首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
肠道菌群对宿主免疫系统的建立和发育起着重要的作用,与宿主的生理、病理等密切相关,对机体抗病毒作用具有一定的影响。病毒感染影响宿主肠道微生物群落,进而影响宿主机体营养物质的代谢及细胞免疫功能。本研究着重综述病毒感染对宿主肠道微生态及免疫的影响。  相似文献   

2.
摘要:肠道菌群对宿主免疫系统的建立和发育起着重要的作用,与宿主的生理、病理等密切相关,对机体抗病毒作用具有一定的影响。病毒感染影响宿主肠道微生物群落,进而影响宿主机体营养物质的代谢及细胞免疫功能。本研究着重综述病毒感染对宿主肠道微生态及免疫的影响。  相似文献   

3.
人体肠道拥有庞大而复杂的共生微生态,其群落的稳定状态影响机体的能量吸收、物质代谢及免疫调节等功能。肠道微生态的失衡与肥胖、抑郁症、糖尿病及相关代谢疾病的发生发展存在因果关系,但具体作用机制仍不明晰。肠道微生态与宿主之间存在完整的代谢系统并不断进行丰富的代谢交换,共同应对环境变化因素并影响宿主健康。饮食调控可干预宿主微生态的组成与数量,改善人体代谢。本文分别从膳食纤维、益生菌、粪菌移植、后生素等方面对肠道菌群进行个体化、精准、靶向的干预肠道微生物领域的相关研究,对多组学联合应用于微生物领域的组成和变化规律进行深层揭示。未来的研究热点应聚焦肠道干预方式的远期影响和安全性,控制并消除过程中的可能变异,制定精准高效的干预路径,为慢病防控与健康促进提供医学证据。  相似文献   

4.
人体微生态系统存在于胃肠道、口腔、泌尿生殖道、呼吸道和皮肤等多个部位,其中以肠道中的微生态系统最为主要和复杂。肠道菌群具有重要的生理功能,参与宿主的免疫与代谢,并受到宿主内外环境因素的影响。肠道微生态失衡与疾病密切相关。本研究就当下国内外人体肠道微生态与疾病发生发展的关系及机制的研究进展进行综述。  相似文献   

5.
膳食脂肪作为人体重要的营养物质之一,为人体提供能量及营养。不同种类的膳食脂肪对宿主肠道微生物的组成和数量的影响有着明显的差异。同时肠道微生物又能参与宿主的代谢调控以及影响肠道屏障功能等。过多的摄入富含饱和脂肪酸的膳食脂肪会引起肠道中厚壁菌门、变形菌门、梭菌属等的增加,从而影响宿主代谢过程中的胆汁酸等信号分子改变,导致肠道通透性的增加和系统炎症。富含n-3多不饱和脂肪酸的膳食脂肪会引起肠道中双歧杆菌和乳杆菌的增加,从而影响宿主代谢过程中的短链脂肪酸的水平,某些短链脂肪酸能够调控宿主的胰岛素分泌以及炎症因子的表达。本文综述了膳食脂肪的种类、肠道微生态和宿主代谢调控之间的相互作用及其可能的作用机制,为深入了解饮食、肠道微生态、宿主健康三者之间的关系提供了依据。  相似文献   

6.
肠道是一个复杂的微生态系统,其中存在着数以万亿计的微生物以及丰富的营养物质,微生物群依赖肠道营养物质生长并经长期的进化适应而特异性地存在于宿主肠道,通过其代谢活动及其产物维持宿主的微生态稳态。肠道微生物可抵抗外来病原微生物的入侵和定植,预防肠道疾病的发生,其作用机制包括竞争营养物质和生态位、产生拮抗细菌素、干扰群体感应和免疫介导等。饮食和药物等外界因素与遗传因素均可改变宿主的肠道环境,从而影响机体对入侵病原微生物的抵抗。本文就肠道食源性疾病的微生态防治研究进行综述,为预防和治疗肠道感染性疾病提供参考。  相似文献   

7.
聂源  朱萱 《中国微生态学杂志》2021,33(8):967-970, 984
肠道微生态是由数量巨大且结构复杂的肠道菌群与肠黏膜屏障组成,参与机体多种重要生理功能,与多种疾病密切相关。由于肠道与肝脏有着密切而特殊的关系,肠道微生态可通过肠―肝循环及其与宿主的相互作用来调节肝脏疾病的进展。肠道微生态失调与肝癌进展密切相关,肠道中关键功能菌可作为肝癌早期预防、诊断和治疗的新的预测标记物与新的治疗靶点。本文将对肠道微生态在肝癌发病机制中的作用以及基于肠道微生态理论的多种肝癌防治策略进行综述。  相似文献   

