共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Environmental influences on the productivity of three desert succulents in the south-western United States 总被引:1,自引:0,他引:1
Abstract Net CO2 uptake over 24 h periods for shoots of Agave deserti, Ferocactus acanthodes, and Opuntia ficus-indica was measured under the ranges of water status, air temperature, and photo-synthetically active radiation (PAR) that occur in the south-western U.S.A. An environmental productivity index (EPI) was constructed indicating the overall influence of these three factors on net CO2 uptake. Using growth chambers whose conditions were changed monthly to simulate the environmental conditions at a field site, the observed shoot dry weight increases per unit surface area changed in concert with monthly changes in EPI. The observed dry weight gain of the shoot was 17–19% lower than the predicted shoot net CO2 uptake, which could be accounted for by carbon diversion to the roots. Mean monthly EPI was also predicted for 21 sites in the south-western U.S.A. All three species had low EPIs in the Colorado River basin, which has low annual rainfall and high summer temperatures, and in the north-central part of the region, which has low temperatures and low PAR during winter when water is available. The two native species, A. deserti and F. acanthodes, had high EPIs beyond their range in coastal southern California, where competition by other vegetation for PAR may limit net CO2 uptake. Such regions as well as south-central California and south-central Arizona had high EPIs for all three species, indicating that these areas would be appropriate for the cultivation of O. ficus-indica. 相似文献
4.
Diel water movement between parenchyma and chlorenchyma of two desert CAM plants under dry and wet conditions 总被引:3,自引:2,他引:3
Abstract. Electric-circuit analogue models of the water relations of crassulacean acid metabolism (CAM) succulents such as Agave deserti and Ferocactus acanthodes have predicted diel movement of water between the water-storage parenchyma and the photo-synthetic chlorenchyma. Injection of tritiated water into either tissue in the laboratory confirmed substantial and bidirectional water movements, especially under conditions of wet soil. For A. deserti , water movement from the water-storage parenchyma to the chlorenchyma increased at night as the chlorenchyma osmotic pressure increased. Although nocturnal osmotic pressure increases and transpiration for both species were minimal in the field under dry conditions, diel changes in the deuterium: hydrogen ratio (expressed as ΔD) were similar for the water-storage parenchyma and the chlorenchyma. Such indication of [substantial mixing of water between the tissues over a 24-h cycle was more evident under wet conditions in the field. For A. deserti , ΔD then increased by 32%o from the afternoon to midnight and was essentially identical in the water-storage parenchyma and the chlorenchyma. For F. acanthodes , the diel changes in ΔD were one-third those of A. deserti , and ΔD was always slightly higher for the chlorenchyma than for the water-storage parenchyma, apparently reflecting the lower surface-to-volume ratio of A. deserti. In summary, data obtained using radioactive and stable isotopes strongly supported model predictions concerning diel cycles of internal water distribution for these CAM species. 相似文献
5.
Hydraulic Conductances of the Soil, the Root-Soil Air Gap, and the Root: Changes for Desert Succulents in Drying Soil 总被引:5,自引:0,他引:5
Water movement to and from a root depends on the soil hydraulicconductivity coefficient (Lsoil), the distance across any root-soilair gap, and the hydraulic conductivity coefficient of the root(LP). After analytical equations for the effective conductanceof each part of the pathway are developed, the influences ofsoil drying on the soil water potential and Lsoil are describedduring a 30 d period for a loamy sand in the field. The influencesof soil drying on LP for three desert succulents, Agave deserti,Ferocactus acanthodes, and Opuntia ficus-indica, are also describedfor a 30 d period. To quantify the effects of soil drying onthe development of a root-soil air gap, diameters of 6-week-oldroots of the three species were determined at constant watervapour potentials of 1.0 MPa and 10 MPa as wellas with the water vapour potential decreasing at the same rateas soil drying during a 30 d period. The shrinkage observedfor roots initially 2·0 mm in diameter averaged 19% duringthe 30d period. The predominant limiting factor for water movementwas LP of the root for the first 7 d of soil drying, the root-soilair gap for the next 13 d, and Lsoil thereafter. Compared withthe ease of water uptake from a wet soil, the decrease in conductancesduring soil drying, especially the decrease in Lsoil causedthe overall conductance to decrease by 3 x 103-fold during the30 d period for the three species considered, so relativelylittle water was lost to the dry soil. Such rectifier-like behaviourof water movement in the soil-root system resulted primarilyfrom changes in Lsoil and, presumably, is a general phenomenonamong plants, preventing water loss during drought but facilitatingwater uptake after rainfall. Key words: Agave deserti, Ferocactus acanthodes, Opuntia ficus-indica, rectification, soil water potential, water movement 相似文献
6.
