首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
R. Rajgaria  Y. Wei  C. A. Floudas 《Proteins》2010,78(8):1825-1846
An integer linear optimization model is presented to predict residue contacts in β, α + β, and α/β proteins. The total energy of a protein is expressed as sum of a Cα? Cα distance dependent contact energy contribution and a hydrophobic contribution. The model selects contact that assign lowest energy to the protein structure as satisfying a set of constraints that are included to enforce certain physically observed topological information. A new method based on hydrophobicity is proposed to find the β‐sheet alignments. These β‐sheet alignments are used as constraints for contacts between residues of β‐sheets. This model was tested on three independent protein test sets and CASP8 test proteins consisting of β, α + β, α/β proteins and it was found to perform very well. The average accuracy of the predictions (separated by at least six residues) was ~61%. The average true positive and false positive distances were also calculated for each of the test sets and they are 7.58 Å and 15.88 Å, respectively. Residue contact prediction can be directly used to facilitate the protein tertiary structure prediction. This proposed residue contact prediction model is incorporated into the first principles protein tertiary structure prediction approach, ASTRO‐FOLD. The effectiveness of the contact prediction model was further demonstrated by the improvement in the quality of the protein structure ensemble generated using the predicted residue contacts for a test set of 10 proteins. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The protein folding problem represents one of the most challenging problems in computational biology. Distance constraints and topology predictions can be highly useful for the folding problem in reducing the conformational space that must be searched by deterministic algorithms to find a protein structure of minimum conformational energy. We present a novel optimization framework for predicting topological contacts and generating interhelical distance restraints between hydrophobic residues in alpha-helical globular proteins. It should be emphasized that since the model does not make assumptions about the form of the helices, it is applicable to all alpha-helical proteins, including helices with kinks and irregular helices. This model aims at enhancing the ASTRO-FOLD protein folding approach of Klepeis and Floudas (Journal of Computational Chemistry 2003;24:191-208), which finds the structure of global minimum conformational energy via a constrained nonlinear optimization problem. The proposed topology prediction model was evaluated on 26 alpha-helical proteins ranging from 2 to 8 helices and 35 to 159 residues, and the best identified average interhelical distances corresponding to the predicted contacts fell below 11 A in all 26 of these systems. Given the positive results of applying the model to several protein systems, the importance of interhelical hydrophobic-to-hydrophobic contacts in determining the folding of alpha-helical globular proteins is highlighted.  相似文献   

3.
Correctly folded proteins make twice as many hydrophobic contacts   总被引:4,自引:0,他引:4  
A novel statistical analysis of non-bonded contacts in a set of known protein structures shows that the natural residue types fall into five or six groups distinguishable by nearest neighbor preference. The observed pattern of contact specificities clearly reflects residue hydrophobicity and charge. Its most striking feature is that residues in the hydrophobic group make about twice as many contacts with one another as would be expected on a random basis. A similar increase in hydrophobic contact frequency can be observed at the level of individual proteins. Native proteins make, on average, about twice as many hydrophobic contacts as corresponding misfolded proteins, generated by computer. On the basis of these observations increased hydrophobic contact frequency is proposed as a simple model of the hydrophobic effect.  相似文献   

4.
Selvaraj S  Gromiha MM 《Proteins》2004,55(4):1023-1035
Understanding the folding pathways of proteins is a challenging task. The Phi value approach provides a detailed understanding of transition-state structures of folded proteins. In this work, we have computed the hydrophobicity associated with each residue in the folded state of 16 two-state proteins and compared the Phi values of each mutant residue. We found that most of the residues with high Phi value coincide with local maximum in surrounding hydrophobicity, or have nearby residues that show such maximum in hydrophobicity, indicating the importance of hydrophobic interactions in the transition state. We have tested our approach to different structural classes of proteins, such as alpha-helical, SH3 domains of all-beta proteins, beta-sandwich, and alpha/beta proteins, and we observed a good agreement with experimental results. Further, we have proposed a hydrophobic contact network pattern to relate the Phi values with long-range contacts, which will be helpful to understand the transition-state structures of folded proteins. The present approach could be used to identify potential hydrophobic clusters that may form through long-range contacts during the transition state.  相似文献   

