首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Seminars in Virology》1994,5(6):431-442
Expression of the adenovirus E1A protein induces susceptibility to TNF. To counteract this effect, the adenovirus encodes a number of gene products that preserve host cell resistance to TNF. The E1B-19K protein, the E3 14.7 K protein, and the E3 10.4/14.5 K dimer each function in different cell types to provide resistance to TNF. Expression of E1A also results in the activation of PLA2 and the release of arachidonic acid from the dying cell. The E3 14.7 K protein can prevent the activation of PLA2, suggesting that in addition to providing host cell resistance to TNF, this protein also functions in an anti-inflammatory manner.  相似文献   

2.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus infections. The ability of adenovirus to inhibit killing through these receptors may prolong acute and persistent infections.  相似文献   

3.
We have previously described a 14,700 m.w. protein (14.7K) encoded by the E3 region of adenovirus that prevents TNF-mediated cytolysis of adenovirus-infected C3HA mouse fibroblasts. In the studies described here we have extended our analysis of TNF cytolysis of C3HA cells and the circumstances under which 14.7K protects these cells from cytolysis. C3HA cells were killed by TNF in the presence of inhibitors of protein synthesis, in the presence of cytochalasin E (which disrupts the microfilaments), and when adenovirus E1A was expressed. As described for other cell types, pretreatment of C3HA cells with TNF prevented cytolysis by TNF plus cycloheximide or TNF plus cytochalasin E, indicating that TNF induces a response that protects against these treatments. Remarkably, when 14.7K was expressed in virus-infected cells, it also prevented TNF-induced lysis whether sensitivity to TNF was induced by inhibition of protein synthesis, disruption of the cytoskeleton by cytochalasin E, or expression of adenovirus E1A. The 14.7K protein also prevented TNF lysis of cells that are spontaneously sensitive to TNF lysis. Thus, 14.7K appears to be a general inhibitor of TNF cytolysis, and as such should be an important tool in unraveling the mechanism of TNF cytolysis. There was one exception; NCTC-929 cells were spontaneously sensitive to TNF lysis and that lysis was not affected by 14.7K even though the protein was made in large quantities and was metabolically stable in these cells. This suggests that there is heterogeneity among TNF-sensitive cell lines. The 14.7K protein was found in both the nuclear and cytosol fractions of TNF resistant as well as all spontaneously sensitive cells suggesting that 14.7K may have more than one site of action within the cell.  相似文献   

4.
We have reported that the E3 14,700-dalton protein (E3 14.7K protein) protects adenovirus-infected mouse C3HA fibroblasts against lysis by tumor necrosis factor (TNF) (L. R. Gooding, L. W. Elmore, A. E. Tollefson, H. A. Brady, and W. S. M. Wold, Cell 53:341-346, 1988). We have also observed that the E1B 19K protein protects adenovirus-infected human but not mouse cells against TNF lysis (L. R. Gooding, L. Aquino, P. J. Duerksen-Hughes, D. Day, T. M. Horton, S. Yei, and W. S. M. Wold, J. Virol. 65:3083-3094, 1991). We now report that, in the absence of E3 14.7K, the E3 10.4K and E3 14.5K proteins are both required to protect C127 as well as several other mouse cell lines against TNF lysis. The 14.7K protein can also protect these cells from TNF in the absence of the 10.4K and 14.5K proteins. This protection by the 10.4K and 14.5K proteins was not observed in the C3HA cell line. These conclusions are based on 51Cr release assays of cells infected with virus E3 mutants that express the 14.7K protein alone, that express both the 10.4K and 14.5K proteins, and that delete the 14.7K in combination with either the 10.4K or 14.5K protein. The 10.4K protein was efficiently coimmunoprecipitated together with the 14.5K protein by using an antiserum to the 14.5K protein, suggesting that the 10.4K and 14.5K proteins exist as a complex in the infected mouse cells and consistent with the notion that they function in concert. Considering that three sets of proteins (E3 14.7K, E1B 19K, and E3 10.4K/14.5K proteins) exist in adenovirus to prevent TNF cytolysis of different cell types, it would appear that TNF is a major antiadenovirus defense of the host.  相似文献   