《植物学报(英文版)》2005,47(3)
A better understanding of the mechanisms of water uptake by plant roots should be vital for improving drought resistance and water use efficiency (WUE). In the present study, we have demonstrated correlations between root system hydraulic conductivity and root characteristics during evolution using six wheat evolution genotypes (solution culture) with different ploidy chromosome sets (Triticum boeoticum Bioss., T. monococcum L.: 2n = 2x = 14; T. dicoccides Koern., T. dicoccon (Schrank) Schuebl.: 2n = 4x = 28;T. vulgare Vill., T. aestivum L. cv. Xiaoyan No. 6: 2n = 6x = 42). The experimental results showed that significant correlations were found between root system hydraulic conductivity and root characteristics of the materials with the increase in ploidy chromosomes (2x→6x) during wheat evolution. Hydraulic conductivity of the wheat root system at the whole-plant level was increased with chromosome ploidy during evolution, which was positively correlated with hydraulic conductivity of single roots, whole plant biomass,root average diameter, and root growth (length, area), whereas the root/shoot ratio had an inverse correlation with the hydraulic conductivity of root system with increasing chromosome ploidy during wheat evolution. Therefore, it is concluded that that the water uptake ability of wheat roots was strengthened from wild to modern cultivated species during evolution, which will provide scientific evidence for genetic breeding to improve the WUE of wheat by genetic engineering. 相似文献
7.
Changes in Root Hydraulic Conductivity During Wheat Evolution 总被引:5,自引:0,他引:5
A better understanding of the mechanisms of water uptake by plant roots should be vital for improving drought resistance and water use efficiency (WUE). In the present study, we have demonstrated correlations between root system hydraulic conductivity and root characteristics during evolution using six wheat evolution genotypes (solution culture) with different ploidy chromosome sets (Triticum boeoticum Bioss., T. monococcum L.: 2n=2x=14;T. dicoccides Koern., T. dicoccon (Schrank) Schuebl.:2n=4x=28;T. vulgare Vill., T. aestivum L. cv. Xiaoyan No. 6:2n=6x=42). The experimental results showed that significant correlations were found between root system hydraulic conductivity and root characteristics of the materials with the increase in ploidy chromosomes (2x→6x) during wheat evolution. Hydraulic conductivity of the wheat root system at the whole-plant level was increased with chromosome ploidy during evolution, which was positively correlated with hydraulic conductivity of single roots, whole plant biomass,root average diameter, and root growth (length, area), whereas the root/shoot ratio had an inverse correlation with the hydraulic conductivity of root system with increasing chromosome ploidy during wheat evolution. Therefore, it is concluded that that the water uptake ability of wheat roots was strengthened from wild to modern cultivated species during evolution, which will provide scientific evidence for genetic breeding to improve the WUE of wheat by genetic engineering. 相似文献
8.
Nobel P 《American journal of botany》1997,84(7):949-955
To investigate root distribution with depth, which can affect competition for water, surface areas of young and old roots were determined in 4-cm-thick soil layers for the C3 subshrub Encelia farinosa Torrey and A. Gray, the C4 bunchgrass Pleuraphis rigida Thurber, and the CAM (crassulacean acid metabolism) leaf succulent Agave deserti Engelm. At a site in the northwestern Sonoran Desert these codominant perennials had mean rooting depths of only 9-10 cm for isolated plants. Young roots had mean depths of 5-6 cm after a winter wet period, but 11-13 cm after a summer wet period. Young roots were most profuse in the winter for E. farinosa, which has the lowest optimum temperature for root growth, and in the summer for P. rigida, which has the highest optimum temperature. Roots for interspecific pairs in close proximity averaged 2-3 cm shallower for A. deserti and a similar distance deeper for the other two species compared with isolated plants, suggesting partial spatial separation of their root niches when the plants are in a competitive situation. For plants with a similar root surface area, the twofold greater leaf area and twofold higher maximal transpiration rate of E. farinosa were consistent with its higher root hydraulic conductivity, leading to a fourfold higher estimated maximal water uptake rate than for P. rigida. Continuous water uptake accounted for the shoot water loss by A. deserti, which has a high shoot water-storage capacity. A lower minimum leaf water potential for P. rigida than for A. deserti indicates greater ability to extract water from a drying soil, suggesting that temporal niche separation for water uptake also occurs. 相似文献
9.