8.
作为三大主要营养物质之一,膳食脂肪为人体提供能量和营养。膳食脂肪摄入不当会破坏肠道微生物的稳态,影响宿主的代谢状况,增加慢性疾病发生的风险。建立疾病动物模型是研究肠道微生物与宿主健康的重要手段。文中综述了膳食脂质的数量和种类、肠道微生物和宿主代谢之间的相互作用及其可能的作用机制,阐述了基于不同的疾病动物模型,膳食脂质影响肠道微生物的结构和功能,以及对宿主代谢的调节,为深入了解膳食脂质、肠道微生态和宿主健康三者之间的关系提供了依据。  相似文献   

9.
刘佳  彭颖  吴春福  李晓波 《生物磁学》2009,(14):2737-2740
人类从青年到老年这个过程,随着年龄的增长,退行性和感染性疾病的易感性也增加,其可能与人体肠道菌群失衡有着密切的关系。人体肠道内生理菌群对机体健康具有重要的作用,其变化与宿主的免疫功能、食物、疾病和年龄等有关。了解老年人肠道菌群特点,且在老年人肠道菌群失调相关疾病中合理介入微生态制剂,将大大有利于老年人身体健康。本文就老年人肠道菌群失衡相关疾病以及微生态制剂在这些疾病中的应用进行综述。  相似文献   

10.
综述了植物多酚的分类和来源、在代谢组学技术的驱动下,新型多酚物质的鉴定、控制植物多酚合成途径的关键因子以及多酚的功能特性的研究进展,阐述了植物多酚在肠道中的代谢以及其作为“益生元”调节肠道微生态并影响机体健康的重要功能。目前的研究表明不同植物多酚在调节肠道微生态方面存在差异,多数有促进肠道有益菌作用,并通过与肠道微生物“互作”发挥促进健康效应。总之,植物多酚作为“益生元”影响人体健康可能离不开肠道微生物的介导。各个植物多酚的益生功能也需要进一步阐析,在此过程中需要考虑宿主,膳食等混杂因素的综合影响,且需要拓展临床应用方面的研究。  相似文献   

11.
Intestinal ischemia/reperfusion (I/R) is a common pathophysiological process in clinical severe patients, and the effect of intestinal I/R injury on the patient''s systemic pathophysiological state is far greater than that of primary intestinal injury. In recent years, more and more evidence has shown that intestinal microbiota and its metabolites play an important role in the occurrence, development, diagnosis and treatment of intestinal I/R injury. Intestinal microbiota is regulated by host genes, immune response, diet, drugs and other factors. The metabolism and immune potential of intestinal microbiota determine its important significance in host health and diseases. Therefore, targeting the intestinal microbiota and its metabolites may be an effective therapy for the treatment of intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury. This review focuses on the role of intestinal microbiota and its metabolites in intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury, and summarizes the latest progress in regulating intestinal microbiota to treat intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury.  相似文献   

12.
肠道微生物与线粒体之间的互作   总被引:1,自引:0,他引:1  
张夏薇  慕春龙  朱伟云 《微生物学报》2018,58(11):1908-1915
肠道微生物与肠道细胞线粒体功能之间的关系十分密切。一方面,肠道微生物可直接或通过短链脂肪酸、硫化氢和一氧化氮等代谢产物间接影响与线粒体相关的能量代谢过程,调节线粒体活性氧的产生,调控线粒体甚至整个机体的免疫反应。另一方面,肠道细胞线粒体功能紊乱和基因组的遗传变异也会影响肠道微生物的组成和功能。本文主要介绍了肠道微生物和线粒体之间的互作关系的最新研究进展,为靶向作用于肠道菌群和线粒体以调节肠道健康提供理论依据。  相似文献   

13.

Background

Inappropriate cross talk between mammals and their gut microbiota may trigger intestinal inflammation and drive extra-intestinal immune-mediated diseases. Epithelial cells constitute the interface between gut microbiota and host tissue, and may regulate host responses to commensal enteric bacteria. Gnotobiotic animals represent a powerful approach to study bacterial-host interaction but are not readily accessible to the wide scientific community. We aimed at refining a protocol that in a robust manner would deplete the cultivable intestinal microbiota of conventionally raised mice and that would prove to have significant biologic validity.

