicarbonate combines with a proton it undergoes conversion into CO2, either spontaneously, or catalyzed by carbonic anhydrase enzymes. The CO2/HCO3- equilibrium is the body’s central pH buffering system. Rapid bicarbonate transport across the plasma membrane is essential to maintain cellular and whole body pH, to dispose of metabolic waste CO2, and to control fluid movement in our bodies. Cl-/HCO3- exchangers are found in two distinct gene families: SLC4A and SLC26A. Differences in the tissue distribution, electrogenicity, and regulation of the specific anion exchanger proteins allow for precise regulation of bicarbonate transport throughout the human body. This review provides a look into the structural and functional features that make this family of proteins unique, as well as the physiological significance of the different anion exchangers.  相似文献   

6.
A number of different freshwater fish species (perch Perca fluviatilis , roach Rutilus rutilus and rudd Scardinius erythrophthalamus ) from either eutrophic (Slapton Ley, a seasonally alkaline lake) or non-eutrophic waters were compared with respect to their sodium uptake kinetics and tolerance to acute (1 h) exposure to pH 9·5. Further comparisons were made with rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta . The influence of fish size was also investigated in rainbow trout. Exposure to pH 9·5 was found to disrupt sodium balance and inhibit ammonia excretion in all species and sizes of fishes. The origin of fishes did not have a significant effect on the sodium uptake kinetics or the physiological responses to high pH water. The fishes from the eutrophic lake therefore did not appear to have any increased tolerance to acute exposure to alkaline water. In contrast to previous studies there was no inhibition of Na+ uptake during exposure to high pH. Indeed in some groups of fish Na+ uptake was actually stimulated, as was Na+ efflux. These differences are attributed to experimental water composition and interspecific differences in physiology. It was not always possible to size-match fishes of the different species, so rainbow trout were used to assess the effect of body mass (from 2 to 40 g), on Na+ uptake kinetics and Na+ or ammonia fluxes during alkaline water exposure in rainbow trout. Size had no significant effect on these measurements within this narrow range, which helps validate the comparison between species in this study.  相似文献   

7.
Serine and glycine transport in fetal ovine hepatocytes   总被引:1,自引:0,他引:1  
The role of hepatic serine and glycine transport in the regulation of the biosynthesis of serine by the fetal liver has not been studied. The goal of this study was to characterize serine and glycine transport and utilization at physiologic concentrations in primary cultures of fetal ovine hepatocytes. Primary culture of hepatocytes from mid gestation ( approximately 90 days) and term ( approximately 135 days) fetal sheep were studied after overnight serum free culture. At both gestational ages, the initial rate for sodium dependent 300 microM serine transport (1697+/-131 pmoles/min/mg protein at mid, 1765+/-544 at term) was fourfold greater than sodium dependent 300 microM glycine transport (309+/-54 at mid, 579+/-252 at term). At physiologic concentrations (300 microM), 69+/-7% of serine and 49+/-8% of glycine transport was sodium dependent. At term, sodium dependent serine transport has a V(max) of 1751+/-348 pmoles/min/mg protein and a K(m) of 159+/-111 microM. Sodium independent serine transport has a V(max) of 904+/-185 and a K(m) of 416+/-188 microM. Sodium dependent glycine transport has a V(max) of 410+/-69 and a K(m) of 2290+/-895 microM while sodium independent glycine transport exhibits non-saturable kinetics. Glycine (300 microM) sodium dependent transport was not inhibited by methyl-AIB while sodium dependent 300 microM serine transport was inhibited (31%). n-Ethylmaleimide inhibited sodium dependent serine and glycine transport by 36+/-9% and 37+/-2% respectively in term hepatocytes. Cysteine inhibited sodium dependent serine transport by 37%. Sodium independent glycine transport at 300 microM was higher in low glucose (1.1 mM) medium (881+/-76 pmoles/min/mg protein) compared to high glucose (5.5 mM) medium (510+/-60 P=0.004). There were no significant differences in serine or glycine incorporation into RNA, DNA, glycogen or lipid and protein. The predominance of serine transport over glycine at physiologic concentrations suggests that inward cellular amino acid transport of serine and glycine is not likely to be a regulatory mechanism that would favor serine biosynthesis in fetal ovine hepatocytes.  相似文献   

