首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In designing HIV protease inhibitors as potential drugs for AIDS therapy, knowledge about what peptide sequences in polyproteins are cleavable by HIV proteases is very useful. In this article, based on the formulation that any octapeptide can be uniquely expressed as a 160-dimensional vector and the principle that the similarity of any two such vectors is associated with their correlation angle, a new method is proposed to predict the cleavability of a peptide sequence by HIV-1 and HIV-2 proteases. The average predicted accuracy the new method for the 105 peptide sequences whose cleavability by HIV-1 protease is known is 96/105=9.14%, which is about 8% higher than that by the existing method for the same set of data. A considerably high rate of correct prediction was also obtained when the new method was used to predict the HIV-2 protease-cleaved sites in some proteins.  相似文献   

2.
A sequence-coupled (Markov chain) model is proposed to predict the cleavage sites in proteins by proteases with extended specificity subsites. In addition to the probability of an amino acid occurring at each of these subsites as observed from a training set of oligopeptides known cleavable by HIV protease, the conditional probabilities as reflected by the neighbor-coupled effect along the subsite sequence are also taken into account. These conditional probabilities are derived from an expanded training set consisting of sufficiently large peptide sequences generated by the Monte Carlo sampling process. Very high accuracy was obtained in predicting protein cleavage sites by both HIV-1 and HIV-2 proteases. The new method provides a rapid and accurate means for analyzing the specificity of HIV protease, and hence can be used to help find effective inhibitors of HIV protease as potential drugs against AIDS. The principle of this method can also be used to study the specificity of any multisubsite enzyme.  相似文献   

3.
Knowledge of the polyprotein cleavage sites by HIV protease will refine our understanding of its specificity, and the information thus acquired will be useful for designing specific and efficient HIV protease inhibitors. The search for inhibitors of HIV protease will be greatly expedited if one can find and accurate, robust, and rapid method for predicting the cleavage sites in proteins by HIV protease. In this paper, Kohonen’s self-organization model, which uses typical artificial neural networks, is applied to predict the cleavability of oligopeptides by proteases with multiple and extended specificity subsites. We selected HIV-1 protease as the subject of study. We chose 299 oligopeptides for the training set, and another 63 oligopeptides for the test set. Because of its high rate of correct prediction (58/63=92.06%) and stronger fault-tolerant ability, the neural network method should be a useful technique for finding effective inhibitors of HIV protease, which is one of the targets in designing potential drugs against AIDS. The principle of the artificial neural network method can also be applied to analyzing the specificity of any multisubsite enzyme.  相似文献   

4.
Knowledge of the polyprotein cleavage sites by HIV protease will refine our understanding of its specificity, and the information thus acquired will be useful for designing specific and efficient HIV protease inhibitors. The search for inhibitors of HIV protease will be greatly expedited if one can find and accurate, robust, and rapid method for predicting the cleavage sites in proteins by HIV protease. In this paper, Kohonen’s self-organization model, which uses typical artificial neural networks, is applied to predict the cleavability of oligopeptides by proteases with multiple and extended specificity subsites. We selected HIV-1 protease as the subject of study. We chose 299 oligopeptides for the training set, and another 63 oligopeptides for the test set. Because of its high rate of correct prediction (58/63=92.06%) and stronger fault-tolerant ability, the neural network method should be a useful technique for finding effective inhibitors of HIV protease, which is one of the targets in designing potential drugs against AIDS. The principle of the artificial neural network method can also be applied to analyzing the specificity of any multisubsite enzyme.  相似文献   

5.
Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.  相似文献   

6.
Proper proteolytic processing of the HIV-1 Gag/Pol polyprotein is required for HIV infection and viral replication. This feature has made HIV-1 protease an attractive target for antiretroviral drug design for the treatment of HIV-1 infected patients. To examine the role of the P1 and P1′positions of the substrate in inhibitory efficacy of multi-drug resistant HIV-1 protease 769 (MDR 769), we performed a series of structure–function studies. Using the original CA/p2 cleavage site sequence, we generated heptapeptides containing one reduced peptide bond with an L to F and A to F double mutation at P1 and P1′ (F-r-F), and an A to F at P1′ (L-r-F) resulting in P1/P1′ modified ligands. Here, we present an analysis of co-crystal structures of CA/p2 F-r-F, and CA/p2 L-r-F in complex with MDR 769. To examine conformational changes in the complex structure, molecular dynamic (MD) simulations were performed with MDR769–ligand complexes. MD trajectories show the isobutyl group of both the lopinavir analog and the CA/p2 L-r-F substrate cause a conformational change of in the active site of MDR 769. IC50 measurements suggest the non identical P1/P1′ ligands (CA/p2 L-r-F and lopinavir analog) are more effective against MDR proteases as opposed to identical P1/P1′ligands. Our results suggest that a non identical P1/P1′composition may be more favorable for the inhibition of MDR 769 as they induce conformational changes in the active site of the enzyme resulting in disruption of the two-fold symmetry of the protease, thus, stabilizing the inhibitor in the active site.  相似文献   

