首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wheat cultivars Anza and Produra grown in winter in California were planted in Meloidogyne incognita infested and noninfested sandy loam plots in October (soil temperature 21 C) and November (soil temperature 16 C) of 1979. Meloidogyne incognita penetrated roots of mid-October planted Ataza (427 juveniles/g root), developed into adult females by January, and produced 75 eggs/g root by harvest in April. Penetration and development did not occur in late plantings. Anza seedlings grown in infested soil in pots buried in field soil in early spring were not invaded until soil temperature exceeded 18 C. Meloidogyne incognita juveniles can migrate through soil and penetrate roots at temperatures above 18 C (activity threshold), however development can occur at lower temperatures. Grain yields were not significantly different between nematode infested (3,390 kg/ha) and noninfested (2,988 kg/ha) plots. Winter decline of eggs and juveniles in two late plantings anti in fallow soil were 69, 72, and 77%, respectively, but egg and juvenile decline was only 40% in the early Anza plots that supported nematode reproduction in the spring. Delay of planting date until soil temperature is below 18 C is suggested to maximize the use of wheat in rotation as a nematode pest management cultural tactic for suppressing root-knot nematodes.  相似文献   

2.
In Glycine max, the second-stage juveniles of Meloidogyne incognita entered the roots through the apical meristem or elongation zone. The juveniles induced giant cells in the zone of vascular strands. Near the head of the nematode and adjacent to the giant cells, the vascular strands exhibited abnormalities in their shapes and structures; both xylem and phloem were found to be affected. The giant cells had dense and granular cytoplasm, and large nuclei with large nucleoli. Some parenchyma cells exhibited hypertrophy, while others exhibited hyperplasia. The distinctive feature of the study is reporting the occurrence of abnormal xylem, abnormal phloem and abnormal parenchyma.  相似文献   

3.
Rates of penetration and development ofMeloidogyne incognita race 4 in roots of resistant (inbred Mp307, and S4 lines derived from the open-pollinated varieties Tebeau and Old Raccoon) and susceptible (Pioneer 3110) corn genotypes were determined. Seedlings grown in styrofoam containers were inoculated with 5,000 eggs of M. incognita. Roots were harvested at 3-day intervals starting at 3 days after inoculation (DAI) to 27 DAI and stained with acid fuchsin. Penetration of roots by second-stage juveniles (J2) at 3 DAI was similar for the four corn genotypes. Meloidogyne incognita numbers in Tebeau, Old Raccoon, Mp307, and Pioneer 3110 peaked at 12, 12, 15, and 27 DAI, respectively. Nematode development in the resistant genotypes was greatly suppressed compared to Pioneer 3110. Resistance to M. incognita in these genotypes appears to be expressed primarily as slower nematode development rather than differences in J2 penetration.  相似文献   

4.
Surface-coat epitopes of Meloidogyne incognita were detected in root tissues of Arabidopsis thaliana during migration and feeding site formation. A whole-mount root technique was used for immunolocalization of surface coat epitopes in A. thaliana, with the aid of a monoclonal antibody raised specifically against the outer surface of infective juveniles of M. incognita. The antibody, which was Meloidogyne-specific, recognized a fucosyl-bearing glycoprotein in the surface coat. During migration in host tissues the surface coat was shed, initially accumulating in the intercellular spaces next to the juvenile and later at cell junctions farther from the nematode. Upon induction of giant cell formation, the antibody bound to proximally located companion cells and sieve elements of the phloem.  相似文献   

5.
A single foliar application of oxamyl (12.5 μg) in acetone significantly reduced invasion of cucumber seedlings by Meloidogyne incognita juveniles for at least 21 days but did not affect the early stages of development of juveniles which had already invaded the roots. In contrast, application of oxamyl to the roots significantly reduced both invasion and development of juveniles. Concurrent studies using radiolabelled oxamyl showed that the amount of toxicant in the roots after 3 days was 13 times greater following root application than after foliar treatment. It is probable that oxamyl concentrates at the sites of nematode attack as an overall concentration of only 3 ng oxamyl g-1 root was sufficient to prevent invasion. Much greater concentrations than this were required to affect the nematode in vitro. Oxamyl appeared to be lost from the roots into the soil principally in the form of its non-toxic oxime and it is suggested that the site of action following foliar application is at the root surface or outer cortex. Studies on the invasion behaviour of M. incognita juveniles on agar showed that the action of oxamyl had a sensory component.  相似文献   