Water uptake and structural plasticity along roots of a desert succulent during prolonged drought 总被引:3,自引:0,他引:3
Desert succulents resume substantial water uptake within 1–2 d of the cessation of drought, but the changes in root structure and hydraulic conductivity underlying such recovery are largely unknown. In the monocotyledonous leaf succulent Agave deserti Engelm. substantial root mortality occurred only for lateral roots near the soil surface; nearly all main roots were alive at 180 d of drought. New main roots were initiated and grew up to 320 mm at soil water potentials lower than – 5·0 MPa, utilizing water from the shoot. The hydraulic conductivity of distal root regions decreased 62% by 45 d of drought and 70% thereafter. After 7 d of rewetting, root hydraulic conductivity was restored following 45 d of drought but not after 90 and 180 d. The production of new lateral roots and the renewed apical elongation of main roots occurred 7–11 d after rewetting following 180 d of drought. Hydraulic conductivity was higher in the distal region than at midroot and often increased again near the root base, where many endodermal cells lacked suberin lamellae. Suberization and xylem maturation were influenced by the availability of moisture, suggesting that developmental plasticity along a root allows A. deserti to capitalize on intermittent or heterogeneous supplies of water. 相似文献
10.
Radial Hydraulic Conductivity of Individual Root Tissues of Opuntia ficus-indica (L.) Miller as Soil Moisture Varies 总被引:3,自引:0,他引:3
The constraints on water uptake imposed by individual root tissueswere examined forOpuntia ficus-indicaunder wet, drying, andrewetted soil conditions. Root hydraulic conductivity (LP) andaxial conductance (Kh) were measured for intact root segmentsfrom the distal region with an endodermis and from midroot witha periderm;LPwas then measured for each segment with successivetissues removed by dissection. Radial conductivity (LR) wascalculated fromLPandKhfor the intact segment and for the individualtissues by considering the tissue conductivities in series.Under wet conditions,LRfor intact distal root segments was lowestfor the cortex; at midroot, where cortical cells are dead,LRforthe cortex was higher and no single tissue was the predominantlimiter ofLR.LRfor the endodermis and the periderm were similarunder wet conditions. During 30d of soil drying,LRfor the distalcortex increased almost three-fold due to the death of corticalcells, whereasLRfor the midroot cortex was unaffected;LRforthe endodermis and the periderm decreased by 40 and 90%, respectively,during drying. For both root regions under wet conditions, thevascular cylinder had the highestLR, which decreased by 5070%during 30d of soil drying. After 3d of rewetting, new lateralroots emerged, increasingLRfor the tissues outside the vascularcylinder as well as increasing uptake of an apoplastic tracerinto the xylem of both the roots and the shoot. The averageLRforintact root segments was similar under wet and rewetted conditions,but the conductivity of the tissues outside the vascular cylinderincreased after rewetting, as did the contribution of the apoplasticpathway to water uptake. Opuntia ficus-indica; prickly pear; root hydraulic conductivity; endodermis; periderm; apoplast; lateral root emergence 相似文献
11.
