首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brachially innervated grafted hindlimbs display a progressive loss of motility as development proceeds. However, the virtually immobile grafted hindlimbs of E20 embryos exhibited strong, synchronous contractions of gastrocnemius and tibialis muscles upon intraperitoneal injection of strychnine nitrate (20 μg). This result indicated that the marked behavioral deficit was not due to an inability of the motoneurons that innervate the immobile grafted hindlimbs to initiate and propagate action potentials, but was probably the result of an effective loss of motoneuron excitation. To examine the hypothesis that interaction with the supraspinal nervous system is involved in the reduction of grafted hindlimb activity, the normal forelimb and grafted hindlimb movements of chronic spinal embryos were examined. The normal forelimbs of chronic spinal embryos exhibited the same number of movements as normal embryos at all stages examined. Thus the deficit in grafted hindlimb motility is not comparable to the behavior of the normal forelimb in chronic spinal embryos and is, therefore, unlikely to be due to a lack of excitation from the supraspinal nervous system. The possibility of an inhibitory influence via supraspinal projections was examined in chronic spinal embryos that had brachially innervated grafted hindlimbs. After E12, the grafted hindlimbs of chronic spinal embryos displayed significantly fewer movements than the normal forelimbs of chronic spinal embryos but significantly more movements than the brachial hindlimb of embryos with intact spinal cords. By E18, however, both spinal and nonspinal brachial hindlimbs were equally dysfunctional. Thus prevention of supraspinal communication transiently reduces but does not prevent the emergence of motor dysfunction in the brachially innervated hindlimbs, which appears to be due to motoneurons not receiving sufficient net excitation, from spinal circuits, to propagate action potentials to the muscles. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Previous studies suggest that sensory axon outgrowth is guided by motoneurons, which are specified to innervate particular target muscles. Here we present evidence that questions this conclusion. We have used a new approach to assess the pathfinding abilities of bona fide sensory neurons, first by eliminating motoneurons after neural crest cells have coalesced into dorsal root ganglia (DRG) and second by challenging sensory neurons to innervate muscles in a novel environment created by shifting a limb bud rostrally. The resulting sensory innervation patterns mapped with the lipophilic dyes DiI and DiA showed that sensory axons projected robustly to muscles in the absence of motoneurons, if motoneurons were eliminated after DRG formation. Moreover, sensory neurons projected appropriately to their usual target muscles under these conditions. In contrast, following limb shifts, muscle sensory innervation was often derived from inappropriate segments. In this novel environment, sensory neurons tended to make more "mistakes" than motoneurons. Whereas motoneurons tended to innervate their embryologically correct muscles, sensory innervation was more widespread and was generally from more rostral segments than normal. Similar results were obtained when motoneurons were eliminated in embryos with limb shifts. These findings show that sensory neurons are capable of navigating through their usual terrain without guidance from motor axons. However, unlike motor axons, sensory axons do not appear to actively seek out appropriate target muscles when confronted with a novel terrain. These findings suggest that sensory neuron identity with regard to pathway and target choice may be unspecified or quite plastic at the time of initial axon outgrowth.  相似文献   

3.
The study described below was performed as a continuation of a previous study in which we found reduced motoneuron number in lumbar spinal cord of the chick embryo following chronic ethanol administration from embryonic day 4 (E4) to E11. We sought to determine whether this reduction was due to primary ethanol toxicity or to enhancement of naturally occurring cell death (NOCD) and to determine whether administration of ethanol at a later period of development could also reduce motoneuron number. Earlier studies have shown that curare suspends NOCD in the chick embryo. By administering both ethanol and curare to these embryos from E4 to E11 and examining the lumbar spinal cord on E12, we determined that ethanol was directly toxic to motoneurons and reduced motoneuron number in the absence of NOCD. By administering ethanol from E10 to E15 and examining the lumbar spinal cord on E16, we determined that ethanol can reduce motoneuron number without altering spinal cord length during more than one stage of chick embryo development, and that ethanol toxicity is not dependent on NOCD. In addition, we demonstrated that ethanol does not affect the neurotrophic content of chick muscle when it is administered from E10 to E15. © 1997 John Wiley & Sons, Inc. J Neurobiol 32 : 684–694, 1997  相似文献   