8.
9.
The 70-kDa family of heat shock proteins plays an important role as molecular chaperones in unstressed and stressed cells. The constitutive member of the 70 family (hsc70) is crucial for the chaperoning function of unstressed cells, whereas the inducible form (hsp70) is important for allowing cells to cope with acute stressor insult, especially those affecting the protein machinery. In fish, the role of hsc70 in the cellular stress response process is less clear primarily because of the lack of a fish-specific antibody for hsc70 detection. In this study, we purified hsc70 to homogeneity from trout liver using a three-step purification protocol with differential centrifugation, ATP-agarose affinity chromatography and electroelution. Polyclonal antibodies to trout hsc70 generated in rabbits cross-reacted strongly with both purified trout hsc70 protein and also purified recombinant bovine hsc70. Two-dimensional electrophoresis followed by Western blotting confirmed that the isoelectric point of rainbow trout hsc70 was more acidic than hsp70. Using this antibody, we detected hsc70 content in the liver, heart, gill and skeletal muscle of unstressed rainbow trout. Primary cultures of trout hepatocytes subjected to a heat shock (+15 degrees C for 1 h) or exposed to either CuSO(4) (200 microM for 24 h), CdCl(2) (10 microM for 24 h) or NaAsO(2) (50 microM for 1 h) resulted in higher hsp70 accumulation over a 24-h period. However, hsc70 content showed no change with either heat shock or heavy metal exposure suggesting that hsc70 is not modulated by sublethal acute stressors in trout hepatocytes. Taken together, we have for the first time generated polyclonal antibodies specific to rainbow trout hsc70 and this antibody will allow for the characterization of the role of hsc70 in the cellular stress response process in fish.  相似文献   

10.
The uricase (urate: oxygen oxidoreducase EC.1.7.3.3) activities in livers from rainbow trout, mackerel, lake trout, catfish, shark and tilapia were 1000, 1180, 920, 630, 490 and 420 units (n moles uric acid oxidized mg-1 protein min-1) per gram liver, respectively. The enzyme from lake trout was purified twenty fold by ammonium sulfate precipitation, protamine sulfate treatment and Sephacryl S-200 column chromatography. SDS-polyacrylamide gel-electrophoresis indicated an oligomeric enzyme containing subunits of 32,500 daltons. The pH optimum was 8.8 but the enzyme had a relatively broad pH activity profile between pH 7.0-9.5. Apparent Km and Vmax values of 80 microM and greater than 1000 was obtained for the trout liver enzyme.  相似文献   

11.
The pancreas is a 'leaky' epithelium and secretes a juice in which sodium and potassium have concentrations similar to those of plasma. The characteristic features of the secretion are its isosmolality and its high bicarbonate concentration. It is the latter that has attracted considerable attention. Secretion in the isolated cat pancreas is directly proportional to the bicarbonate concentration in the nutrient fluid. The ability of the gland to secrete weak acids has led to the view that because of the very different chemical nature of the anions, it is most likely that it is a component common to all buffers, the proton, that is subject to active transport. This is supported by the decrease in pH and the increase in rho CO2 of the venous effluent when secretion occurs and the sensitivity of secretion to the pH of the nutritional extracellular fluid. It is proposed that the cellular mechanisms are as follows: CO2 diffuses into the cell and is hydrated to carbonic acid under the influence of carbonic anhydrase. The bicarbonate ion so formed diffused into the ductular lumen and the proton is transported backwards through the epithelium with a proton pump (Mg2+ -ATPase) provisionally located in the luminal membrane and a hydrogen-sodium exchange carrier located in the basolateral membrane. Energy for the latter process is derived from the sodium gradient between extracellular fluid and cell. This gradient is maintained by a (Na+ + K+)-ATPase also located in the basolateral membrane. Chloride appears to be transported partly through a chloride-bicarbonate exchange mechanism but largely passively together with a large sodium and potassium component through the paracellular pathway. Osmotic equilibrium is likely to occur in the small ductules.  相似文献   

12.
Transient extracellular pH changes accompany the exchange of chloride for sulfate across the erythrocyte membrane. The direction of the extracellular pH change during chloride efflux and sulfate influx depends on experimental conditions. When bicarbonate is present, the extracellular pH drops sharply at the outset of the anion exchange and tends to follow the partial ionic equilibrium described by Wilbrandt (W. Wilbrandt, 1942. Pfluegers Arch. 246:291). When bicarbonate is absent, however, the anion exchange causes the pH to rise, indicating that protons are cotransported with sulfate during chloride-sulfate exchange. The pH rise can be reversed by the addition of HCO(-3) (4 muM) or 2,4-dinitrophenol (90 muM). This demonstrates that the proton-sulfate cotransport can drive proton transport uphill. The stoichiometry of the transport is that one chloride exchanges for one sulfate plus one proton. These results support the titratable carrier model proposed by Gunn (Gunn, R.B. 1972, In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rorth and P. Astrup, editors. p. 823. Munksgaard, Copenhagen) for erythrocyte membrane anion exchange.  相似文献   