6.
The effects of planting date, rye (Secale cereale cv. Wren Abruzzi) and wheat (Triticura aestivum cv. Coker 797), crop destruction, fallow, and soil temperature on managing Meloidogyne incognita race 1 were determined in a 2-year study. More M. incognita juveniles (J2) and egg-producing adults were found in roots of rye planted 1 October than in roots of rye planted 1 November and wheat planted 1 November and 1 December. Numbers of M. incognita adults with and without egg masses were near or below detectable levels in roots of rye planted 1 November and wheat planted 1 November and 1 December. Meloidogyne incognita survived the mild winters in southern Georgia as J2 and eggs. The destruction of rye and wheat as a trap crop 1 March suppressed numbers of J2 in the soil temporarily but did not provide long-term benefits for susceptible crops that followed. In warmer areas where rye and wheat are grown in winter, reproduction of M. incognita may be avoided by delaying planting dates until soil temperature declines below the nematode penetration threshold (18 C), but no long-term benefits should be expected. The temperature threshold may be an important consideration in managing M. incognita population densities in areas having lower winter soil temperatures than southern Georgia.  相似文献   

7.
One susceptible (D6) and two resistant (E2 and N4) clones of Solanum sparsipilum × (S. phureja × haploid of S. tuberosum) were used to study the responses of potato roots and tubers to race 1 of Meloidogyne incognita (Kofoid &White) Chitwood. The compatible response was characterized by rapid penetration of large numbers of second-stage juveniles (J2) into roots, cessation of root growth, and occasional curving of root tips. The life cycle of M. incognita in the susceptible clone was completed in 25 days at 23-28 C. The incompatible response was characterized by penetration of fewer J2 into roots, necrosis of feeding sites within 2-7 days, and lack of nematode development. There were no differences in response of tubers from resistant and susceptible clones to nematode infection. Small numbers of J2 were detected in tubers, but they did not develop.  相似文献   

8.
Root-knot nematodes are obligate parasites that invade roots and induce the formation of specialized feeding structures. Although physiological and molecular changes inside the root leading to feeding site formation have been studied, very little is known about the molecular events preceding root penetration by nematodes. In order to investigate the influence of root exudates on nematode gene expression before plant invasion and to identify new genes potentially involved in parasitism, sterile root exudates from the model plant Arabidopsis thaliana were produced and used to treat Meloidogyne incognita pre-parasitic second-stage juveniles. After confirming the activity of A. thaliana root exudates (ARE) on M. incognita stylet thrusting, six new candidate genes identified by cDNA-AFLP were confirmed by qRT-PCR as being differentially expressed after incubation for one hour with ARE. Using an in vitro inoculation method that focuses on the events preceding the root penetration, we show that five of these genes are differentially expressed within hours of nematode exposure to A. thaliana roots. We also show that these genes are up-regulated post nematode penetration during migration and feeding site initiation. This study demonstrates that preceding root invasion plant-parasitic nematodes are able to perceive root signals and to respond by changing their behaviour and gene expression.  相似文献   

9.
Second-stage juveniles (I2) of Meloidogyne arenaria consumed more oxygen (P ≤ 0.05) than M. incognita J2, which in turn consumed more than M. javanica J2 (4,820, 4,530, and 3,970 μl per hour per g nematode dryweight, respectively). Decrease in oxygen consumption depended on the nematicide used. Except for aldicarb, there was no differential sensitivity among the three nematode species. Meloidogyne javanica had a greater percentage decrease (P ≤ 0.05) in oxygen uptake when treated with aldicarb, relative to the untreated control, than either M. arenaria or M. incognita. Meloidogyne javanica J2 had a greater degree of recovery from fenamiphos or aldicarb intoxication, after subsequent transfer to water, than did M. incognita. This finding may relate to differential sensitivity among Meloidogyne spp. in the field. Degree of respiratory inhibition and loss of nematode motility for M. javanica after exposure to the nematicides were positively correlated (P ≤ 0.05).  相似文献   

10.
The root-knot nematode Meloidogyne incognita poses a worldwide threat to agriculture, with an increasing demand for alternative control options since most common nematicides are being withdrawn due to environmental concerns. The biocontrol potential of arbuscular mycorrhizal fungi (AMF) against plant-parasitic nematodes has been demonstrated, but the modes of action remain to be unraveled. In this study, M. incognita penetration of second-stage juveniles at 4, 8 and 12 days after inoculation was compared in tomato roots (Solanum lycopersicum cv. Marmande) pre-colonized or not by the AMF Glomus mosseae. Further life stage development of the juveniles was also observed in both control and mycorrhizal roots at 12 days, 3 weeks and 4 weeks after inoculation by means of acid fuchsin staining. Penetration was significantly lower in mycorrhizal roots, with a reduction up to 32%. Significantly lower numbers of third- and fourth-stage juveniles and females accumulated in mycorrhizal roots, at a slower rate than in control roots. The results show for the first time that G. mosseae continuously suppresses root-knot nematodes throughout their entire early infection phase of root penetration and subsequent life stage development.  相似文献   