5.
A survey was compiled of several characteristics of the intersubunit contacts in 58 oligomeric proteins, and of the intermolecular contacts in the lattice for 223 protein crystal structures. The total number of atoms in contact and the secondary structure elements involved are similar in the two types of interfaces. Crystal contact patches are frequently smaller than patches involved in oligomer interfaces. Crystal contacts result from more numerous interactions by polar residues, compared with a tendency toward nonpolar amino acids at oligomer interfaces. Arginine is the only amino acid prominent in both types of interfaces. Potentials of mean force for residue–residue contacts at both crystal and oligomer interfaces were derived from comparison of the number of observed residue–residue interactions with the number expected by mass action. They show that hydrophobic interactions at oligomer interfaces favor aromatic amino acids and methionine over aliphatic amino acids; and that crystal contacts form in such a way as to avoid inclusion of hydrophobic interactions. They also suggest that complex salt bridges with certain amino acid compositions might be important in oligomer formation. For a protein that is recalcitrant to crystallization, substitution of lysine residues with arginine or glutamine is a recommended strategy. Proteins 28:494–514, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Li J  Wang J  Wang W 《Proteins》2008,71(4):1899-1907
In the native structure of a protein, all the residues are tightly parked together in a specific order following its folding and every residue contacts with some spatially neighbor residues. A residue contact network can be constructed by defining the residues as nodes and the native contacts as edges. During the folding of small single-domain proteins, there is a set of contacts (or bonds), defined as the folding nucleus (FN), which is formed around the transition state, i.e., a rate-limiting barrier located at about the middle between the unfolded states and the native state on the free energy landscape. Such a FN plays an essential role in the folding dynamics and the residues, which form the related contacts called as folding nucleus residues (FNRs). In this work, the FNRs in proteins are identified by using quantities which characterize the topology of residue contact networks of proteins. By comparing the specificities of residues with the network quantities K(R), L(R), and D(R), up to 90% FNRs of six typical proteins found experimentally are identified. It is found that the FNRs behave the full-closeness centrals rather than degree or closeness centers in the residue contact network, implying that they are important to the folding cooperativity of proteins. Our study shows that the FNRs can be identified solely from the native structures of proteins based on the analysis of residue contact network without any knowledge of the transition state ensemble.  相似文献   

7.
Prediction of the location of structural domains in globular proteins   总被引:7,自引:0,他引:7  
The location of structural domains in proteins is predicted from the amino acid sequence, based on the analysis of a computed contact map for the protein, the average distance map (ADM). Interactions between residues i and j in a protein are subdivided into several ranges, according to the separation |i-j| in the amino acid sequence. Within each range, average spatial distances between every pair of amino acid residues are computed from a data base of known protein structures. Infrequently occurring pairs are omitted as being statistically insignificant. The average distances are used to construct a predicted ADM. The ADM is analyzed for the occurrence of regions with high densities of contacts (compact regions). Locations of rapid changes of density between various parts of the map are determined by the use of scanning plots of contact densities. These locations serve to pinpoint the distribution of compact regions. This distribution, in turn, is used to predict boundaries of domains in the protein. The technique provides an objective method for the location of domains both on a contact map derived from a known three-dimensional protein structure, the real distance map (RDM), and on an ADM. While most other published methods for the identification of domains locate them in the known three-dimensional structure of a protein, the technique presented here also permits the prediction of domains in proteins of unknown spatial structure, as the construction of the ADM for a given protein requires knowledge of only its amino acid sequence.  相似文献   

8.
Structural uniqueness is characteristic of native proteins and is essential to express their biological functions. The major factors that bring about the uniqueness are specific interactions between hydrophobic residues and their unique packing in the protein core. To find the origin of the uniqueness in their amino acid sequences, we analyzed the distribution of the side chain rotational isomers (rotamers) of hydrophobic amino acids in protein tertiary structures and derived deltaS(contact), the conformational-entropy changes of side chains by residue-residue contacts in each secondary structure. The deltaS(contact) values indicate distinct tendencies of the residue pairs to restrict side chain conformation by inter-residue contacts. Of the hydrophobic residues in alpha-helices, aliphatic residues (Leu, Val, Ile) strongly restrict the side chain conformations of each other. In beta-sheets, Met is most strongly restricted by contact with Ile, whereas Leu, Val and Ile are less affected by other residues in contact than those in alpha-helices. In designed and native protein variants, deltaS(contact) was found to correlate with the folding-unfolding cooperativity. Thus, it can be used as a specificity parameter for designing artificial proteins with a unique structure.  相似文献   

9.
The three-dimensional (3D) structure prediction of proteins :is an important task in bioinformatics. Finding energy functions that can better represent residue-residue and residue-solvent interactions is a crucial way to improve the prediction accu- racy. The widely used contact energy functions mostly only consider the contact frequency between different types of residues; however, we find that the contact frequency also relates to the residue hydrophobic environment. Accordingly, we present an improved contact energy function to integrate the two factors, which can reflect the influence of hydrophobic interaction on the stabilization of protein 3D structure more effectively. Furthermore, a fold recognition (threading) approach based on this energy function is developed. The testing results obtained with 20 randomly selected proteins demonstrate that, compared with common contact energy functions, the proposed energy function can improve the accuracy of the fold template prediction from 20% to 50%, and can also improve the accuracy of the sequence-template alignment from 35% to 65%.  相似文献   

