首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Determination of the binding motif and identification of interaction partners of the modular domains such as SH2 domains can enhance our understanding of the regulatory mechanism of protein-protein interactions. We propose here a new computational method to achieve this goal by integrating the orthogonal information obtained from binding free energy estimation and peptide sequence analysis. We performed a proof-of-concept study on the SH2 domains of SAP and Grb2 proteins. The method involves the following steps: (1) estimating the binding free energy of a set of randomly selected peptides along with a sample of known binders; (2) clustering all these peptides using sequence and energy characteristics; (3) extracting a sequence motif, which is represented by a hidden Markov model (HMM), from the cluster of peptides containing the sample of known binders; and (4) scanning the human proteome to identify binding sites of the domain. The binding motifs of the SAP and Grb2 SH2 domains derived by the method agree well with those determined through experimental studies. Using the derived binding motifs, we have predicted new possible interaction partners for the Grb2 and SAP SH2 domains as well as possible interaction sites for interaction partners already known. We also suggested novel roles for the proteins by reviewing their top interaction candidates.  相似文献   

2.
Computer simulations using the simplified energy function and simulated tempering dynamics have accurately determined the native structure of the pYVPML, SVLpYTAVQPNE, and SPGEpYVNIEF peptides in the complexes with SH2 domains. Structural and equilibrium aspects of the peptide binding with SH2 domains have been studied by generating temperature-dependent binding free energy landscapes. Once some native peptide-SH2 domain contacts are constrained, the underlying binding free energy profile has the funnel-like shape that leads to a rapid and consistent acquisition of the native structure. The dominant native topology of the peptide-SH2 domain complexes represents an extended peptide conformation with strong specific interactions in the phosphotyrosine pocket and hydrophobic interactions of the peptide residues C-terminal to the pTyr group. The topological features of the peptide-protein interface are primarily determined by the thermodynamically stable phosphotyrosyl group. A diversity of structurally different binding orientations has been observed for the amino-terminal residues to the phosphotyrosine. The dominant native topology for the peptide residues carboxy-terminal to the phosphotyrosine is tolerant to flexibility in this region of the peptide-SH2 domain interface observed in equilibrium simulations. The energy landscape analysis has revealed a broad, entropically favorable topology of the native binding mode for the bound peptides, which is robust to structural perturbations. This could provide an additional positive mechanism underlying tolerance of the SH2 domains to hydrophobic conservative substitutions in the peptide specificity region.  相似文献   

3.
Qin C  Wavreille AS  Pei D 《Biochemistry》2005,44(36):12196-12202
Src homology-2 (SH2) domains recognize specific phosphotyrosyl (pY) proteins and promote protein-protein interactions. In their classical binding mode, the SH2 domain makes specific contacts with the pY residue and the three residues immediately C-terminal to the pY, although for a few SH2 domains, residues N-terminal to pY have recently been shown to also contribute to the overall binding affinity and specificity. In this work, the ability of an SH2 domain to bind to the N-terminal side of pY has been systematically examined. A pY peptide library containing completely randomized residues at positions -5 to -1 (relative to pY, which is position 0) was synthesized on TentaGel resin and screened against the four SH2 domains of phosphatases SHP-1 and SHP-2. Positive beads that carry high-affinity ligands of the SH2 domains were identified using an enzyme-linked assay, and the peptides were sequenced by partial Edman degradation and matrix-assisted laser desorption ionization mass spectrometry. The N-terminal SH2 domain of SHP-2 binds specifically to peptides of the consensus sequence (H/F)XVX(T/S/A)pY. Further binding studies with individually synthesized pY peptides show that pY and the five residues N-terminal to pY, but not any of the C-terminal residues, are important for binding. The other three SH2 domains also bound to the library beads, albeit more weakly, and the selected peptides did not show any clear consensus. These results demonstrate that at least some SH2 domains can bind to pY peptides in an alternative mode by recognizing only the residues N-terminal to pY.  相似文献   