Root Hydraulic Conductivity of Two Cactus Species in Relation to Root Age, Temperature, and Soil Water Status 总被引:5,自引:1,他引:5
The effects of root age, temperature, and soil water statuson root hydraulic conductivity (LP) were investigated for twocactus species, Ferocactus acanthodes and Opuntia ficus-indica.The volumetric flux density of water was measured for excisedroot segments, either using negative hydrostatic pressures appliedto the proximal end or using reverse flow of water from theroot to the soil. For both species, LP at 20 ?C increased withroot age, average values reaching a maximum of 3.9 ? 107m s1 MPa1 for F. acanthodes and 5.2 ? 107m s1 MPa1 for O.ficus-indica at 11 to 17 weeksof age; LP subsequently declined with increasing root age forboth species. LP was maximal at a temperature of about 10 ?Cfor the youngest roots (13 weeks), this optimum shiftingto 40 ?C for 8-week-old roots of both species. For older roots(up to 1.5-years-old), LP increased with temperature from 0?C to 50 ?C, with a Q10 of 1.3 between 20 ?C and 30 ?C. At asoil water potential (soil) of 0.016 MPa, root LP wasindependent of the direction of water flow for both species.Depending on root age, LP declined 45- to 500-fold for F. acanthodesand 90- to 800-fold for O.ficus-indica as soil was reduced from0.016 to 1.06 MPa, consistent with a rectifier-likebehaviour with respect to water movement between soil and roots.Incorporation of such responses into water uptake models shouldlead to a better understanding of root function. Key words: Ferocactus acanthodes, Opuntia ficus-indica, water potential, tension, reverse flow 相似文献
12.
Respiration measured as CO2 efflux was determined at various soil O2 and CO2 concentrations for individual, attached roots of a succulent perennial from the Sonoran Desert, Agave deserti Engelm. The respiration rate increased with increasing O2 concentration up to about 16% O2 for established roots and 5% O2 for rain roots (fine branch roots on established roots induced by wetting of the soil) and then remained fairly constant up to 21% O2 . When O2 was decreased from 21 to 0%, the respiration rates were similar to those obtained with increasing O2 concentration. The CO2 concentration in the root zone, which for the shallow-rooted A. deserti in the field was about 1 000 μl l-1 , did not affect root respiration at concentrations up to 2 000 μl l-1 , but higher concentrations reduced it, respiration being abolished at 20 000 μl l-1 (2%) CO2 for both established and rain roots. Upon lowering CO2 to 1 000 μl l-1 after exposure to concentrations up to 10000 μl l-1 CO2 , inhibition of respiration was reversible. Uptake of the vital stain neutral red by root cortical cells was reduced to zero, indicating cell death, in about 4 h at 2% CO2 , substantiating the detrimental effects of high soil CO2 concentrations on roots of A. deserti . This CO2 response may explain why roots of desert succulents tend to occur in porous, well-aerated soils. 相似文献
13.
Induction of rooting in the microshoots of Plumbago zeylanica was achieved on halfstrength basal Murashige and Skoog's medium supplemented with 0.25 mg dm–3 indole-3-butyric acid. Rooting was totally inhibited when the microshoots were cultured in vitro under continuous light, however, maximum percentage of microshoots rooted when incubated in continuous light for 4 weeks before transfer to the rooting media. Peroxidase activity increased markedly during root induction indicating a key role of peroxidase in rooting of microshoots of Plumbago zeylanica in vitro. 相似文献
14.
Heterogeneity in Water Availability Alters Cellular Development and Hydraulic Conductivity along Roots of a Desert Succulent 总被引:14,自引:0,他引:14
Plants of the desert succulent Agave deserti were grown in partitionedcontainers to determine whether heterogeneity in soil moistureleads to differences in cellular development and hydraulic conductivityalong individual roots. Roots from containers with a dry distalcompartment (furthest from the shoot), a wet middle compartment,and a dry proximal compartment had distal regions (includingthe root tips) that were more suberized and lignified in theendodermis and adjacent cell layers than were root regions fromthe wet middle compartment. Proximal root regions about 40 mmfrom the succulent shoot base were also relatively unsuberized,suggesting that both external and internal supplies of waterdelayed tissue maturation. Root segments from wet middle compartmentsand from dry proximal compartments had higher hydraulic conductivitythan did the more suberized root segments from dry distal compartments.Unlike distal root segments from wet compartments, segmentsfrom dry compartments suffered no decrease in hydraulic conductivityafter immersion in mercuric chloride, suggesting that aquaporinactivity diminished for roots during drought. The possible closureof water channels could help limit root water loss to a dryingsoil. The delayed development of suberized cell layers may allowroot regions to maximize water uptake from wet soil patches(such as under rocks), and the relatively immature, absorptiveroot region near the base of the shoot may help A. deserti capturewater from a briefly wetted surface soil. Copyright 2000 Annalsof Botany Company Agave deserti, root plasticity, water uptake, aquaporins, suberization, endodermis, divided pots. 相似文献
15.