10.
We present a new structurally derived pair-to-pair substitution matrix (P2PMAT). This matrix is constructed from a very large amount of integrated high quality multiple sequence alignments (Blocks) and protein structures. It evaluates the likelihoods of all 160,000 pair-to-pair substitutions. P2PMAT matrix implicitly accounts for evolutionary conservation, correlated mutations, and residue-residue contact potentials. The usefulness of the matrix for structural predictions is shown in this article. Predicting protein residue-residue contacts from sequence information alone, by our method (P2PConPred) is particularly accurate in the protein cores, where it performs better than other basic contact prediction methods (increasing accuracy by 25-60%). The method mean accuracy for protein cores is 24% for 59 diverse families and 34% for a subset of proteins shorter than 100 residues. This is above the level that was recently shown to be sufficient to significantly improve ab initio protein structure prediction. We also demonstrate the ability of our approach to identify native structures within large sets of (300-2000) protein decoys. On the basis of evolutionary information alone our method ranks the native structure in the top 0.3% of the decoys in 4/10 of the sets, and in 8/10 of sets the native structure is ranked in the top 10% of the decoys. The method can, thus, be used to assist filtering wrong models, complementing traditional scoring functions.  相似文献   

11.
Theoretical microscopic titration curves (THEMATICS) is a computational method for the identification of active sites in proteins through deviations in computed titration behavior of ionizable residues. While the sensitivity to catalytic sites is high, the previously reported sensitivity to catalytic residues was not as high, about 50%. Here THEMATICS is combined with support vector machines (SVM) to improve sensitivity for catalytic residue prediction from protein 3D structure alone. For a test set of 64 proteins taken from the Catalytic Site Atlas (CSA), the average recall rate for annotated catalytic residues is 61%; good precision is maintained selecting only 4% of all residues. The average false positive rate, using the CSA annotations is only 3.2%, far lower than other 3D-structure-based methods. THEMATICS-SVM returns higher precision, lower false positive rate, and better overall performance, compared with other 3D-structure-based methods. Comparison is also made with the latest machine learning methods that are based on both sequence alignments and 3D structures. For annotated sets of well-characterized enzymes, THEMATICS-SVM performance compares very favorably with methods that utilize sequence homology. However, since THEMATICS depends only on the 3D structure of the query protein, no decline in performance is expected when applied to novel folds, proteins with few sequence homologues, or even orphan sequences. An extension of the method to predict non-ionizable catalytic residues is also presented. THEMATICS-SVM predicts a local network of ionizable residues with strong interactions between protonation events; this appears to be a special feature of enzyme active sites.  相似文献   

12.
Hamilton N  Burrage K  Ragan MA  Huber T 《Proteins》2004,56(4):679-684
We describe a new method for using neural networks to predict residue contact pairs in a protein. The main inputs to the neural network are a set of 25 measures of correlated mutation between all pairs of residues in two "windows" of size 5 centered on the residues of interest. While the individual pair-wise correlations are a relatively weak predictor of contact, by training the network on windows of correlation the accuracy of prediction is significantly improved. The neural network is trained on a set of 100 proteins and then tested on a disjoint set of 1033 proteins of known structure. An average predictive accuracy of 21.7% is obtained taking the best L/2 predictions for each protein, where L is the sequence length. Taking the best L/10 predictions gives an average accuracy of 30.7%. The predictor is also tested on a set of 59 proteins from the CASP5 experiment. The accuracy is found to be relatively consistent across different sequence lengths, but to vary widely according to the secondary structure. Predictive accuracy is also found to improve by using multiple sequence alignments containing many sequences to calculate the correlations.  相似文献   

13.
A comprehensive statistical analysis of residue-residue contacts and residue environment in protein 3-D structures is presented. In the present work the range of interresidue interactions (effective radius of influence) in tertiary structures of proteins is examined and found to be 10 Å. This result is obtained by correlating the average number of residues within a spherical volume of different radii (contact numbers) with hydrophobicity. Best correlations are obtained with a radius of 10 Å. The same result is obtained when (i) only long-range interactions are considered and (ii) representative side chain atoms are used to indicate the tertiary structure instead of the usual representation of Cα atoms. Residue environment has been investigated using similar methods. Environmental hydrophobicity varies within only a small range of all residue types. Other physicochemical properties also exhibit similar trends of variation, and only five hydrophobic residues (Leu, Val, Met, Phe and Ile) produce a decrement of around 10% from the expected mean of the physicochemical distance between a residue type and its average environment. An information theory approach is proposed to compare domains, which takes into account the effective radius of influence of residues and sequence similarity.  相似文献   