4.
Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3) domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders) and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well.  相似文献   

5.
We studied the interactions between the SH2 domain of growth factor receptor binding protein 2 (Grb2) and ErbB receptor-derived phosphotyrosyl peptides using molecular dynamics, free energy calculations, and surface plasmon resonance (SPR) analysis. Binding free energies for nine phosphotyrosyl peptides were calculated using the MM-PBSA continuum solvent method, and excellent qualitative agreement with the SPR experimental data, with a correlation coefficient of 0.92, was obtained. Consistent with previous experimental findings, phosphotyrosyl peptides with the consensus sequence pYXNX showed favorable binding affinity for the Grb2. Unexpectedly, phosphotyrosyl peptides with the consensus sequence pYQQD, which had not shown any specific binding affinity for the Grb2 in earlier studies, also showed favorable binding affinity for the Grb2 in our experimental and computational analyses. Component analysis of the calculated binding free energies revealed that van der Waals interaction between the Grb2 and the phosphotyrosyl peptide was the dominant factor for specificity and binding affinity. These results indicate that current methods of estimating binding free energies are efficient for obtaining important information about protein-protein interactions, which are essential for the transmission of signals in cellular signaling pathways.  相似文献   

6.
Determination of the binding specificity of SH3 domain, a peptide recognition module (PRM), is important to understand their biological functions and reconstruct the SH3-mediated protein-protein interaction network. In the present study, the SH3-peptide interactions for both class I and II SH3 domains were characterized by the intermolecular residue-residue interaction network. We developed generic MIEC-SVM models to infer SH3 domain-peptide recognition specificity that achieved satisfactory prediction accuracy. By investigating the domain-peptide recognition mechanisms at the residue level, we found that the class-I and class-II binding peptides have different binding modes even though they occupy the same binding site of SH3. Furthermore, we predicted the potential binding partners of SH3 domains in the yeast proteome and constructed the SH3-mediated protein-protein interaction network. Comparison with the experimentally determined interactions confirmed the effectiveness of our approach. This study showed that our sophisticated computational approach not only provides a powerful platform to decipher protein recognition code at the molecular level but also allows identification of peptide-mediated protein interactions at a proteomic scale. We believe that such an approach is general to be applicable to other domain-peptide interactions.  相似文献   

7.
SH3 domains are small but important domains in cell-signaling and function through protein-protein interactions. Their promiscuous nature in binding to polyproline peptides makes them much more important because many SH3 domains from different proteins bind to different proteins having polyproline template on their surface. Very subtle changes in the sequence of SH3 domains and the binding peptides determine the specificity of the peptide binding. Recent observation that SH3 domains bind to non- proline peptides makes the scenario of peptide binding involving SH3 domains complicated. If domain swapped dimerization as observed in Eps8-SH3 domain also binds different peptides, it proves the versatility of the SH3 domains in binding to peptides in various ways. An overview of the promiscuity of SH3 domains has been discussed.  相似文献   

8.
Eukaryotic signal transduction involves the assembly of transient protein-protein complexes mediated by modular interaction domains. Specific Pro-rich sequences with the consensus core motif PxxP adopt the PPII helix conformation upon binding to SH3 domains. For short Pro-rich peptides, little or no ordered secondary structure is usually observed before binding interactions. The association of a Pro-rich peptide with the SH3 domain involves unfavorable binding entropy due to the loss of rotational freedom on forming the PPII helix. With the aim of stabilizing the PPII helix conformation in the Pro-rich HPK1 decapeptide PPPLPPKPKF (P2), a series of P2 analogues was prepared, in which specific Pro positions were alternatively occupied by 4(S)- or 4(R)-4-fluoro-L-proline. The interactions of these peptides with the SH3 domain of the HPK1-binding partner HS1 were quantitatively analyzed by the NILIA-CD approach. A CD thermal analysis of the P2 analogues was performed to assess their propensity to adopt the PPII helix conformation. Contrary to our expectations, the K(d) values of the analogues were lower than that of the parent peptide P2. These results clearly show that the induction of a stable PPII helix conformation in short Pro-rich peptides is not sufficient to increase their affinity toward the SH3 domain and that the effect of 4-fluoroproline strongly depends on the position of this residue in the sequence and the chirality of the substituent in the pyrrolidine ring.  相似文献   

