首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In amphibians and teleosts, retina and tectum grow incongruently. In order to maintain the retinotopy of the retinotectal projection, Gaze, Keating, and Chung (1974) postulated a shifting of terminals throughout growth. In order to test the possibility that ingrowing retinal fibers are the driving force for this shifting, we induced a permanent retinal projection into the ipsilateral tectum in juveniles of the cichlid fish Haplochromis burtoni. The surface of the tectum had increased (11–18 months later) 2.5–5.8 times, and the surface of the retina 8.6–14 times. Filling of ganglion cells with horseradish peroxidase (HRP) retrogradely from the tectum showed ipsilaterally regenerating ganglion cells only in the center of the retina. The position of ganglion cells indicated that the ipsilateral projection derived only from axotomized and regenerating retinal ganglion cells but not from those newly born. Ipsilaterally projecting retinal fibers showed terminals only in the rostral half of the tectum. Comparison of area of terminations of ipsilaterally projecting ganglion cells at various times after the crush provided no evidence for expansion or a shift into caudal tectal areas throughout the period of growth. These findings are compatible with the idea that newly ingrowing fibers induce older terminals to move caudally.  相似文献   

2.
In amphibians and teleosts, retina and tectum grow incongruently. In order to maintain the retinotopy of the retinotectal projection, Gaze, Keating, and Chung (1974) postulated a shifting of terminals throughout growth. In order to test the possibility that ingrowing retinal fibers are the driving force for this shifting, we induced a permanent retinal projection into the ipsilateral tectum in juveniles of the cichlid fish Haplochromis burtoni. The surface of the tectum had increased (11-18 months later) 2.5-5.8 times, and the surface of the retina 8.6-14 times. Filling of ganglion cells with horseradish peroxidase (HRP) retrogradely from the tectum showed ipsilaterally regenerating ganglion cells only in the center of the retina. The position of ganglion cells indicated that the ipsilateral projection derived only from axotomized and regenerating retinal ganglion cells but not from those newly born. Ipsilaterally projecting retinal fibers showed terminals only in the rostral half of the tectum. Comparison of area of terminations of ipsilaterally projecting ganglion cells at various times after the crush provided no evidence for expansion or a shift into caudal tectal areas throughout the period of growth. These findings are compatible with the idea that newly ingrowing fibers induce older terminals to move caudally.  相似文献   

3.
Retinal projections were experimentally manipulated in a bony fish to reveal conditions under which considerably enlarged ipsilateral projections developed and persisted. Three experimental groups were studied: animals after unilateral enucleation, after unilateral nerve crush, and after enucleation and crush of the remaining optic nerve. At 29 days after unilateral enucleation alone, no enhanced ipsilateral projection had developed. After nerve crush, however, large numbers of retinal fibers regenerated into the ipsilateral tectum. Retrogradely filled, ipsilaterally projecting ganglion cells were distributed throughout the entire retina. After 15 days regenerating retinal fibers covered the entire ipsilateral tectum. At later stages the ipsilateral projection showed progressive reduction in coverage of the tectum. Combining enucleation with nerve crush led to an ipsilateral projection that covered the tectum at 28 days and later. In this experimental situation the development of an ipsilateral projection appears to be a two-step process: (1) Fibers are rerouted to the ipsilateral side at the diencephalon, and (2) ipsilateral fibers persist in the tectum only in the absence of a contralateral projection while they appear to be eliminated in the other cases.  相似文献   