红砂幼苗根系形态特征和水分利用效率对土壤水分变化的响应 总被引:1,自引:0,他引:1
为探讨干旱与半干旱区受损红砂种群幼苗适宜生长的土壤水分条件,采用盆栽方法,研究了红砂幼苗在充分灌溉(FI)、适度灌溉(MI)、干旱处理(DT)3个水分处理下根系形态和水分利用效率的变化特征。结果表明:(1)红砂幼苗根系形态因水分条件和根序的不同而各异;随灌溉量的减少红砂幼苗根系直径和根体积均表现为FIMIDT,但干旱处理促进了根系的伸长生长和比表面积和比根长增加,根系形态的可塑性是红砂幼苗获取水分适应干旱环境的重要策略之一。(2)随根序的升高,各处理水平下红砂幼苗根长、比根长均显著减少,而其根直径和体积却显著增加,表明红砂幼苗根系内部具有高度的形态异质性。(3)与FI处理相比,MI和DT处理下红砂幼苗根系总生物量分别增加了50.00%、19.23%,但MI和DT处理却显著降低了红砂幼苗地上生物量,特别是叶片生物量下降幅度最大,分别降低了62.15%、83.28%,导致根冠比随灌溉量的减少而逐渐增加。(4)干旱处理显著提高了红砂幼苗的水分利用效率。研究认为,在灌溉量减少的情况下,红砂幼苗可通过根长、根系表面积和体积、直径等形态变化来优化其空间分布构型,以调节植株对水分的利用,提高水分利用效率。 相似文献
16.
Aurélie Vocanson Jean Roger-Estrade Hubert Boizard Marie-Hélène Jeuffroy 《Plant and Soil》2006,281(1-2):121-135
Spring peas are known to be very sensitive to compaction, particularly when sowing takes place soon after winter. Winter peas,
which are sown in autumn, should present an opportunity to sow the crop in better soil structural conditions than for spring
peas, because of more favourable moisture conditions at that time. As environmental conditions have a big influence on root
systems, it is important to determine the effects of soil structure on pea root systems for different cultivars and sowing
dates. A spring pea cultivar and a winter pea cultivar were both sown at two dates (one in autumn and one in spring) on soils
with different plough-layer structures (compacted and uncompacted) at two sites in 2002 and one site in 2003. Soil structure
was characterised by bulk density and the percentage of highly compacted zones in the ploughed layer. Root distribution maps
were produced every month, from February to maturity. Root development was described in terms of general root dynamics, root
elongation rate (RER) in the subsoil, final maximum root depth (Dmax) and root distribution at maturity. Root depth dynamics
depended on compaction and its interaction with climatic conditions. The effects of compaction on RER in the subsoil depended
on the experimental conditions. Dmax was reduced by 0.10 m by compaction. Compaction also reduced root distribution between
10 and 40% in the ploughed layer only. Pea cultivars differed in sensitivity to soil compaction, with a direct effect on the
final depth explored by roots. These results are discussed in terms of their relevance to water and nutrient uptake. 相似文献
17.
Water flow and water storage in Agave deserti: osmotic implications of crassulacean acid metabolism 总被引:5,自引:4,他引:1
Abstract Water flow and water storage were investigated for Agave deserti, a desert succulent showing crassulacean acid metabolism (CAM). The anatomy and water relations of the peripheral chlorenchyma, where CAM occurs, and the central water-storage parenchyma were investigated for its massive leaves so that these tissues could be incorporated as discrete elements into an electrical-circuit analogue of the whole plant. The daily cycling of osmotic pressure was represented by voltage sources in series with the storage capacitors. With soil water potential and leaf transpiration rate as input variables, axial water flow through the vascular bundles and radial flows into and out of storage during the day/night cycle were determined. The predominantly nocturnal transpiration was coincident with increases in cell osmotic pressure and in titratable acid of the leaf chlorenchyma. In the outer layers of the chlorenchyma, water potential was most negative at the beginning of the night when transpiration was maximum, while the water-storage parenchyma reached its minimal water potential 9 h later. The roots plus stem contributed 7% and the leaves contributed 50% to the total water flow during maximal transpiration; peak water flow from the soil to the roots occurred at dawn and was only 58% of the maximal transpiration rate. Over each 24-h period, 39% of the water lost from the plant was derived from storage, with flow into storage occurring mainly during the daytime. Simulations showed that the acid accumulation rhythm of CAM had little impact on water uptake from the soil under the conditions employed. In the outer chlorenchyma, water potential and water flows were more sensitive to the day/night changes in transpiration than in osmotic pressure. Nevertheless, cell osmotic pressure had a large influence on turgor pressure in this tissue and determined the extent to which storage was recharged during the latter part of the night. 相似文献
18.