9.
A fairly large set of protein interactions is mediated by families of peptide binding domains, such as Src homology 2 (SH2), SH3, PDZ, major histocompatibility complex, etc. To identify their ligands by experimental screening is not only labor-intensive but almost futile in screening low abundance species due to the suppression by high abundance species. An ideal way of studying protein-protein interactions is to use high throughput computational approaches to screen protein sequence databases to direct the validating experiments toward the most promising peptides. Predictors with only good cross-validation were not good enough to screen protein databases. In the current study we built integrated machine learning systems using three novel coding methods and screened the Swiss-Prot and GenBank protein databases for potential ligands of 10 SH3 and three PDZ domains. A large fraction of predictions has already been experimentally confirmed by other independent research groups, indicating a satisfying generalization capability for future applications in identifying protein interactions.  相似文献   

10.
We develop a simple but rigorous model of protein-protein association kinetics based on diffusional association on free energy landscapes obtained by sampling configurations within and surrounding the native complex binding funnels. Guided by results obtained on exactly solvable model problems, we transform the problem of diffusion in a potential into free diffusion in the presence of an absorbing zone spanning the entrance to the binding funnel. The free diffusion problem is solved using a recently derived analytic expression for the rate of association of asymmetrically oriented molecules. Despite the required high steric specificity and the absence of long-range attractive interactions, the computed rates are typically on the order of 10(4)-10(6) M(-1) sec(-1), several orders of magnitude higher than rates obtained using a purely probabilistic model in which the association rate for free diffusion of uniformly reactive molecules is multiplied by the probability of a correct alignment of the two partners in a random collision. As the association rates of many protein-protein complexes are also in the 10(5)-10(6) M(-1) sec(-1) range, our results suggest that free energy barriers arising from desolvation and/or side-chain freezing during complex formation or increased ruggedness within the binding funnel, which are completely neglected in our simple diffusional model, do not contribute significantly to the dynamics of protein-protein association. The transparent physical interpretation of our approach that computes association rates directly from the size and geometry of protein-protein binding funnels makes it a useful complement to Brownian dynamics simulations.  相似文献   

11.
Many important protein-protein interactions are mediated by peptide recognition modular domains, such as the Src homology 3 (SH3), SH2, PDZ, and WW domains. Characterizing the interaction interface of domain-peptide complexes and predicting binding specificity for modular domains are critical for deciphering protein-protein interaction networks. Here, we propose the use of an energetic decomposition analysis to characterize domain-peptide interactions and the molecular interaction energy components (MIECs), including van der Waals, electrostatic, and desolvation energy between residue pairs on the binding interface. We show a proof-of-concept study on the amphiphysin-1 SH3 domain interacting with its peptide ligands. The structures of the human amphiphysin-1 SH3 domain complexed with 884 peptides were first modeled using virtual mutagenesis and optimized by molecular mechanics (MM) minimization. Next, the MIECs between domain and peptide residues were computed using the MM/generalized Born decomposition analysis. We conducted two types of statistical analyses on the MIECs to demonstrate their usefulness for predicting binding affinities of peptides and for classifying peptides into binder and non-binder categories. First, combining partial least squares analysis and genetic algorithm, we fitted linear regression models between the MIECs and the peptide binding affinities on the training data set. These models were then used to predict binding affinities for peptides in the test data set; the predicted values have a correlation coefficient of 0.81 and an unsigned mean error of 0.39 compared with the experimentally measured ones. The partial least squares-genetic algorithm analysis on the MIECs revealed the critical interactions for the binding specificity of the amphiphysin-1 SH3 domain. Next, a support vector machine (SVM) was employed to build classification models based on the MIECs of peptides in the training set. A rigorous training-validation procedure was used to assess the performances of different kernel functions in SVM and different combinations of the MIECs. The best SVM classifier gave satisfactory predictions for the test set, indicated by average prediction accuracy rates of 78% and 91% for the binding and non-binding peptides, respectively. We also showed that the performance of our approach on both binding affinity prediction and binder/non-binder classification was superior to the performances of the conventional MM/Poisson-Boltzmann solvent-accessible surface area and MM/generalized Born solvent-accessible surface area calculations. Our study demonstrates that the analysis of the MIECs between peptides and the SH3 domain can successfully characterize the binding interface, and it provides a framework to derive integrated prediction models for different domain-peptide systems.  相似文献   