5.
Cytotoxic T cells use Fas (CD95), a member of the tumor necrosis factor (TNF) receptor superfamily, to eliminate virus-infected cells by activation of the apoptotic pathway for cell death. The adenovirus E3 region encodes several proteins that modify immune defenses, including TNF-dependent cell death, which may allow this virus to establish a persistent infection. Here we show that, as an early event during infection, the adenovirus E3-10.4K/14.5K complex selectively induces loss of Fas surface expression and blocks Fas-induced apoptosis of virus-infected cells. Loss of surface Fas occurs within the first 4 h postinfection and is not due to decreased production of Fas protein. The decrease in surface Fas is distinct from the 10.4K/14.5K-mediated loss of the epidermal growth factor receptor on the same cells, because intracellular stores of Fas are not affected. Further, 10.4K/14.5K, which was previously shown to protect against TNF cytolysis, does not induce a loss of TNF receptor, indicating that this complex mediates more than one function to block host defense mechanisms. These results suggest yet another mechanism by which adenovirus modulates host cytotoxic responses that may contribute to persistent infection by human adenoviruses.  相似文献   

6.
E3-6.7K is a small and hydrophobic membrane glycoprotein encoded by the E3 region of subgroup C adenovirus. Recently, E3-6.7K has been shown to be required for the downregulation of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors by the adenovirus E3/10.4K and E3/14.5K complex of proteins. We demonstrate here that E3-6.7K has additional protective roles, independent of other virus proteins. In transfected Jurkat T-cell lymphoma cells, E3-6.7K was found to maintain endoplasmic reticulum-Ca(2+) homeostasis and inhibit the induction of apoptosis by thapsigargin. The presence of E3-6.7K also lead to a reduction in the TNF-induced release of arachidonic acid from transfected U937 human histiocytic lymphoma cells. In addition, E3-6.7K protected cells against apoptosis induced through Fas, TNF receptor, and TRAIL receptors. Therefore, E3-6.7K confers a wide range of protective effects against both Ca(2+) flux-induced and death receptor-mediated apoptosis.  相似文献   

7.
8.
We previously reported that the adenovirus type 5 E3 14.5-kilodalton protein (14.5K) forms a complex with E3 10.4K and that both proteins are required to down-regulate the epidermal growth factor receptor in adenovirus-infected human cells. Both proteins are also required to prevent cytolysis by tumor necrosis factor of most mouse cell lines infected by adenovirus mutants that lack E3 14.7K. The E3 14.5K amino acid sequence suggests that 14.5K is an integral membrane protein with an N-terminal signal sequence for membrane insertion. Here we show that 14.5K was found exclusively in cytoplasmic membrane fractions. Radiochemical sequencing of 14.5K indicated that the N-terminal signal sequence is cleaved predominantly between Cys-18 and Ser-19. With a mutant that does not express 10.4K, cleavage occurs predominantly between Phe-17 and Cys-18, indicating that the presence or absence of 10.4K affects the signal cleavage site. 14.5K was extracted into the detergent phase with Triton X-114, it remained associated with membranes after extraction with Na2CO3 at pH 11.5, and it was partially protected by membranes from proteinase K digestion; these observations indicate that 14.5K is an integral membrane protein. Proteinase K digestion followed by immunoprecipitation with antipeptide antisera directed against the N or C terminus of mature 14.5K indicated that 14.5K is oriented in the membrane with its N terminus in the lumen and its C terminus in the cytoplasm. Thus, 14.5K is a type I bitopic membrane protein. Previous studies indicated that 10.4K is also an integral membrane protein oriented with its C terminus in the cytoplasm. Altogether, these findings suggest that cytoplasmic membranes are the site of action when 10.4K and 14.5K down-regulate the epidermal growth factor receptor and prevent tumor necrosis factor cytolysis.  相似文献   

9.
A 14,700-kDa protein (14.7K) encoded by the E3 region of adenovirus has been shown to protect adenovirus-infected mouse C3HA cells from lysis by tumor necrosis factor (TNF) (L. R. Gooding, L. W. Elmore, A. E. Tollefson, H. A. Brady, and W. S. M. Wold, Cell 53:341-346, 1988). These infected cells are sensitized to TNF by expression of the adenovirus E1A proteins (P. Duerksen-Hughes, W. S. M. Wold, and L. R. Gooding, J. Immunol. 143:4193-4200, 1989). In this study we show that 14.7K suppresses TNF cytolysis independently of adenovirus infection. Mouse C3HA and C127 cells were transfected with the 14.7K gene controlled by the mouse metallothionein promoter, and permanent 14.7K-expressing cell lines were tested for sensitivity to TNF cytolysis. Transfected cells which were sensitized to TNF either by inhibitors of protein synthesis, microfilament-destabilizing agents, or adenovirus infection were found to be resistant to TNF cytolysis. Two monoclonal antibodies were isolated and used to quantitate 14.7K in transfected and infected cells. Enzyme-linked immunosorbent assay (ELISA) analysis with these monoclonal antibodies and 14.7K immunoblots showed that 14.7K expression can be induced with cadmium in C3HA and C127 transfectants. The 14.7K induction correlated with a dose-dependent decrease in sensitivity to TNF cytotoxicity. The 14.7K protein does not substantially alter cell surface TNF receptor numbers or affinity on C3HA mouse fibroblasts, as determined by Scatchard analysis of 125I-TNF binding. The 14.7K protein also does not alter TNF signal transduction in general, because TNF induction of cell surface class I major histocompatibility complex molecules on 14.7K transfectants was unmodified. Our findings indicate that the adenovirus 14.7K protein functions as a specific inhibitor of TNF cytolysis in the absence of other adenovirus proteins and thus is a unique tool to study the mechanism of TNF cytotoxicity.  相似文献   