13.
It is known that procymidone modifies sexual differentiation in vivo and in vitro, and that it induces vitellogenin (Vtg) synthesis in primary cultured rainbow trout hepatocytes. The aim of this study was to evaluate the mechanism underlying this latter in vitro estrogenic action. The cells were treated for 24 h with procymidone 150 microM (with 17beta-estradiol [E2] 20 microM as a positive control) combined with an estrogen receptor (ER) antagonist (tamoxifen 20 microM or ICI 182,780 1 microM) or, given the drug toxic action on the production of reactive oxygen species (ROS), a free radical scavenger (alpha-tocopherol 30 microM). The results from ELISA experiments provided evidence that procymidone Vtg-induction is inhibited by ER antagonists and by alpha-tocopherol suggesting that both ER and ROS are involved in this effect. The ROS detection revealed that the treatment with alpha-tocopherol and tamoxifen completely prevented ROS induction by procymidone, that was not inhibited by ICI 182,780. In exploring the mechanism mediating these events and its timing, we found that procymidone induced mitogen-activated protein kinase (MAPK) at 30 and 60 min, and that this effect was blocked by co-treatment with alpha-tocopherol. In summary, the results of the study clearly support the idea that the estrogenic activity of procymidone in primary cultured trout hepatocytes is mediated by ROS production, and that this activity is similar to that of the ligand-independent ER activation involving MAPK.  相似文献   

14.
The aim of this study was to characterize the enzyme β- N -acetyglucosaminidase (β-NAGase) in the milt and spermatozoa extracts from Siberian sturgeon and rainbow trout. After ion exchange chromatography one protein peak showed β-NAGase activity in sturgeon milt plasma and sperm extracts of both species. Surprisingly, two protein peaks showing β-NAGase activity were found in rainbow trout milt plasma. The molecular mass of β-NAGase was estimated by gel filtration as 127 kDa for rainbow trout spermatozoa, 271 kDa for sturgeon spermatozoa, and 74 kDa for milt plasma from both species. The kinetic parameters were determined for milt plasma and sperm extracts. The optimum pH of the β-NAGases was 3.8 for sturgeon milt plasma, 4.4 for sturgeon sperm extract, and 4.4–4.8 for milt plasma and sperm extract from rainbow trout. K m value of the β-NAGases was 0.212, 0.563, 0.779 m m for sturgeon milt plasma, sturgeon sperm extract or rainbow trout extract, respectively. The β-NAGase from sperm extracts in both species showed 100% activity even after incubation at 56°C by 20 min, whereas its activity was decreased to 23% in sturgeon milt plasma and to 2% in trout milt plasma.  相似文献   

15.
Many teleostean fish, including rainbow trout, regulate red blood cell (RBC) pH (pH(i)) in the presence of a stress-induced acidosis such as hypoxia, hypercapnia, or exhaustive exercise. This is accomplished through activation of RBC Na+/H+ exchange (beta-NHE), ultimately minimizing impairment to oxygen transport. Presence and characterization of the RBC beta-NHE in fish is best tested in blood from cannulated, resting animals; however, several studies have used blood from stressed animals drawn from the caudal vein and stored prior to use. The effects of sampling procedures and storage on the beta-NHE response is not known and is the focus of this study. Whole blood drawn from cannulated, resting rainbow trout was compared with RBCs obtained from the caudal vein rinsed and stored at 4 degrees C for 0, 6, 24, 48, 96 or 144 h. Isoproterenol (10(-5) M), a beta-adrenergic agonist, was added to hypoxia/hypercapnia incubated RBCs in vitro. In all treatments, isoproterenol induced a large beta-NHE response, and storage duration (< or =96 h) had a minimal affect, indicating that rinsing and storing is an easy and viable means by which to obtain RBCs and investigate function. Storage for 144 h still resulted in a significant RBC beta-NHE response; however, viability of RBCs may be compromised.  相似文献   