12.
13.
The yeast Bem1p SH3b and Nbp2p SH3 domains are unusual because they bind to peptides containing the same consensus sequence, yet they perform different functions and display low sequence similarity. In this work, by analyzing the interactions of these domains with six biologically relevant peptides containing the consensus sequence, they are shown to possess finely tuned and distinct binding specificities. We also identify a residue in the Bem1p SH3b domain that inhibits binding, yet is highly conserved for the purpose of preventing nonspecific interactions. Substitution of this residue results in a marked reduction of in vivo function that is caused by titration of the domain away from its proper targets through nonspecific interactions with other proteins. This work provides a clear illustration of the importance of intrinsic binding specificity for the function of protein-protein interaction modules, and the key role of "negative" interactions in determining the specificity of a domain.  相似文献   

14.
The Src homology 2 (SH2) and collagen domain protein Shc plays a pivotal role in signaling via tyrosine kinase receptors, including epidermal growth factor receptor (EGFR). Shc binding to phospho-tyrosine residues on activated receptors is mediated by the SH2 and phospho-tyrosine binding (PTB) domains. Subsequent phosphorylation on Tyr-317 within the Shc linker region induces Shc interactions with Grb2-Son of Sevenless that initiate Ras-mitogen-activated protein kinase signaling. We use molecular dynamics simulations of full-length Shc to examine how Tyr-317 phosphorylation controls Shc conformation and interactions with EGFR. Our simulations reveal that Shc tyrosine phosphorylation results in a significant rearrangement of the relative position of its domains, suggesting a key conformational change. Importantly, computational estimations of binding affinities show that EGFR-derived phosphotyrosyl peptides bind with significantly more strength to unphosphorylated than to phosphorylated Shc. Our results unveil what we believe is a novel structural phenomenon, i.e., tyrosine phosphorylation of Shc within its linker region regulates the binding affinity of SH2 and PTB domains for phosphorylated Shc partners, with important implications for signaling dynamics.  相似文献   

15.
SH2 domains play important roles in signal transduction by binding phosphorylated tyrosine residues on cell surface receptors. In an effort to understand the mechanism of ligand binding and more specifically the role of water, we have designed a general computational protocol based on the potential of mean force to compute the thermodynamics of water molecules at the protein-ligand interface for two SH2 domain complexes of the Src kinase, those bound to the two peptides Ac-PQpYEpYI-NH2 and Ac-PQpYIpYV-NH2 where pY indicates a phosphotyrosine. These two peptides were chosen because they have similar binding affinities but very different entropic/enthalpic thermodynamic binding signatures, indicating different interactions with solvent. We find that the isoleucine to valine mutation at position +3 (the third amino acid C-terminal to pY) in the ligand has only limited impact on the water structure. By contrast, the glutamic acid to isoleucine mutation at position +1 has a significant impact by not only abrogating a local hydrophilic binding site but, more importantly and surprisingly, inducing a favorable nonlocal entropic contribution from the water molecules around the phosphorylated tyrosine at the +2 position. Our study demonstrates the validity of the method reported here for exploring the thermodynamic solvation landscape of protein-protein interactions.  相似文献   