7.
The design, synthesis and SAR study of a new series of HIV-1 protease inhibitors with pentacyclic triterpenoids as P2 ligands and phenylsulfonamide as P2′ ligands were discussed. These compounds exhibited micromolar inhibitory potency, among which compound T1c displayed HIV-1 protease inhibition with IC50 values of 0.12?μM, which was 67 times the inhibitory activity of its raw material Ursolic acid (8.0?μM).  相似文献   

8.
HIV-1 protease represents an appealing system for directed enzyme re-design, since it has various different endogenous targets, a relatively simple structure and it is well studied. Recently Chaudhury and Gray (Structure (2009) 17: 1636–1648) published a computational algorithm to discern the specificity determining residues of HIV-1 protease. In this paper we present two computational tools aimed at re-designing HIV-1 protease, derived from the algorithm of Chaudhuri and Gray. First, we present an energy-only based methodology to discriminate cleavable and non cleavable peptides for HIV-1 proteases, both wild type and mutant. Secondly, we show an algorithm we developed to predict mutant HIV-1 proteases capable of cleaving a new target substrate peptide, different from the natural targets of HIV-1 protease. The obtained in silico mutant enzymes were analyzed in terms of cleavability and specificity towards the target peptide using the energy-only methodology. We found two mutant proteases as best candidates for specificity and cleavability towards the target sequence.  相似文献   

9.
We describe the design, synthesis, and biological evaluation of novel HIV-1 protease inhibitors containing a squaramide-derived scaffold as the P2 ligand in combination with a (R)-hydroxyethylamine sulfonamide isostere. Inhibitor 3h with an N-methyl-3-(R)-aminotetrahydrofuranyl squaramide P2-ligand displayed an HIV-1 protease inhibitory Ki value of 0.51 nM. An energy minimized model of 3h revealed the major molecular interactions between HIV-1 protease active site and the tetrahydrofuranyl squaramide scaffold that may be responsible for its potent activity.  相似文献   

10.
The structure of a complex between a hexapeptide-based inhibitor, MVT-101, and the chemically synthesized (Aba 67,95,167,195; Aba: l-α-amino-n-butyric acid) protease from the human immunodeficiency virus (HIV-1), reported previously at 2.3 Å has now been refined to a crystallographic R factor of 15.4% at 2.0 Å resolution. Root mean square deviations from ideality are 0.18 Å for bond lengths and 2.4° for the angles. The inhibitor can be fitted to the difference electron density map in two alternative orientations. Drastic differences are observed for positions and interactions at P3/S3 and P3′/S3′ subsites of the two orientations due to different crystallographic environments. © 1997 Wiley-Liss, Inc.  相似文献   

11.
HIV-1 protease has a broad and complex substrate specificity. The discovery of an accurate, robust, and rapid method for predicting the cleavage sites in proteins by HIV protease would greatly expedite the search for inhibitors of HIV protease. During the last two decades, various methods have been developed to explore the specificity of HIV protease cleavage activity. However, because little advancement has been made in the understanding of HIV-1 protease cleavage site specificity, not much progress has been reported in either extracting effective methods or maintaining high prediction accuracy. In this article, a theoretical framework is developed, based on the kernel method for dimensionality reduction and prediction for HIV-1 protease cleavage site specificity. A nonlinear dimensionality reduction kernel method, based on manifold learning, is proposed to reduce the high dimensions of protease specificity. A support vector machine is applied to predict the protease cleavage. Superior performance in comparison to that previously published in literature is obtained using numerical simulations showing that the basic specificities of the HIV-1 protease are maintained in reduction feature space, and by combining the nonlinear dimensionality reduction algorithm with a support vector machine classifier.  相似文献   

12.
Newly designed HIV-1 protease inhibitors that maximize interactions with the protein backbone, especially in the form of hydrogen bonds, may enhance the antiviral potency of these compounds and minimize acquisition of drug-resistant mutations. Herein, we described a series of new HIV-1 PIs containing phenols as the P2 ligands and chiral isopropanol as the P1′ ligands, in combination with 4-trifluoromethylphenylsulfonamide or 4-nitrophenylsulfonamide as the P2′ ligands. And most of these compounds exhibited nanomolar inhibitory potency. In particular, inhibitors 13c and 13e with 4-trifluoromethylphenylsulfonamide as the P2′ ligand and (R) – isopropanol as the P1′ ligand, exhibited antiviral IC50 values of 1.64 nM and 2.33 nM, respectively. Furthermore, they also showed remarkable activity against wild-type and DRV-resistant HIV-1 variants that raised the prospect of designing more effective PIs further.  相似文献   