4.
5.
A series of in vivo and in vitro experiments were conducted to determine the influence of prenatally administered ethanol on several aspects of the developing chick embryo spinal cord motor system. Specifically, we examined: (1) the effect of chronic ethanol administration during the natural cell death period on spinal cord motoneuron numbers; (2) the influence of ethanol on ongoing embryonic motility; (3) the effect of ethanol exposure on neurotrophic activity in motoneuron target tissue (limbbud); and (4) the responsiveness of cultured spinal cord neurons to ethanol, and the potential of target-derived neurotrophic factors to ameliorate ethanol neurotoxicity. These studies revealed the following: Chronic prenatal ethanol exposure reduces the number of motoneurons present in the lateral motor column after the cell death period [embryonic day 12 (E12)]. Ethanol tends to inhibit embryonic motility, particularly during the later stages viewed (E9-E11). Chronic ethanol exposure reduces the neurotrophic activity contained in target muscle tissue. Such diminished support could contribute to the observed motoneuron loss. Direct exposure of spinal cord neurons to ethanol decreases neuronal survival and process outgrowth in a dose-dependent manner, but the addition of target muscle extract to ethanol-containing cultures can ameliorate this ethanol neurotoxicity. These studies demonstrate ethanol toxicity in a population not previously viewed in this regard and suggest a mechanism that may be related to this cell loss (i.e., decreased neurotrophic support). © 1995 John Wiley & Sons, Inc.  相似文献   

6.
This study provides a quantitative analysis of the active movements of the chick embryo and of the contractions of the amnion over the entire developmental period of 21 days. Four types of embryo movements are distinguished. The motor activity of the embryo shows two characteristic peaks, with maximum contraction frequencies on the 12th and on the 16th day. In contrast, the amnion activity is higher at earlier stages and decreases as the body activity increases. The amnion activity is largely independent of the body activity. Illumination has a strong influence on embryo movements. It is shown that increases of light intensity affect the patterns of activity of both the embryo and the amnion. While the effect of light on the embryo can be interpreted as being transmitted via the optic system, the mechanism of the amniotic response is unclear. The results suggest that the amnion itself may be sensitive to light. J. Exp. Zool. (Mol. Dev. Evol.) 291:186-194, 2001.  相似文献   

7.
8.
Evidence is accumulating that Eph receptor tyrosine kinases and their ligands regulate cell migration and axonal guidance during development. It was previously found that one of the Eph receptors, EphA4, is transiently expressed in subsets of chick embryonic motor neurons. Here, the expression of EphA and ephrin-A subfamily members was further examined, and the dynamic patterns of expression in chick embryonic motor neurons found. EphA3, EphA4, ephrin-A2, and ephrin-A5 were also expressed in the connective tissues of limb muscles and EphA3 and EphA4 expressing motor neurons innervated EphA3 and EphA4 expressing limb muscles, respectively. These spatiotemporal expression patterns suggest that EphA and ephrin-A proteins play important roles in muscle patterning and motor axonal guidance.  相似文献   

9.
The polyamine content of the circulating erythrocyte population in the embryonic chick was studied during its development. Total cellular polyamine content fell dramatically between 5 and 7 days of development, paralleling the decrease in metabolic activity exhibited by these cells. Nuclei were isolated from the erythrocytes by a non-aqueous technique, which not only eliminated the polyamine loss that occurred with aqueous isolation, but also prevented redistribution of the polyamines from the cytoplasm. Nuclear spermidine and spermine contents decreased markedly between 5 and 6 days of development from 31 to 10 pmol/microgram of DNA and from 33 to 18 pmol/microgram of DNA respectively. Thereafter the spermine content remained constant, but the spermidine content continued to decline. Good correlations between spermidine and RNA contents were observed in both cells and nuclei, and similarly between spermine and RNA contents in cells, but no such correlation was observed between spermine and RNA in nuclei.  相似文献   

10.
11.
12.
The aim of this work was to prepare specific antibodies against skin and bone collagen (type I) and cartilage collagen (type II) for the study of differential collagen synthesis during development of the chick embryo by immunofluorescence. Antibodies against native type I collagen from chick cranial bone, and native pepsin-extracted type II collagen from chick sternal cartilage were raised in rabbits, rats, and guinea pigs. The antibodies, purified by cross-absorption on the heterologous collagen type, followed by absorption and elution from the homologous collagen type, were specific according to passive hemagglutination tests and indirect immunofluorescence staining of chick bone and cartilage tissues. Antibodies specific to type I collagen labeled bone trabeculae from tibia and perichondrium from sternal cartilage. Antibodies specific to type II collagen stained chondrocytes of sternal and epiphyseal cartilage, whereas fluorescence with intercellular cartilage collagen was obtained only after treatment with hyaluronidase. Applying type II collagen antibodies to sections of chick embryos, the earliest cartilage collagen found was in the notochord, at stage 15, followed by vertebral collagen secreted by sclerotome cells adjacent to the notochord from stage 25 onwards. Type I collagen was found in the dermatomal myotomal plate and presumptive dermis at stage 17, in limb mesenchyme at stage 24, and in the perichondrium of tibiae at stage 31.  相似文献   