4.
Protein kinase C (PKC) activation has been associated with synaptic plasticity in many projections, and manipulating PKC in the retinotectal projection strongly affects the activity-driven sharpening of the retinotopic map. This study examined levels of PKC in the regenerating retinotectal projection via immunostaining and assay of activity. A polyclonal antibody to the conserved C2 (Ca2+ binding) domain of classical PKC isozymes (anti-panPKC) recognized a single band at 79–80 kD on Western blots of goldfish brain. It stained one class of retinal bipolar cells and the ganglion cells in normal retina, as shown previously. Strong staining was not present in the optic fiber layer of retina or in optic nerve, optic tract, or terminal zone in tectum, with the exception of a single fascicle of optic nerve fibers that by their location and by L1 (E587) staining were identified as those arising from newly added ganglion cells at the retinal margin. Normal tectal sections showed dark staining of a subclass of type XIV neuron with somas at the top of the periventricular layer and an apical dendrite ascending to stratum opticum. In regenerating retina, swollen ganglion cells stained darkly and stained axons were seen in the optic fiber layer. In regenerating optic nerve (2–11 weeks postcrush), all fascicles of optic fibers stained darkly for both PKC and L1(E587). At 5 weeks postcrush, PKC staining could also be seen in the medial and lateral optic tracts and stratum opticum at the front half of the tectum and very lightly over the terminal zones. PKC activity was measured in homogenized tissues dissected from a series of fish with unilateral nerve crush from 1 to 5 weeks previously. Activity levels stimulated by phorbols and Ca2+ were measured by phosphorylation of a specific peptide and referred to levels measured in the opposite control side. Regeneration did not increase overall PKC activity in retina or tectum, but in optic nerve there was an 80% rise after the first week. The increased activity verifies that the increased staining in nerve represented an up-regulation of functional PKC during nerve regeneration. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 315–324, 1998  相似文献   

5.
Retinal projections were experimentally manipulated in a bony fish to reveal conditions under which considerably enlarged ipsilateral projections developed and persisted. Three experimental groups were studied: animals after unilateral enucleation, after unilateral nerve crush, and after enucleation and crush of the remaining optic nerve. At 29 days after unilateral enucleation alone, no enhanced ipsilateral projection had developed. After nerve crush, however, large numbers of retinal fibers regenerated into the ipsilateral tectum. Retrogradely filled, ipsilaterally projecting ganglion cells were distributed throughout the entire retina. After 15 days regenerating retinal fibers covered the entire ipsilateral tectum. At later stages the ipsilateral projection showed progressive reduction in coverage of the tectum. Combining enucleation with nerve crush led to an ipsilateral projection that covered the tectum at 28 days and later. In this experimental situation the development of an ipsilateral projection appears to be a two-step process: (1) Fibers are rerouted to the ipsilateral side at the diencephalon, and (2) ipsilateral fibers persist in the tectum only in the absence of a contralateral projection while they appear to be eliminated in the other cases. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
The normal development of the retinal projection was studied in a bony fish with Dil. Between 5.5 and 10 days postfertilization the contralateral retinal projection grows from the rostral pole of the tectum across its center. A maximum of 15 retinal fibers reaches the ipsilateral tectum. In 33-day-old juvenile animals, less than 15 ipsilateral fibers terminate in the entire tectum. Ipsilaterally projecting ganglion cells (maximal number = 20 cells) are scattered throughout the entire retina, and the location of ganglion cells in the retina and axonal terminations in the tectum display a large interindividual variability. This suggests that the small adult contingent of ipsilateral fibers in this bony fish develops without an initial exuberant ipsilateral retinal projection that is later pruned back. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
The normal development of the retinal projection was studied in a bony fish with Dil. Between 5.5 and 10 days postfertilization the contralateral retinal projection grows from the rostral pole of the tectum across its center. A maximum of 15 retinal fibers reaches the ipsilateral tectum. In 33-day-old juvenile animals, less than 15 ipsilateral fibers terminate in the entire tectum. Ipsilaterally projecting ganglion cells (maximal number = 20 cells) are scattered throughout the entire retina, and the location of ganglion cells in the retina and axonal terminations in the tectum display a large interindividual variability. This suggests that the small adult contingent of ipsilateral fibers in this bony fish develops without an initial exuberant ipsilateral retinal projection that is later pruned back.  相似文献   

8.
The pathway from the retina to the brain in mammals provides a well-defined model system for investigation of not only surviving axotomy but also axonal regeneration of injured neurons. Here I introduce our recent works on axonal regeneration in the optic nerve (OpN) of adult cats. Fibers of retinal ganglion cells (RGCs) extend beyond the crush site of OpN with injections of a macrophage stimulator (oxidized galectin-1) or a Rho kinase (ROCK) inhibitor (Y-39983 or Y-27632) while axonal extension is blocked with injection of saline. Elongation of crushed optic fibers, however, is slowed after 2 weeks. Transplantation of peripheral nerve makes RGCs regenerate their transected axons into a graft but regenerated fibers extend only a few mm in the brain. Effectiveness of combination of the drugs and treatments has to be verified in future.  相似文献   