10.
11.
12.
The 14,700-Da protein (14.7K protein) encoded by the E3 region of adenovirus has previously been shown to protect mouse cells from cytolysis by tumor necrosis factor (TNF). Delineating the sequences in the 14.7K protein that are required for this activity may provide insight into the mechanism of protection from TNF by 14.7K as well as the mechanism of TNF cytolysis. In the present study, we examined the ability of 14.7K mutants to protect cells from lysis by TNF. In-frame deletions as well as Cys-to-Ser mutations in the 14.7K gene were generated by site-directed mutagenesis and then built into the genome of a modified adenovirus type 5 (dl7001) that lacks all E3 genes. dl7001, which replicates to the same titers as does adenovirus type 5 in cultured cells, has the largest E3 deletion analyzed to date. 51Cr release was used to assay TNF cytolysis. Our results indicate that most mutations in the 14.7K gene result in a loss of function, suggesting that nearly the entire protein rather than a specific domain functions to prevent TNF cytolysis.  相似文献   

13.
A 14.7-kilodalton protein (14.7K protein) encoded by the E3 region of group C adenoviruses has been shown to protect virus-infected fibroblasts from lysis by tumor necrosis factor (TNF) (L.R. Gooding, L.W. Elmore, A.E. Tollefson, H.A. Brady, and W.S.M. Wold, Cell 53:341-346, 1988). In this study we show that adenoviruses of other groups are also protected from TNF-induced cytolysis. Representative serotypes of groups A, B, D, and E produce a protein analogous to the 14.7K protein found in human group C adenoviruses. Deletion of this protein in group C viruses permits virus infection to induce cellular susceptibility to TNF killing. As with group C adenoviruses, cells infected with wild-type adenoviruses of other serotypes are not killed by TNF and are protected from lysis induced by TNF plus cycloheximide. However, cells are susceptible to TNF-induced lysis when infected with adenovirus type 4 mutants from which the 14.7K gene has been deleted. Although all known adenovirus serotypes infect epithelial cells, adenoviruses cause several diseases with various degrees of pathogenesis. Our findings suggest that the 14.7K protein provides a function required for the in vivo cytotoxicity of many adenoviruses independent of the site of infection or degree of pathogenesis.  相似文献   

14.
The adenovirus type 2 and 5 E3 10,400- and 14,500-molecular-weight (10.4K and 14.5K) proteins are both required to protect some cell lines from lysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor. We have shown previously that both 10.4K and 14.5K are integral membrane proteins and that 14.5K is phosphorylated and O glycosylated. The 10.4K protein coimmunoprecipitates with 14.5K, indicating that the two proteins function as a complex. Here we show, using immunofluorescence and two different cell surface-labeling techniques, that both proteins are localized in the plasma membrane. In addition, we show that trafficking of each protein to the plasma membrane depends on concomitant expression of the other protein. Finally, neither protein could be immunoprecipitated from conditioned media, indicating that neither is secreted. Taken together, these results suggest that the plasma membrane is the site at which 10.4K and 14.5K function to inhibit cytolysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor.  相似文献   

15.
16.
17.
Y Li  J Kang    M S Horwitz 《Journal of virology》1997,71(2):1576-1582
The adenovirus (Ad) 14.7-kDa E3 protein (E3-14.7K), which can inhibit tumor necrosis factor alpha (TNF-alpha) cytolysis, was used to screen HeLa cell cDNA libraries for interacting proteins in the yeast two-hybrid system. A new member of the low-molecular-weight (LMW) GTP-binding protein family with Ras and ADP-ribosylation factor homology was discovered by this selection and has been named FIP-1 (14.7K-interacting protein). FIP-1 colocalized with Ad E3-14.7K in the cytoplasm especially near the nuclear membrane and in discrete foci on or near the plasma membrane. Its interaction with E3-14.7K was dependent on the FIP-1 GTP-binding domain. The stable expression of FIP-1 antisense message partially protected the cells from TNF-alpha cytolysis. FIP-1 was associated transiently with several unknown phosphorylated cellular proteins within 15 min after treatment with TNF-alpha. FIP-1 mRNA was expressed ubiquitously but at higher levels in human skeletal muscle, heart, and brain. In addition to homology to other LMW GTP-binding proteins, FIP-1 has regions of homology to two prokaryotic metalloproteases. However, there was no homology between FIP-1 and any of the recently isolated death proteins in the TNF-alpha or Fas/APO1 cytolytic pathway and no interaction with several members of the Bcl-2 family of inhibitors of apoptosis. These data suggest that FIP-1, as a cellular target for Ad E3-14.7K, is either a new intermediate on a previously described pathway or part of a novel TNF-alpha-induced cell death pathway. FIP-1 has two consensus sequences for myristoylation which would be expected to facilitate membrane association and also has sequences for Ser/Thr as well as Tyr phosphorylation that could affect its function.  相似文献   