16.
Li N  Hou T  Ding B  Wang W 《Proteins》2011,79(11):3208-3220
PDZ domain is one of the abundant modular domains that recognize short peptide sequences to mediate protein-protein interactions. To decipher the binding specificity of PDZ domain, we analyzed the interactions between 11 mouse PDZ domains and 2387 peptides using a method called MIEC-SVM, which energetically characterizes the domain-peptide interaction using molecular interaction energy components (MIECs) and predicts binding specificity using support vector machine (SVM). Cross-validation and leave-one-domain-out test showed that the MIEC-SVM using all 44 PDZ-peptide residue pairs at the interaction interface outperformed the sequence-based methods in the literature. A further feature (residue pair) selection procedure illustrated that 16 residue pairs were uninformative to the binding specificity, even though they contributed significantly (~50%) to the binding energy. If only using the 28 informative residue pairs, the performance of the MIEC-SVM on predicting the PDZ binding specificity was significantly improved. This analysis suggests that the informative and uninformative residue interactions between the PDZ domain and the peptide may represent those contributing to binding specificity and affinity, respectively. We performed additional structural and energetic analyses to shed light on understanding how the PDZ-peptide recognition is established. The success of the MIEC-SVM method on PDZ domains in this study and SH3 domains in our previous studies illustrates its generality on characterizing protein-peptide interactions and understanding protein recognition from a structural and energetic viewpoint.  相似文献   

17.
SH3 domains are small protein modules that are involved in protein-protein interactions in several essential metabolic pathways. The availability of the complete genome and the limited number of clearly identifiable SH3 domains make the yeast Saccharomyces cerevisae an ideal proteomic-based model system to investigate the structural rules dictating the SH3-mediated protein interactions and to develop new tools to assist these studies. In the present work, we have determined the solution structure of the SH3 domain from Myo3 and modeled by homology that of the highly homologous Myo5, two myosins implicated in actin polymerization. We have then implemented an integrated approach that makes use of experimental and computational methods to characterize their binding properties. While accommodating their targets in the classical groove, the two domains have selectivity in both orientation and sequence specificity of the target peptides. From our study, we propose a consensus sequence that may provide a useful guideline to identify new natural partners and suggest a strategy of more general applicability that may be of use in other structural proteomic studies.  相似文献   

18.
SH3 domains mediate signal transduction by recognizing short peptides. Understanding of the driving forces in peptide recognitions will help us to predict the binding specificity of the domain-peptide recognition and to understand the molecular interaction networks of cells. However, accurate calculation of the binding energy is a tough challenge. In this study, we propose three ideas for improving our ability to predict the binding energy between SH3 domains and peptides: (1) utilizing the structural ensembles sampled from a molecular dynamics simulation trajectory, (2) utilizing multiple peptide templates, and (3) optimizing the sequence-structure mapping. We tested these three ideas on ten previously studied SH3 domains for which SPOT analysis data were available. The results indicate that calculating binding energy using the structural ensemble was most effective, clearly increasing the prediction accuracy, while the second and third ideas tended to give better binding energy predictions. We applied our method to the five SH3 targets in DREAM4 Challenge and selected the best performing method.  相似文献   