High-Temperature Preconditioning and Thermal Shock Imposition Affects Water Relations,Gas Exchange and Root Hydraulic Conductivity in Tomato 总被引:4,自引:0,他引:4
D. Morales P. Rodríguez J. Dell'Amico E. Nicolás A. Torrecillas M.J. Sánchez-Blanco 《Biologia Plantarum》2003,47(2):203-208
Potted tomato plants (Lycopersicon esculentum Mill. cv. Amalia) were submitted to three different treatments: control (C) plants were maintained at day/night temperature
of 25/18 °C; preconditioned plants (PS) were submitted to two consecutive periods of 4 d each, of 30/23 and 35/28 °C before
being exposed to a heat stress (40/33 °C lasting 4 d) and non-preconditioned (S) plants were maintained in the same conditions
as the C plants and exposed to the heat stress. The inhibition of plant growth was observed only in PS plants. Heat stress
decreased chlorophyll content, net photosynthetic rate and stomatal conductance in both PS and S plants. However, PS plants
showed good osmotic adjustment, which enabled them to maintain leaf pressure potential higher than in S plants. Furthermore,
at the end of the recovery period PS plants had higher pressure potential and stomatal conductance than in S plants.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
19.
玉米根、叶质膜透性和叶片水分对土壤干旱胁迫的反应 总被引:19,自引:7,他引:19
利用大型活动式防雨旱棚 ,人工控制不同土壤含水量 ,全生育期系统研究了轻度及严重土壤干旱胁迫对夏玉米根系活力、叶片相对含水量、离体叶片保水力和根、叶质膜透性的影响 .结果表明 :土壤干旱胁迫下 ,玉米叶片相对含水量下降、离体叶片保水力降低 ;叶片及根系质膜透性上升 ,并且根的质膜透性比叶片上升快 ,根系活力下降 ;在干旱胁迫下 ,根系、叶片质膜透性与叶片相对含水量呈负相关 ,而根系、叶片质膜透性与离体叶片保水力呈显著正相关 ,根系膜透性与叶片膜透性也呈显著正相关 ,维持根系活力与保持较高的叶片含水量有密切关系 .另外 ,由于严重水分胁迫处理的上述特性和充分供水处理差异显著 ,而轻度胁迫和充分供水不显著 ,因此可以认为轻度水分胁迫 ,即土壤含水量为田间持水量的 6 0± 5 %为夏玉米正常生长发育的下限指标 ,可作为制定节水栽培措施的理论依据 . 相似文献
20.
3种禾草苗期生长和水分利用对土壤水分变化的反应 总被引:2,自引:0,他引:2
采用5种不同的水分处理,于室内生长箱内盆栽条件下对引种禾草柳枝稷(Panicum virgatum)、乡土禾草白羊草(Bothriochloa ischaemum)和栽培禾草谷子(Setaria italica)等苗期根冠生长和水分利用特征进行了比较分析.结果显示:(1)充分供水下3种禾草的苗期生物量和蒸腾效率均显著高于其它4种水分处理,而高水与低水处理下各自的根冠比无显著差异;(2)各水分处理下谷子苗期总生物量、蒸腾效率和耗水量均显著大于白羊草和柳枝稷;(3)在5种水分处理下,苗期根冠比谷子均最小,柳枝稷最大;(4)低降复水后,3种禾草生物量和蒸腾效率较低水处理分别显著提高16.7%-98.7%和28.2%-118.2%,显示出补偿效应,以白羊草增幅最大.结果表明,白羊草、谷子和柳枝稷在不同土壤水分处理下的苗期生物量、根冠分配比例以及水分利用效率差异反映了野生种、栽培种和引进种禾草苗期对半干旱环境条件水分生态适应性的异同. 相似文献