18.
Escape from the host immune system is essential for intracellular pathogens. The adenoviral protein E3-14.7K (14.7K) is known as a general inhibitor of tumor necrosis factor (TNF)-induced apoptosis. It efficiently blocks TNF-receptor 1 (TNFR1) internalization but the underlying molecular mechanism still remains elusive. Direct interaction of 14.7K and/or associated proteins with the TNFR1 complex has been discussed although to date not proven. In our study, we provide for the first time evidence for recruitment of 14.7K and the 14.7K interacting protein optineurin to TNFR1. Various functions have been implicated for optineurin such as regulation of receptor endocytosis, vesicle trafficking, regulation of the nuclear factor κB (NF-κB) pathway and antiviral signaling. We therefore hypothesized that binding of optineurin to 14.7K and recruitment of both proteins to the TNFR1 complex is essential for protection against TNF-induced cytotoxic effects. To precisely dissect the individual role of 14.7K and optineurin, we generated and characterized a 14.7K mutant that does not confer TNF-resistance but is still able to interact with optineurin. In H1299 and KB cells expressing 14.7K wild-type protein, neither decrease in cell viability nor cleavage of caspases was observed upon stimulation with TNF. In sharp contrast, cells expressing the non-protective mutant of 14.7K displayed reduced viability and cleavage of initiator and effector caspases upon TNF treatment, indicating ongoing apoptotic cell death. Knockdown of optineurin in 14.7K expressing cells did not alter the protective effect as measured by cell viability and caspase activation. Taken together, we conclude that optineurin despite its substantial role in vesicular trafficking, endocytosis of cell surface receptors and recruitment to the TNFR1 complex is dispensable for the 14.7K-mediated protection against TNF-induced apoptosis.  相似文献   

19.
Phospholipases generate important secondary messengers in several cellular processes, including cell death. Tumor necrosis factor (TNF) can induce two distinct modes of cell death, viz. necrosis and apoptosis. Here we demonstrate that phospholipase D (PLD) and cytosolic phospholipase A2 (cPLA2) are differentially activated during TNF-induced necrosis or apoptosis. Moreover, a comparative study using TNF and anti-Fas antibodies as cell death stimuli showed that PLD and cPLA2 are specifically activated by TNF. These results indicate that both the mode of cell death and the type of death stimulus determine the potential role of phospholipases as generators of secondary messengers. J. Cell. Biochem. 71:392–399, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily of cytokines that induces apoptosis in a variety of cancer cells, but not in normal cells. However, more and more tumor cells remain resistant to TRAIL, which limited its application for cancer therapy. Expression of the adenovirus serotype 5 (Ad5) E1A sensitizes tumor cells to apoptosis by TNF-alpha, Fas-ligand, and TRAIL. Here we asked whether E1A overcomes this resistance and enhances TRAIL-induced apoptosis in the tumor cells. Our results revealed that the tumor cell lines, HeLa and HepG2, with infection by Ad-E1A, were highly sensitive to TRAIL-induced apoptosis. Importantly, we found that in normal primary human lung fibroblast cells (HLF) TRAIL is capable of inducing apoptosis in combination with E1A as efficiently as in some tumor cell lines. The adenovirus type 5 encoding proteins, E1B19K and E3 gene products, have been shown to inhibit E1A and TRAIL-induced apoptosis of HLF cells by using the recombinant adenovirus AdDeltaE1B55K, with mutation of E1B55K, containing E1B19K and complete E3 region. Further results demonstrated that the expression of DR5 and TRAIL was down-regulated in the AdDeltaE1B55K co-infected HLF cells. These findings suggest that TRAIL may play an important role in limiting virus infections and the ability of adenovirus to inhibit killing may prolong acute and persistent infections. The results from this study have also suggested the possibility that the combination of E1A with TRAIL could be used in the treatment of human malignancy, or in the selection of the optimal adenovirus mutant as effective delivering vector for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号