11.
Agrobacterium tumefaciens stimulated and Fusarium oxysporum f. sp. lycopersici inhibited development and reproduction of Meloidogyne incognita when applied to the opposite split root of tomato, Lycopersicon esculentum cv. Tropic, plants. The lowest rate of nematode reproduction occurred after 2,000 juveniles were applied and the fungus was present in the opposite split root. The effects of all three pathogens alone on the growth of roots and shoots of tomato plants were evident, but M. incognita had a greater effect alone than did either of the other pathogens. The length of split roots was reduced by the infection of M. incognita and A. tumefaciens or F. oxysporum f. sp. lycopersici. The number of galls induced by nematodes on roots was higher where the bacterium was applied and lower where the fungus was applied to the opposite split root.  相似文献   

12.
The results of experiment clearly reveal that cadmium inhibited root penetration by the second stage juveniles (J2) of Meloidogyne incognita which subsequently affected the development of root galls in tomato. The heavy metal was highly injurious to tomato plants at all the concentrations tested for (7.5, 15.0, 30.0 and 60.0?ppm). The inhibitory effect on plant growth and other parameters (fresh and dry weight of plant, chlorophyll content of leaves, water absorption capability of roots) significantly increased with an increase in the concentration of the metal. It was further increased in the presence of the nematode.  相似文献   

13.
The potential of an in vitro technique to study root‐knot nematode infection on banana roots was investigated. Regenerated banana plants were placed horizontally on Gamborg B5 (GB5)‐medium and incubated under a light‐dark regime of 16h‐8h. Temperature fluctuated between 24 and 33 °C. Banana roots were inoculated with Meloidogyne incognita race 1 coming from roots of a transgenic tomato (Lycopersicon esculentum cv. Moneymaker) grown on GB5‐medium at 28 °C in complete darkness. Root‐knots appeared on primary and secondary banana roots two to seven days after nematode inoculation. After 28 days, egg masses protruded through the cortex and two days later juveniles hatched and reinfected banana roots. This method holds promise for dynamic studies of banana root infection with root‐knot nematodes.  相似文献   

14.
In laboratory thermal gradients, newly hatched infective juveniles of the plant-parasitic root-knot nematode Meloidogyne incognita migrated toward a preferred temperature that was several degrees above the temperature to which they were acclimated. After shifting egg masses to a new temperature, the preferred temperature was reset in less than a day. Possible functions of this type of thermotaxis are discussed, including the use of thermal gradients around plant roots to locate hosts and to maintain a relatively straight path while ranging in the absence of other cues (a collimating stimulus).  相似文献   

15.
An investigation was carried out to study the pathogenicity of root knot nematode Meloidogyne incognita on okra and its management through various organic amendments. The inoculum level of 1000 juveniles per plant showed significant reduction in various plant growth parameters, which reveals that M. incognita is a potential pathogen of okra. With the increase in inoculums level of M. incognita (J2), there was a progressive decrease in various plant growth parameters. The maximum reduction in plant growth parameters was observed at an inoculum level of 4000 juveniles per plant. The efficacy of five organic amendments viz. groundnut cake, castor cake, sunflower cake, linseed cake and sawdust was tested against root knot nematode M. incognita. Amending the soil with different oil cakes was found to be effective in reducing the nematode soil population, number of females, number of egg masses as well as root gall formation in okra. The highest increase in plant growth (13%) and maximum reduction in number of galls (54%), number of females (57%) and number of egg masses (55%) was recorded on application of groundnut cake.  相似文献   

16.
The role of some Iranian strains of Pseudomonas spp. as biocontrol agents against Meloidogyne incognita and their ability to colonise pistachio roots was investigated. The results of in vitro experiments indicated that all tested bacteria produced significant suppression of M. incognita and showed that all strains were able to kill M. incognita juveniles with strain VUPf428 achieving about 99% mortality at 72 h. The results of in vivo treatments indicated that the best strains that could build high populations in soil infested with nematodes were VUPf5, VUPf52 and VUPf205. These isolates also caused highest reduction in galling and nematode multiplication in a greenhouse test although all strains native to Iran could colonise pistachio roots in pots. Some strains could produce secondary metabolites such as siderophores, proteases and volatile metabolites at high population levels.  相似文献   