9.
Summary The origin of nerve fibers to the superficial temporal artery of the rat was studied by retrograde tracing with the fluorescent dye True Blue (TB). Application of TB to the rat superficial temporal artery labeled perikarya in the superior cervical ganglion, the otic ganglion, the sphenopalatine ganglion, the jugular-nodose ganglionic complex, and the trigeminal ganglion. The labeled perikarya were located in ipsilateral ganglia; a few neuronal somata were, in addition, seen in contralateral ganglia. Judging from the number of labeled nerve cell bodies the majority of fibers contributing to the perivascular innervation originate from the superior cervical, sphenopalatine and trigeminal ganglia. A moderate labeling was seen in the otic ganglion, whereas only few perikarya were labeled in the jugular-nodose ganglionic complex. Furthermore, TB-labeled perikarya were examined for the presence of neuropeptides. In the superior cervical ganglion, all TB-labeled nerve cell bodies contained neuropeptide Y. In the sphenopalatine and otic ganglia, the majority of the labeled perikarya were endowed with vasoactive intestinal polypeptide. In the trigeminal ganglion, the majority of the TB-labeled nerve cell bodies displayed calcitonin gene-related peptide, while a small population of the TB-labeled neuronal elements contained, in addition, substance P. In conclusion, these findings indicate that the majority of peptide-containing nerve fibers to the superficial temporal artery originate in ipsilateral cranial ganglia; a few fibers, however, may originate in contralateral ganglia.  相似文献   

10.
GDNF and the GDNF receptors, c-Ret, GFR alpha 1 and 2 mRNA is expressed in the developing chicken retina. GDNF labelling was mainly found in embryonic day 4-5 retina but weak labelling could also be found over scattered retinal cells at later stages. c-ret labelling was found over ganglion cells, amacrine and horizontal cells; the preferred GDNF receptor (GFR alpha 1) over amacrine and horizontal cells; and the less preferred GDNF receptor (GFR alpha 2) over ganglion cells, amacrine cells and photoreceptors.  相似文献   

11.
12.
The examination of 16 human retina stained in toto according to the Gallego method (1953) demonstrated the presence of centrifugal optic fibers. These fibers appear as large argyrophilic axons and can be traced as of the papille, amongst the centripetal optic fibers. The centrifugal fibers show a high degree of ramification which may extend over a quarter of the total retinal surface and terminate in the internal plexiform layer. Elsewhere the existence of perivascular and intravascular axon terminals as well as short axon ganglion nerve cells were demonstrated.  相似文献   

13.
Pax-6 expression during retinal regeneration in the adult newt   总被引:4,自引:0,他引:4  
The present study examined the expression of Pax-6 during retinal regeneration in adult newts using in situ hybridization. In a normal retina, Pax-6 is expressed in the ciliary marginal zone, the inner part of the inner nuclear layer, and the ganglion cell layer. After surgical removal of the neural retina, retinal pigment epithelial cells proliferate into retinal precursor cells and regenerate a fully functional retina. At the beginning of retinal regeneration, Pax-6 was expressed in all retinal precursor cells. As regeneration proceeded, differentiating cells appeared at the scleral and vitreal margins of the regenerating retina, which had no distinct plexiform layers. In this stage, the expression of Pax-6 was localized in a strip of cells along the vitreal margin of the regenerating retina. In the late stage of regeneration, when the layer structure was completed, the expression pattern of Pax-6 became similar to that of a normal retina. It was found that Pax-6 is expressed in the retinal precursor cells in the early regenerating retina and that the expression pattern of Pax-6 changed as cell differentiation proceeded during retinal regeneration.  相似文献   