Methodology/Principal Findings

Previously published protocols for depleting mice of their intestinal microbiota by administering broad-spectrum antibiotics in drinking water were difficult to reproduce. We show that twice daily delivery of antibiotics by gavage depleted mice of their cultivable fecal microbiota and reduced the fecal bacterial DNA load by 400 fold while ensuring the animals'' health. Mice subjected to the protocol for 17 days displayed enlarged ceca, reduced Peyer''s patches and small spleens. Antibiotic treatment significantly reduced the expression of antimicrobial factors to a level similar to that of germ-free mice and altered the expression of 517 genes in total in the colonic epithelium. Genes involved in cell cycle were significantly altered concomitant with reduced epithelial proliferative activity in situ assessed by Ki-67 expression, suggesting that commensal microbiota drives cellular proliferation in colonic epithelium.

Conclusion

We present a robust protocol for depleting conventionally raised mice of their cultivatable intestinal microbiota with antibiotics by gavage and show that the biological effect of this depletion phenocopies physiological characteristics of germ-free mice.  相似文献   

14.
空间环境中的特殊因素会导致航天员肠道菌群及其代谢产物的失调,对机体会产生系统性的生理影响。本文综述了近年来太空飞行/模拟空间环境对肠道菌群及其代谢产物影响的研究进展。太空飞行/模拟空间环境(space flight/simulated space environment,SF/SPE)可导致侵袭性致病菌的增多及有益菌的减少,肠道炎症加剧与通透性增加,也会引起菌群的有益代谢物减少或有害代谢物增加,进而导致机体内代谢的紊乱,或可诱发其他系统的损伤,从而不利于航天员的健康与工作效率。总结太空飞行/模拟空间环境对肠道菌群产生的影响,可为该领域的后续研究与航天员的在轨健康防护提供科学依据。  相似文献   

15.
The intestinal microbiota plays a major role in host development, metabolism, and health. To date, few longitudinal studies have investigated the causes and consequences of microbiota variation in wildlife, although such studies provide a comparative context for interpreting the adaptive significance of findings from studies on humans or captive animals. Here, we investigate the impact of seasonality, diet, group membership, sex, age, and reproductive state on gut microbiota composition in a wild population of group‐living, frugi‐folivorous primates, Verreaux's sifakas (Propithecus verreauxi). We repeatedly sampled 32 individually recognizable animals from eight adjacent groups over the course of two different climatic seasons. We used high‐throughput sequencing of the 16S rRNA gene to determine the microbiota composition of 187 fecal samples. We demonstrate a clear pattern of seasonal variation in the intestinal microbiota, especially affecting the Firmicutes‐Bacteroidetes ratio, which may be driven by seasonal differences in diet. The relative abundances of certain polysaccharide‐fermenting taxa, for example, Lachnospiraceae, were correlated with fruit and fiber consumption. Additionally, group membership influenced microbiota composition independent of season, but further studies are needed to determine whether this pattern is driven by group divergences in diet, social contacts, or genetic factors. In accordance with findings in other wild mammals and primates with seasonally fluctuating food availability, we demonstrate seasonal variation in the microbiota of wild Verreaux's sifakas, which may be driven by food availability. This study adds to mounting evidence that variation in the intestinal microbiota may play an important role in the ability of primates to cope with seasonal variation in food availability.  相似文献   

16.
Castration of young males is widely used in the cattle industry to improve meat quality, but the mechanism linking hypogonadism and host metabolism is not clear. Here, we use metataxonomic and metabolomic approaches to evaluate the intestinal microbiota and host metabolism in male, castrated male (CtM), and female cattle. After pubescence, the CtM cattle harbor distinct ileal microbiota dominated by the family Peptostreptococcaceae and exhibit distinct serum and muscle amino acid profiles (i.e., highly abundant branched‐chain amino acids), with increased extra‐ and intramuscular fat storage. We also evaluate the causative factor(s) that underpin the alteration of the intestinal microbiota and host metabolic phenotype in response to hypogonadism. Castration of male mice phenocopies both the intestinal microbial alterations and obese‐prone metabolism observed in cattle. Antibiotic treatment and fecal microbiota transplantation experiments in a mouse model confirm that the intestinal microbial alterations associated with hypogonadism are a key contributor to the obese phenotype in the CtM animals. Collectively, targeting the gut microbiota is a potential therapeutic strategy for the treatment of both hypogonadism and obesity.  相似文献   