13.
14.
The lancelet (amphioxus) embryo develops from a miolecithal egg and starts gastrulation when it is approximately 400 cells in size, in a fashion similar to that of some non-chordate deuterostomes. Throughout this type of gastrulation, the embryo develops characteristics such as the notochord and hollow nerve cord that commonly appear in chordates. beta-Catenin is an important factor in initiating body patterning. The behavior and developmental pattern of this protein in early lancelet development was examined in this study. Cytoplasmic beta-catenin was localized to the animal pole after fertilization and then was incorporated asymmetrically into the blastomeres during the first cleavage. Asymmetric distribution was observed at least until the 32-cell stage. The first nuclear localization was at the 64-cell stage, and involved all of the cells. At the initial gastrula stage, however, concentrated beta-catenin was found on the dorsal side. LiCl treatment affected the asymmetric pattern of beta-catenin during the first cleavage. LiCl also changed distribution of nuclear beta-catenin at the initial gastrula stage: distribution extended to cells on the animal side. Apparently associated with this change, expression domains of goosecoid, lhx3 and otx also changed to a radially symmetric pattern centered at the animal pole. However, LiCl-treated embryos were able to establish embryonic polarity. The present study suggests that in the lancelet embryo, polarity determination is independent of dorsal morphogenesis.  相似文献   

15.
Laminin is a major glycoprotein of basement membranes and has been shown to promote cell adhesion, and movement of various nonepithelial cells and tumour cells. Using antibodies to laminin in paraffin sections and cultured embryos, we have studied the distribution of laminin and its involvement in the first morphogenetic events, beginning with the first extensive cellular migrations and interactions that result in the induction of the primitive streak (PS) and of the neural plate in the early chick embryo. Laminin immunogold labeling was not detected in the blastoderm at stage X. At stage XIII, laminin immunoreactivity was detected at the ventral surface of the epiblast and in the entire hypoblast. The intense labeling of the hypoblast indicated that these cells are active in laminin synthesis. Extracellular matrix (ECM) started accumulating as the first embryonic spaces were forming, before the morphogenetic movements of gastrulation were initiated. Immunogold labeling revealed a punctate pattern of laminin distribution in the ECM in the blastocoele, and in the space below the neural plate. Laminin, which is a multidomain molecule known to interact with other molecules of the ECM and with the cell surface, could serve as the scaffold for highly specific contact points of migrating cells and for the folding of epithelial sheets during this time in the developing embryo. We incubated blastoderms at stages X and XIII with laminin antibodies (1:30 dilution) for 4 h, then cultured the blastoderms further in plain egg albumin. The laminin antibodies did not interfere with triggering of PS cell movements, but perturbed the normal migration pattern of these cells. A normal PS did not form and, as a consequence, the embryonic axis was not induced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In the 8-, 9-, and 10-day-old mouse embryos, the primitive atria are interconnected with the ventricles via the atrioventricular (A-V) canal. Due to the twisting process of the tubular heart, the wall of the A-V canal establishes continuity not only with the left ventricle but also with the bulbus and truncus arteriosus. At this stage of heart development, the A-V node and bundle have not yet appeared, and, thus, the atrial impulse must be conveyed to the ventricle by the muscle tissue of the wall of the A-V canal, in which two muscle cell layers have been observed. The inner layer extends deep into the left ventricular cavity and is interconnected with both the trabecular system and the ventricular (IV) septum, which begins to develop on the tenth day. In the inner dorsal wall of the A-V canal, the cells are large (~ 20 μm in diameter) and show a strong PAS reaction. It is likely that these large glycogen-rich cells from which the A-V node primordium develops on the eleventh day play the main role in the A-V impulse conduction. The muscle cells at the ventrolateral walls of the canal are small and form a loose spongy myocardium into which the connective tissue cells begin to penetrate on the tenth day, ultimately to form the annulus fibrosus. At the same time, the outer cell layer of the dorsal wall begins to deteriorate; the cells show vacuolar degeneration, myolysis, and shrinkage necrosis. This process appears to represent a programmed cell death, as was described in the bird heart (Pexieder, 1975). On the basis of morphological data, the sequence of atrioventricular activation before the appearance of the A-V node and bundle is discussed.  相似文献   