13.
The HIV protease plays a major role in the life cycle of the virus and has long been a target in antiviral therapy. Resistance of HIV protease to protease inhibitors (PIs) is problematic for the effective treatment of HIV infection. The South African HIV-1 subtype C protease (C-SA PR), which contains eight polymorphisms relative to the consensus HIV-1 subtype B protease, was expressed in Escherichia coli, purified, and crystallized. The crystal structure of the C-SA PR was resolved at 2.7?Å, which is the first crystal structure of a HIV-1 subtype C protease that predominates in Africa. Structural analyses of the C-SA PR in comparison to HIV-1 subtype B proteases indicated that polymorphisms at position 36 of the homodimeric HIV-1 protease may impact on the stability of the hinge region of the protease, and hence the dynamics of the flap region. Molecular dynamics simulations showed that the flap region of the C-SA PR displays a wider range of movements over time as compared to the subtype B proteases. Reduced stability in the hinge region resulting from the absent E35-R57 salt bridge in the C-SA PR, most likely contributes to the increased flexibility of the flaps which may be associated with reduced susceptibility to PIs.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:36  相似文献   

14.
Abstract

HIV protease inhibitors (PIs) approved by the FDA (US Food and Drug Administration) are a major class of antiretroviral. HIV-2 protease (PR2) is naturally resistant to most of them as PIs were designed for HIV-1 protease (PR1). In this study, we explored the impact of amino-acid substitutions between PR1 and PR2 on the structure of protease (PR) by comparing the structural variability of 13 regions using 24 PR1 and PR2 structures complexed with diverse ligands. Our analyses confirmed structural rigidity of the catalytic region and highlighted the important role of three regions in the conservation of the catalytic region conformation. Surprisingly, we showed that the flap region, corresponding to a flexible region, exhibits similar conformations in PR1 and PR2. Furthermore, we identified regions exhibiting different conformations in PR1 and PR2, which could be explained by the intrinsic flexibility of these regions, by crystal packing, or by PR1 and PR2 substitutions. Some substitutions induce structural changes in the R2 and R4 regions that could have an impact on the properties of PI-binding site and could thus modify PI binding mode. Substitutions involved in structural changes in the elbow region could alter the flexibility of the PR2 flap regions relative to PR1, and thus play a role in the transition from the semi-open form to the closed form, and have an impact on ligand binding. These results improve the understanding of the impact of sequence variations between PR1 and PR2 on the natural resistance of HIV-2 to commercially available PIs.

Communicated by Ramaswamy H. Sarma  相似文献   

15.
The human immunodeficiency virus type 1 aspartyl protease (HIV-1 PR) is a homodimeric aspartyl endopeptidase that is required for virus replication. HIV-1 PR was shown to act invitro as acyl-donor and -acceptor for both guinea pig liver transglutaminase (TG, EC 2.3.2.13) and human Factor XIIIa. These preliminary evidences suggested that the HIV-1 PR contains at least three TG-reactive glutaminyl and one lysyl residues. We report here that the incubation of HIV-1 PR with TG increases its catalytic activity. This increase is dependent upon the time of incubation, the concentration of TG and the presence of Ca2+. Identification of ε-(γ-glutamyl)lysine in the proteolytic digest of the TG-modified HIV-1 PR suggested intramolecular covalent cross-linking of this protease which may promote a non-covalent dimerization and subsequent activation of this enzyme via a conformational change. This hypothesis is supported by the observation that the TG-catalyzed activation of HIV-1 PR was completely abolished by spermidine (SPD) which acts as a competitive inhibitor of ε-(γ-glutamyl)lysine formation. Indeed, in the presence of 1 mM SPD the formation of the isopeptide was decreased of about 80%. The main products of the TG-catalyzed modification of HIV-1 PR in the presence of SPD were N1-mono(γ-glutamyl)SPD and N8-mono(γ-glutamyl)SPD. Negligible amount of N1,N8-bis(γ-glutamyl)SPD were found. The significance of these results is discussed with respect to the activation of the protease by post-translational modification and design of potential inhibitors.  相似文献   