16.
Relative to species such as rainbow trout, freshwater turtle shows a high tolerance to challenges involving acidosis and increases in extracellular K+. Therefore, the effects of acidosis or high K+ on twitch force and oxygen consumption were examined in ventricular ring preparations from these two species. The oxygen consumption associated with force development was estimated by net oxygen consumption (oxygen consumption during twitch force development minus that during rest). For turtle, elevation of CO2 from 2% (pH 7.7) to 12% (pH 6.9) in the gas equilibrating the muscle bath decreased twitch force by 20% without any effects on oxygen consumption. Decreasing pH from 7.7 to 6.9 with 22 mM lactic acid had similar effects. For trout, CO2-induced acidosis decreased twitch force by approximately 60%. Furthermore, force development became energetically less efficient as it fell disproportionately more than net oxygen consumption. This was not observed for lactic acidosis. For trout but not for turtle, acidosis resulted in an increase in oxygen consumption during rest. An increase in extracellular K+ from 2.5 mM to 10 mM depressed force and oxygen consumption proportionately for both species. Adrenaline (10 microM) increased twitch force for both species and oxygen consumption for trout; it attenuated the effects of high extracellular K+. Neither adrenaline nor high K+ influenced the ratio of force to net oxygen consumption. As opposed to high extracellular K+, acidosis appears to increase the energetic cost of contractility, particularly for the trout heart.  相似文献   

17.
We report identification of a rainbow trout hepatic glucose transporter sharing 58% and 52% amino acid identity with avian and mammalian GLUT2 sequences, respectively. The functionality of OnmyGLUT2 was assessed by expression in rainbow trout embryos. We also measured the transport of hexose in isolated rainbow trout hepatocytes. Inhibition of 3-O-methylglucose uptake by cytochalasin B, phloretin and 2-deoxy-D-glucose suggested the existence of a functional facilitative transporter in these cells. Expression of OnmyGLUT2 was found in the liver, kidney and intestine.  相似文献   

18.
We studied the effect of noradrenaline on the methaemoglobin (metHb) concentration in rainbow trout red cells. The erythrocytes were incubated in physiological medium with or without noradrenaline and the percentage of metHb of total Hb content was measured. Noradrenaline lowered the metHb content significantly as compared to controls. To study if the effect of noradrenaline was caused by adrenergic intracellular alkalinization, cells were treated with noradrenaline + carbonic anhydrase or noradrenaline + acetazolamide. Carbonic anhydrase inhibits the adrenergic increase in intracellular pH, but did not reduce the effect of noradrenaline on the metHb concentration. Acetazolamide accentuates the increase in intracellular pH. However, there was no difference in the methaemoglobin content of noradrenaline-incubated and noradrenaline + acetazolamide-incubated cells. These results show that the effect of noradrenaline on the methaemoglobin content is independent from the adrenergic increase in intracellular pH. However, amiloride treatment inhibited the effect of noradrenaline on the methaemoglobin content, suggesting that the protein mediating sodium/proton exchange may also be involved in controlling cellular methaemoglobin levels.  相似文献   

19.
The kinetic mechanism of the lactose transport system of Streptococcus thermophilus was studied in membrane vesicles fused with cytochrome c oxidase containing liposomes and in proteoliposomes in which cytochrome c oxidase was coreconstituted with the lactose transport protein. Selective manipulation of the components of the proton (and sodium) motive force indicated that both a membrane potential and a pH gradient could drive transport. The galactoside/proton stoichiometry was close to unity. Experiments which discriminate between the effects of internal pH and delta pH as driving force on galactoside/proton symport showed that the carrier is highly activated at alkaline internal pH values, which biases the transport system kinetically toward the pH component of the proton motive force. Galactoside efflux increased with increasing pH with a pKa of about 8, whereas galactoside exchange (and counterflow) exhibited a pH optimum around 7 with pKa values of 6 and 8, respectively. Imposition of delta pH (interior alkaline) retarded the rate of efflux at any pH value tested, whereas the rate of exchange was stimulated by an imposed delta pH at pH 5.8, not affected at pH 7.0, and inhibited at pH 8.0 and 9.0. The results have been evaluated in terms of random and ordered association/dissociation of galactoside and proton on the inner surface of the membrane. Imposition of delta psi (interior negative) decreased the rate of efflux but had no effect on the rate of exchange, indicating that the unloaded transport protein carries a net negative charge and that during exchange and counterflow the carrier recycles in the protonated form.  相似文献   

20.
Differences between ventilatory response and metabolic rates of young rainbow trout tested within the sublethal range of pH 6 to pH 9 were observed using a flowing water respirometer. The oxygen consumption was monitored at swimming speeds of 12 cm/sec and 24 cm/sec. The oxygen consumption rates at 24 cm/sec and pH 6 (423 mg/kg-hr) and pH 9 (367 mg/kg-hr) were considerably higher than those determined near neutrality (328 mg/kg-hr). Ventilation rate increased to either side of neutrality, but significantly fewer respiratory reversals, or "coughs," were observed at pH 6 and a greater number at pH 9 than occurred at pH 7 and 8 or in untested fish. The respiratory-cough response is shown to be pH-dependent in rainbow trout and may therefore not be as reliable an indication of pollutant-caused stress in studies where the experimental pH has not been specified or controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号