17.
运用酶解振荡压片技术和常规石蜡切片技术分别研究了无籽八月桔的胚囊育性及无籽八月桔自交和异交(无籽八月桔×台湾椪柑,无籽八月桔×有籽八月桔)的胚胎发育.结果表明:无籽八月桔胚囊可育,成熟胚囊具一个卵细胞、两个助细胞、三个反足细胞以及一个大的含二个极核的中央细胞;其自交和异交的胚胎发育均正常,授粉后2周出现球形胚和少量心形...  相似文献   

18.
The retromer complex is a heteropentameric protein unit associated with retrograde transport of cargo proteins from endosomes to the trans-Golgi network. Functional silencing study of the Vps26a gene indicated the important role of the retromer complex during early developmental stages in the mouse. However, individual expression patterns and quantitative analysis of individual members of the retromer complex during the early developmental stages has not been investigated. In this study, we conducted quantitative expression analysis of six retromer complex genes (Vps26a, Vps26b, Vps29, Vps35, Snx1, and Snx2) and one related receptor gene (Ci-mpr) during the eleven embryonic stages with normal MEF (mouse embryonic fibroblast) and Vps26a(-/-) MEF cells. Remarkably, except for Vps26a (maternal expression pattern), all tested genes showed maternal-zygotic expression patterns. And five genes (Vps26b, Vps29, Vps35, Snx2, and Ci-mpr) showed a pattern of decreased expression in Vps26a(-/-) MEF cells by comparative analysis between normal MEF and Vps26a(-/-) MEF cells. However, the Snx1 gene showed a pattern of increased expression in Vps26a(-/-) MEF cells. From our results, we could assume that retromer complex-related genes have important roles during oocyte development. However, in the preimplantation stage, they did not have significant roles.  相似文献   

19.
As a preliminary to a study of the proteins of the embryonic chick epidermis when grown in vitro under various culture conditions, the proteins of the anterior metatarsal epidermis, from 11 days of embryonic life up to 9 days posthatching, have been studied. Carboxymethylated derivatives of the proteins extracted by a thiol reduction procedure have been analyzed by polyacrylamide gel electrophoresis. The results have shown that the differentiation of the epidermis is characterized by the appearance between days 14 and 17 of at least 11 major protein bands in the electrophoretic pattern. Two of these bands are of relatively high molecular weight protein and appear earlier than the remaining bands which form a group of closely related, low molecular weight protein species. The differentiation of the tissue also involves the disappearance from the electrophoretic pattern of all but one of the five major bands present in extracts of the 11/12-day epidermis. A study of the proteins derived from the isolated periderm of the 14-day chick embryo beak has suggested that one of the major bands in the 11/12-day metatarsal epidermal extracts may be a peridermal protein.  相似文献   

20.
Summary The distribution of glycosaminoglycans (GAGs) was studied in embryonic chick skin, using alcian blue staining with critical electrolyte concentration and glycanase treatment, immunofluorescence and transmission electron microscopy. Light microscopy revealed an uneven distribution of sulphated and non-sulphated GAGs at all stages of feather development. Along the dermal-epidermal junction and throughout the depth of the dermis, staining was stronger inside the feathers than in the interplumar skin. With increasing MgCl2 concentration, the decrease in stain intensity along the dermal-epidermal junction was stronger in interplumar skin than inside feather structures, indicating that sulphated GAGs are more abundant within feathers than in interplumar skin. The same differential sensitivity to electrolyte concentration was noted in the dermis, except at the feather placode stage, when labelling inside the dermal condensation was virtually wiped out at 0.6 M MgCl2 and higher concentrations, whereas it persisted in the surrounding dermis up to 0.8 M MgCl2, indicating that the dermal condensation contains a larger amount of hyaluronate than non-feather-forming dermis. Enzyme treatment of sections with Streptomyces hyaluronidase as compared with those treated with chondroitinase ABC corroborated these findings. Immunofluorescent detection of heparan sulphate proteoglycan revealed the presence of the antigen along the dermal-epidermal junction at all stages of feather development, with peaks of brightness in discrete spots of feather structures. Electron microscopy revealed the presence of ruthenium red and tannic acid positive material in the dermal-epidermal junctional zone and inside the dermis. The density of marked granules was somewhat higher in intraplumar than in interplumar regions. These observations demonstrate that certain sulphated and non-sulphated GAGs are distributed in a microheterogeneous manner, which appears to be related to the morphogenetic events of feather development. They are discussed in view of the possible role these components might play in dermal-epidermal interactions. They strengthen the notion, already gained from previous studies on the localization of interstitial collagens and fibronectin, that extracellular matrix components play an important structural and informative role in organogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号