14.
Retrograde labelling of retinal ganglion cells with optic nerve transection often leads to degeneration of ganglion cells in prolonged experiments. Here we report that an intact optic nerve could uptake retrograde tracers applied onto the surface of the nerve, leading to high efficiency labelling of ganglion cells in the retina with long-term survival of cells. This method labelled a similar number of ganglion cells (2289±174 at 2 days) as the retrograde labeling technique from the superior colliculus (2250±94) or optic nerve stump (2279±114) after transection. This finding provides an alternative way to label retinal ganglion cells without damaging the optic tract. This will facilitate anatomical studies in identifying the morphology and connectivity of retinal ganglion cells, allowing secondary or triple labelling manipulations for long-term investigations.  相似文献   

15.
本文用微量显微注射法,在金鱼视网膜的背侧用亲脂类荧光染料DiI标记少量神经节细胞,通过顺行标记研究了视神经再生过程中视网膜顶盖投射的精确化过程。在损伤视神经后的不同时期观察了再生视神经纤维在顶盖整装片上的分布。在再生早期它们以超出正常的途径由背腹两侧进入顶盖,广泛分布。但其中大部分仍分布于顶盖腹侧的靶区。在再生晚期通过精确化,重建如正常鱼一样精确的视网膜顶盖投射。这个精确化过程表现在以下三方面:(1)再生于顶盖错误区域的再生视神经纤维的消失;(2)再生早期视神经纤维主干上生长的侧部分支的消失;(3)到达靶区的再生视神经纤维形成重迭的终末分支。由以上结果推测,顶盖中可能存在两类不同的因子:一类是普通诱向因子,存在于整个顶盖中,它在再生早期引导再生的视神经纤维长入顶盖。另一类是神经营养因子,它具区域特异性,在再生晚期引导视神经纤维到达顶盖靶区,形成精确的视网膜顶盖投射。  相似文献   

16.
We examined whether regenerating axons from adult rat ganglion cells are able to recognize their appropriate target region in vitro. Explants from adult rat retina were cocultured with embryonic sagittal midbrain slices in Matrigel®. The midbrain sections contained the superior colliculus, the main target for retinal ganglion cell axons in rats, and the inferior colliculus. We observed a statistically significant preference of both temporal and nasal retinal axons to grow toward their appropriate target region (anterior and posterior superior colliculus, respectively). No preferential growth of retinal ganglion cell axons was detected in controls, for which retinal explants were cultured on their own. When retinal ganglion cell axons were given a choice between superior colliculus and inferior colliculus, axons from nasal retina preferentially grew toward the posterior superior colliculus and avoided the inferior colliculus. In contrast, temporal axons in the same assay did not show preference for either of the colliculi. These findings suggest that regenerating axons from adult rat retina are able to recognize target-specific guidance cues released from embryonic midbrain targets in vitro. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 379–387, 1998  相似文献   

17.
The neural ganglion of the ascidian Ciona intestinalis regenerates in its entirety within a few weeks of ablation. Here we investigate the role of gonadotropin-releasing hormone-like immunoreactive (GnRH-li) cells in regeneration. Immunocytochemical studies show that in addition to a previously described plexus of GnRH-like neurones located in association with the dorsal strand, the normal adult brain contains GnRH-li neurones. These are predominantly localized to the ventral cortical rind at the posterior of the ganglion. Following ablation, non-process bearing GnRH-li cells appear in the regenerating area within two days. By day 8 post-ablation, process bearing GnRH-li cells are detected close to the regenerating brain. The number of these cells increases at later stages. GnRH-li cells are first detected within the regenerating brain at 14 days post-ablation and their number subsequently increases. These cells are initially concentrated along the ventral surface of the regenerating brain near to the dorsal strand. Double labelling studies with bromodeoxyuridine show that none of the GnRH-li cells are labelled at any stage of regeneration. The data are consistent with a sub-population of the new neurones being derived from GnRH-li neuroblasts born prior to ablation, which migrate from the dorsal strand complex into the regenerating ganglion.  相似文献   