17.
Intestinal microbiota play a significant role in nutrient metabolism, modulation of the immune system, obesity, and possibly in carcinogenesis, although the underlying mechanisms resulting in disease or impacts on longevity caused by different intestinal microbiota are mostly unknown. Herein we use isogenic Atm-deficient and wild type mice as models to interrogate changes in the metabolic profiles of urine and feces of these mice, which are differing in their intestinal microbiota. Using high resolution mass spectrometry approach we show that the composition of intestinal microbiota modulates specific metabolic perturbations resulting in a possible alleviation of a glycolytic phenotype. Metabolites including 3-methylbutyrolactone, kyneurenic acid and 3-methyladenine known to be onco-protective are elevated in Atm-deficient and wild type mice with restricted intestinal microbiota. Thus our approach has broad applicability to study the direct influence of gut microbiome on host metabolism and resultant phenotype. These results for the first time suggest a possible correlation of metabolic alterations and carcinogenesis, modulated by intestinal microbiota in A-T mice.  相似文献   

18.
The animal intestine is a complex ecosystem composed of host cells, gut microbiota and available nutrients. Gut microbiota can prevent the occurrence of intestinal diseases in animals by regulating the homeostasis of the intestinal environment. The intestinal microbiota is a complex and stable microbial community, and the homeostasis of the intestinal environment is closely related to the invasion of intestinal pathogens, which plays an important role in protecting the host from pathogen infections. Probiotics are strains of microorganisms that are beneficial to health, and their potential has recently led to a significant increase in studies on the regulation of intestinal flora. Various potential mechanisms of action have been proposed on probiotics, especially mediating the regulation mechanism of the intestinal flora on the host, mainly including competitive inhibition of pathogens, stimulation of the host's adaptive immune system and regulation of the intestinal flora. The advent of high-throughput sequencing technology has given us a clearer understanding and has facilitated the development of research methods to investigate the intestinal microecological flora. This review will focus on the regulation of probiotics on the microbial flora of intestinal infections in livestock and poultry and will depict future research directions.  相似文献   

19.

Objectives

Bifidobacterium species are one of the major components of the infant''s intestine microbiota. Colonization with bifidobacteria in early infancy is suggested to be important for health in later life. However, information remains limited regarding the source of these microbes. Here, we investigated whether specific strains of bifidobacteria in the maternal intestinal flora are transmitted to their infant''s intestine.

Materials and Methods

Fecal samples were collected from healthy 17 mother and infant pairs (Vaginal delivery: 12; Cesarean section delivery: 5). Mother''s feces were collected twice before delivery. Infant''s feces were collected at 0 (meconium), 3, 7, 30, 90 days after birth. Bifidobacteria isolated from feces were genotyped by multilocus sequencing typing, and the transitions of bifidobacteria counts in infant''s feces were analyzed by quantitative real-time PCR.

Results

Stains belonging to Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium catenulatum, Bifidobacterium longum subsp. longum, and Bifidobacterium pseudocatenulatum, were identified to be monophyletic between mother''s and infant''s intestine. Eleven out of 12 vaginal delivered infants carried at least one monophyletic strain. The bifidobacterial counts of the species to which the monophyletic strains belong, increased predominantly in the infant''s intestine within 3 days after birth. Among infants delivered by C-section, monophyletic strains were not observed. Moreover, the bifidobacterial counts were significantly lower than the vaginal delivered infants until 7 days of age.

Conclusions

Among infants born vaginally, several Bifidobacterium strains transmit from the mother and colonize the infant''s intestine shortly after birth. Our data suggest that the mother''s intestine is an important source for the vaginal delivered infant''s intestinal microbiota.  相似文献   

20.
肠道菌群作为动物体内重要的组成部分,能够直接参与机体的免疫调控作用,促进机体免疫系统发育,维持正常免疫功能。同时,免疫系统对肠道菌群又有调控和制约作用。本文主要综述了肠道菌群的组成以及影响肠道菌群变化的因素,系统阐述了肠道菌群与疾病相互作用的机制,总结了肠道菌群在宿主感染与免疫应答中的作用,为开展肠道菌群参与机体免疫应答的机制方面的研究提供新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号