19.
The adaptor protein Tks5/FISH (tyrosine kinase substrate 5/five SH3 domains, hereafter termed Tks5) is a crucial component of a protein network that controls the invasiveness of cancer cells and progression of Alzheimer's disease. Tks5 consists of an amino-terminal PX domain that is followed by five SH3 domains (SH3A-E), and two different splice variants are expressed. We identified son of sevenless-1 (Sos1) as a novel binding partner of Tks5 and found colocalization of Tks5 with Sos1 in human epithelial lung carcinoma (A549) cells and in podosomes of Src-transformed NIH 3T3 cells. We observe synergistic binding of SH3A and SH3B to Sos1 when peptide arrays are used, indicating that the tandem SH3A and SH3B domains of Tks5 can potentially bind in a superSH3 binding mode, as was described for the homologous protein p47phox. These results are further corroborated by pull-down assays and isothermal titration calorimetry showing that both intact SH3 domains are required for efficient binding to the entire proline-rich domain of Sos1. The presence of a basic insertion between the SH3A and SH3B domains in the long splice variant of Tks5 decreases the affinity to Sos1 isoforms about 10-fold as determined by analytical ultracentrifugation. Furthermore, it leads to an alteration in the recognition of binding motifs for the interaction with Sos1: While the insertion abrogates the interaction with the majority of peptides derived from the proline-rich domains of Sos1 and dynamin that are recognized by the short splice isoform, it enables binding to a different set of peptides including a sequence comprising the splice insertion in the long isoform of Sos1 (Sos1_2). In the absence of the basic insertion, Tks5 was found to bind a range of Sos1 and dynamin peptides including conventional proline-rich motifs and atypical recognition sequences. Hereby, the tandem SH3 domains in Tks5 employ two distinct types of binding modes: One class of peptides is recognized by single SH3 domains, whereas a second class of peptides requires the presence of both domains to bind synergistically. We conclude that the tandem SH3A and SH3B domains of Tks5 constitute a versatile module for the implementation of isoform-specific protein-protein interactions.  相似文献   

20.
Grucza RA  Bradshaw JM  Mitaxov V  Waksman G 《Biochemistry》2000,39(33):10072-10081
SH2 domains are small protein domains that bind specifically to tyrosyl-phosphorylated sequences. Because phosphorylation contributes a large part of the binding free energy, it has been postulated that electrostatic interactions may play an important role in SH2 domain recognition. To test this hypothesis, we have examined the salt dependence of the interaction between tyrosyl-phosphorylated peptides and SH2 domains. The dependence of the binding constant, K(obs), on [NaCl] was shown to be strong for binding of the tandem SH2 domain of the Syk kinase (Syk-tSH2) to doubly phosphorylated peptides derived from immune-receptor tyrosine activation motifs (dpITAMs): the slopes of plots of log(K(obs)) versus log [NaCl], designated SK(obs), ranged from -2.6 +/- 0.1 to -3.1 +/- 0.2. Binding of the single SH2 domain of the Src kinase to its consensus singly phosphorylated peptide (sequence pYEEI where pY indicates a phosphotyrosine) was also highly dependent on [NaCl] with a SK(obs) value of -2.4 +/- 0.1. The ability of salt to disrupt the interactions between Syk-tSH2 and dpITAM peptides was shown to be anion-dependent with the inhibitory effect following the order: phosphate > Cl(-) > F(-). For the Syk-tSH2 system, interactions in the pY-binding pockets were shown to be responsible for a large portion of the total salt dependence: removal of either phosphate from the dpITAM peptide reduced the magnitude of SK(obs) by 40-60% and weakened binding by 2-3 orders of magnitude. Consistent with this finding, binding of the single amino acid Ac-pY-NH(2) was characterized by a large salt dependence of binding and was also dependent on the identity of the perturbing anion. The role of peptide residues C-terminal to the pY, which are implicated in determining the specificity of the phosphopeptide-SH2 domain interaction, was next probed by comparing the binding of the Src SH2 domain to a peptide containing the pYEEI sequence with that of a lower affinity variant pYAAI peptide: the magnitude of SK(obs) for the variant peptide was reduced to -1.3 +/- 0.1 as compared to -2.4 +/- 0.1 for the pYEEI peptide, indicating that in addition to pY, residues conferring peptide binding specificity contribute significantly to the salt dependence of SH2 domain binding. This study shows that electrostatic interactions play important roles not only in mediating pY recognition and binding but also in contributing to the specificity of the interactions between tyrosyl phosphopeptides and SH2 domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号