14.
The influence of long-range residue interactions on defining secondary structure in a protein has long been discussed and is often cited as the current limitation to accurate secondary structure prediction. There are several experimental examples where a local sequence alone is not sufficient to determine its secondary structure, but a comprehensive survey on a large data set has not yet been done. Interestingly, some earlier studies denied the negative effect of long-range interactions on secondary structure prediction accuracy. Here, we have introduced the residue contact order (RCO), which directly indicates the separation of contacting residues in terms of the position in the sequence, and examined the relationship between the RCO and the prediction accuracy. A large data set of 2777 nonhomologous proteins was used in our analysis. Unlike previous studies, we do find that prediction accuracy drops as residues have contacts with more distant residues. Moreover, this negative correlation between the RCO and the prediction accuracy was found not only for beta-strands, but also for alpha-helices. The prediction accuracy of beta-strands is lower if residues have a high RCO or a low RCO, which corresponds to the situation that a beta-sheet is formed by beta-strands from different chains in a protein complex. The reason why the current study draws the opposite conclusion from the previous studies is examined. The implication for protein folding is also discussed.  相似文献   

15.
One of the challenging problems in tertiary structure prediction of helical membrane proteins (HMPs) is the determination of rotation of α‐helices around the helix normal. Incorrect prediction of helix rotations substantially disrupts native residue–residue contacts while inducing only a relatively small effect on the overall fold. We previously developed a method for predicting residue contact numbers (CNs), which measure the local packing density of residues within the protein tertiary structure. In this study, we tested the idea of incorporating predicted CNs as restraints to guide the sampling of helix rotation. For a benchmark set of 15 HMPs with simple to rather complicated folds, the average contact recovery (CR) of best‐sampled models was improved for all targets, the likelihood of sampling models with CR greater than 20% was increased for 13 targets, and the average RMSD100 of best‐sampled models was improved for 12 targets. This study demonstrated that explicit incorporation of CNs as restraints improves the prediction of helix–helix packing. Proteins 2017; 85:1212–1221. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
Distributions of each amino acid in the trans-membrane domain were calculated as a function of the membrane normal using all currently available alpha-helical membrane protein structures with resolutions better than 4 A. The results were compared with previous sequence- and structure-based analyses. Calculation of the average hydrophobicity along the membrane normal demonstrated that the protein surface in the membrane domain is in fact much more hydrophobic than the protein core. While hydrophobic residues dominate the membrane domain, the interfacial regions of membrane proteins were found to be abundant in the small residues glycine, alanine, and serine, consistent with previous studies on membrane protein packing. Charged residues displayed nonsymmetric distributions with a preference for the intracellular interface. This effect was more prominent for Arg and Lys resulting in a direct confirmation of the positive inside rule. Potentials of mean force along the membrane normal were derived for each amino acid by fitting Gaussian functions to the residue distributions. The individual potentials agree well with experimental and theoretical considerations. The resulting implicit membrane potential was tested on various membrane proteins as well as single trans-membrane alpha-helices. All membrane proteins were found to be at an energy minimum when correctly inserted into the membrane. For alpha-helices both interfacial (i.e. surface bound) and inserted configurations were found to correspond to energy minima. The results demonstrate that the use of trans-membrane amino acid distributions to derive an implicit membrane representation yields meaningful residue potentials.  相似文献   

17.
In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position–specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα‐Cα atoms. First, using a rigorous leave‐one‐protein‐out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state‐of‐the‐art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/ . Proteins 2016; 84:332–348. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
1IntroductionThe three-dimensional(3D)structure of a proteinis perhaps the most important of all its features,since itdetermines completely how the protein functions andinteracts with other molecules.Most biological mech-anisms at the protein level are based on shape-complementarity,so that proteins present particularconcavities and convexities that allow them to bind toeach other and formcomplexstructures,and tendon.Forthis reason,for instance,the drug design problem con-sists primarily in th…  相似文献   

19.
Importance of long-range interactions in protein folding   总被引:2,自引:0,他引:2  
Long-range interactions play an active role in the stability of protein molecules. In this work, we have analyzed the importance of long-range interactions in different structural classes of globular proteins in terms of residue distances. We found that 85% of residues are involved in long-range contacts. The residues occurring in the range of 4-10 residues apart contribute more towards long-range contacts in all-alpha proteins while the range is 11-20 in all-beta proteins. The hydrophobic residues Cys, Ile and Val prefer the 11-20 range and all other residues prefer the 4-10 range. The residues in all-beta proteins have an average of 3-8 long-range contacts whereas the residues in other classes have 1-4 long-range contracts. Furthermore, the preference of residue pairs to the folding and stability will be discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号