17.
Root-knot nematodes (Meloidogyne spp.) are sedentary endoparasiteswith a broad host range which includes economically importantcrop species. Cowpea (Vigna unguiculata L. Walp) is an importantfood and fodder legume grown in many regions where root-knotnematodes are a major problem in production fields. Severalsources of resistance to root-knot nematode have been identifiedin cowpea, including the widely used Rk gene. As part of a studyto elucidate the mechanism of Rk-mediated resistance, the histologicalresponse to avirulent M. incognita feeding of a resistant cowpeacultivar CB46 was compared with a susceptible near-isogenicline (in CB46 background). Most root-knot nematode resistancemechanisms in host plants that have been examined induced ahypersensitive response (HR). However, there was no typicalHR in resistant cowpea roots and nematodes were able to developnormal feeding sites similar to those in susceptible roots upto 9–14 d post inoculation (dpi). From 14–21 dpigiant cell deterioration was observed and the female nematodesshowed arrested development and deterioration. Nematodes failedto reach maturity and did not initiate egg laying in resistantroots. These results confirmed that the induction of resistanceis relatively late in this system. Typically in pathogen resistanceHR is closely associated with an oxidative burst (OB) in infectedtissue. The level of reactive oxygen species release in bothcompatible and incompatible reactions during early and latestages of infection was also quantified. Following a basal OBduring early infection in both susceptible and resistant roots,which was also observed in mechanically wounded root tissues,no significant OB was detected up to 14 dpi, a profile consistentwith the histological observations of a delayed resistance response.These results will be useful to design gene expression experimentsto dissect Rk-mediated resistance at the molecular level. Key words: Cowpea, histology, hypersensitive response, Meloidogyne incognita, reactive oxygen species, root-knot nematode, Vigna unguiculata Received 5 November 2007; Revised 22 January 2008 Accepted 23 January 2008  相似文献   

18.
Oxamyl (6.25 μg ml-1 soil water) was applied to cucumber roots containing Meloidogyne incognita at different stages of nematode development. Oxamyl was more effective in reducing the proportion of juveniles which developed into females when applied soon after infection to second stage juveniles than when applied later (to third and fourth stage juveniles). Early application of oxamyl also significantly reduced the proportion of females with egg masses, whereas late application had no such effect. However, the number of eggs per egg mass and the size of the young adult females was significantly reduced by all oxamyl treatments - the earlier the application the greater the effect. These results support the hypothesis that actively feeding second stage juveniles of Meloidogyne spp. are more susceptible to systemic nematicides than are the non-feeding third and fourth stage juveniles.  相似文献   

19.
Bitter gourd (Momordica charantia L.) was inoculated with root-knot nematode Meloidogyne incognita to investigate the anatomical abnormalities in the affected roots. Soon after inoculation the second-stage juveniles (J2) entered at or near the root caps and migrated intercellularly towards the zone of vascular differentiation. Discrete giant cells were observed after three days of inoculation. The nematode induced hypertrophy and hyperplasia near the giant cells. After six days, the juveniles moulted to their third stage (J3). At the same, time giant cell size and density of giant cell cytoplasm increased. The continuity of vascular strands remained unaffected. Between 12 and 24 days of inoculation the giant cells enlarged several times and became multinucleate and enclosed dense and granular cytoplasm. The nematodes became almost pyriform 18 days after inoculation. The orientation of vascular strands changed, due to hypertrophy, hyperplasia and enlargement of the nematode. After 30 days of inoculation the nematodes developed into mature females and started egg laying. A large amount of parenchyma transformed into abnormal xylem.  相似文献   

20.
A partially purified preparation as well as two formulations of exotoxin from Bacillus thuringiensis (thuringiensin) were evaluated for nematicidal activity. The methods used in our evaluations included direct contact nematicidal assays, hatching tests, infection tests in seed pouches using the cucumber/root-knot nematode (Meloidogyne incognita) system, and greenhouse test using the root-knot nematode. While contact nematicidal activity was not observed against juveniles of M. incognita, 100% mortality occurred when the free-living nematode, Caenorhabditis elegans, was used as the test organism. Nematode infection evaluations in the seed pouch assay showed reduced root galling at relatively high concentrations (>10 mg kg-1). Greenhouse assays indicated significant reduction in the soil population. However, the degree of control in relation to the amount of material applied, as measured by the gall numbers, larvae from soil/roots, and plant growth parameters, was not considered adequate. Data on the plant response in relation to treatment with different formulations of the toxin are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号