16.
Nelfinavir is an inhibitor of HIV-1 protease, and is used for treatment of patients suffering from HIV/AIDS. However, treatment results in drug resistant mutations in HIV-1 protease. N88D and N88S are two such mutations which occur in the non-active site region of the enzyme. We have determined crystal structures of unliganded N88D and N88S mutants of HIV-1 protease to resolution of 1.65 Å and 1.8 Å, respectively. These structures refined against synchrotron data lead to R-factors of 0.1859 and 0.1780, respectively. While structural effects of N88D are very subtle, the mutation N88S has caused a significant conformational change in D30, an active site residue crucial for substrate and inhibitor binding.  相似文献   

17.
The specificity of UDP-Gal-NAc:polypeptide N-acetylgalactosaminytransferase (GalNAc-transferase) is consistent with the existence of an extended site composed of nine subsites, denoted by P4, P3, P2, P1, P0, P1′, P2′, P3′, and P4′, where the acceptor at P0 is being either Ser or Thr. To predict whether a peptide will react with the enzyme to form a Ser- or Thr-conjugated glycopeptide, a vector projection method is proposed which uses a training set of amino acid sequences surrounding 90 Ser and 106 Thr O-glycosylation sites extracted from the National Biomedical Research Foundation Protein Database. The model postulates independent interactions of the 9 amino acid moieties with their respective binding sites. The high ratio of correct predictions vs. total predictions for the data in both the training and the testing sets indicates that the method is self-consistent and efficient. It provides a rapid means for predicting O-glycosylation and designing effective inhibitors of GalNAc-transferase. © 1995 Wiley-Liss, Inc.  相似文献   

18.

Background

Among viral enzymes, the human HIV-1 protease comprises the most interesting target for drug discovery. There are increasing efforts focused on designing more effective inhibitors for HIV-1 protease in order to prevent viral replication in AIDS patients. The frequent and continuous mutation of HIV-1 protease gene creates a formidable obstacle for enzyme inhibition which could not be overcome by the traditional single drug therapy. Nowadays, in vitro and in silico studies of protease inhibition constitute an advanced field in biological researches. In this article, we tried to simulate protease-substrate complexes in different states; a native state and states with whiskers deleted from one and two subunits. Molecular dynamic simulations were carried out in a cubic box filled with explicit water at 37°C and in 1atomsphere of pressure.

Results

Our results showed that whisker truncation of protease subunits causes the dimer structure to decrease in compactness, disrupts substrate-binding site interactions and changes in flap status simultaneously.

Conclusions

Based on our findings we claim that whisker truncation even when applied to a single subunit, threats dimer association which probably leads to enzyme inactivation. We may postulate that inserting a gene to express truncated protease inside infected cells can interfere with protease dimerization. The resulted proteases would presumably have a combination of native and truncated subunits in their structures which exert no enzyme activities as evidenced by the present work. Our finding may create a new field of research in HIV gene therapy for protease inhibition, circumventing problems of drug resistance.  相似文献   

19.
The protease encoded by the human immunodeficiency virus type 1 (HIV-1) was engineered inEscherichia coli as a construct in which the natural 99-residue polypeptide was preceded by an NH2-terminal methionine initiator. Inclusion bodies harboring the recombinant HIV-I protease were dissolved in 50% acetic acid and the solution was subjected to gel filtration on a column of Sephadex G-75. The protein, eluted in the second of two peaks, migrated in SDS-PAGE as a single sharp band ofM r 10,000. The purified HIV-1 protease was refolded into an active enzyme by diluting a solution of the protein in 50% acetic acid with 25 volumes of buffer atpH 5.5. This method of purification, which has also been applied to the purification of HIV-2 protease, provides a single-step procedure to produce 100 mg quantities of fully active enzyme.  相似文献   

20.
Inhibition of human immunodeficiency virus 1 (HIV-1) protease is an important strategy for the treatment of HIV and acquired immune deficiency syndrome (AIDS). Therefore, HIV-1 protease inhibitory activity of dihydropyranone derivatives has been analyzed with different physico-chemical parameters. In the present work, QSAR studies were performed on a series of 4-hydroxy-5,6-dihydropyran-2-ones to explore the physico-chemical parameters responsible for their HIV-1 protease inhibitory activity. Physico-chemical parameters were calculated using WIN CAChe 6.1. Stepwise multiple linear regression analysis was performed to derive QSAR models which were further evaluated for statistical significance and predictive power by internal and external validation. The selected best QSAR model was having correlation coefficient (R)?=?0.875 and cross-validated squared correlation coefficient (Q2)?=?0.707. The developed significant QSAR model indicates that hydrophobicity of whole molecule and the substituent present at sixth position of dihydropyranones play an important role in the HIV-1 protease inhibitory activities of 4-hydroxy-5,6-dihydropyran-2-ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号