18.
We studied tissue-specific expression of homeobox genes Pax6, Prox1, and Six3 during regeneration of the retina and lens. In the native retina, mRNA of Pax6, Prox1, and Six3 was predominantly localized in ganglion cells and in the inner nuclear layer of the retina. Active Pax6, Prox1, and Six3 expression was detected at early stages of regeneration in all proliferating neuroblasts forming the retinal primordium. Low levels of Pax6, Prox1, and Six3 mRNA were revealed in depigmented cells of the pigment epithelium as compared to the proliferating neuroblasts. At the intermediate stage of retinal regeneration, the distribution of Pax6, Prox1, and Six3 mRNA was diffuse and even all over the primordium. During differentiation of the cellular layers in the course of retinal regeneration, Pax6, Prox1, and Six3 mRNA was predominantly localized in ganglion cells and in the inner part of the inner nuclear layer, which was similar to the native retina. An increased expression was revealed in the peripheral regenerated retina where multipotent cells were localized. The dual role of regulatory genes Pax6, Prox1, and Six3 during regeneration of eye structures has been revealed; these genes controlled cell proliferation and subsequent differentiation of ganglion, amacrine, and horizontal cells. High hybridization signal of all studied genes was revealed in actively proliferating epithelial cells of the native and regenerating lens, while the corneal epithelium demonstrated a lower signal. Pax6 and Prox1 expression was also revealed in single choroid cells of the regenerating eye.  相似文献   

19.
Myosin isozymes and their fiber distribution were studied during regeneration of the soleus muscle of young adult (4-6 week old) rats. Muscle degeneration and regeneration were induced by a single subcutaneous injection of a snake toxin, notexin. If reinnervation of the regenerating muscle was allowed to occur (functional innervation nearly complete by 7 days), then fiber diameters continued to increase and by 28 days after toxin treatment they attained the same values as fibers in the contralateral soleus. If the muscles were denervated at the time of toxin injection, the early phases of regeneration still took place but the fibers failed to continue to increase in size. Electrophoresis of native myosin showed multiple bands between 3 and 21 days of regeneration which could be interpreted as indicating the presence of embryonic, neonatal, fast and slow myosins in the innervated muscles. Adult slow myosin became the exclusive from in innervated regenerates. In contrast, adult fast myosin became the predominant form in denervated regenerating muscles. Immunocytochemical localization of myosin isozymes demonstrated that in innervated muscles the slow form began to appear in a heterogeneous fashion at about 7 days, and became the major form in all fibers by 21-28 days. Thus, the regenerated muscle was almost entirely composed of slow fibers, in clear contrast to the contralateral muscle which was still substantially mixed. In denervated regenerating muscles, slow myosin was not detected biochemically or immunocytochemically whereas fast myosin was detected in all denervated fibers by 21-28 days. The regenerating soleus muscle therefore is clearly different from the developing soleus muscle in that the former is composed of a uniform fiber population with respect to myosin transitions. Moreover the satellite cells which account for the regeneration process in the soleus muscle do not appear to be predetermined with respect to myosin heavy chain expression, since the fibers they form can express either slow or fast isoforms. The induction of the slow myosin phenotype is entirely dependent on a positive, extrinsic influence of the nerve.  相似文献   

20.
Recent reports have found that the posthatch chicken retina has the capacity for neuronal regeneration. The purpose of this study was to test whether the types of cells destroyed by neurotoxic lesions influence the types of cells that are regenerated, and whether exogenous growth factors stimulate neural regeneration in the chicken retina. N-methyl-D-aspartate (NMDA) was used to destroy amacrine and bipolar cells; kainate was used to destroy bipolar, amacrine, and ganglion cells; colchicine was used to selectively destroy ganglion cells. Following toxin-induced damage, bromo-deoxyuridine was used to label proliferating cells. In some animals, growth factors were injected into the vitreous chamber of the eye. We found that the proliferation of cells within the retina was stimulated by toxin-induced cell loss, and by insulin and FGF2. After either kainate- or colchicine-induced retinal damage, some of the newly generated cells expressed markers and had the morphology of ganglion cells. The combination of insulin and FGF2 stimulated the regeneration of ganglion cells in kainate- and colchicine-treated retinas. We conclude that exogenous growth factors can be used to stimulate neural regeneration in the retina. We propose that the type of neuron destroyed in the retina may allow or promote the regeneration of that neuronal type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号