首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of spontaneous circling motor activity on the in vitro phosphorylation of the protein kinase C substrate GAP-43/B-50 was studied on striatal membranes of developing rats (30 days of age). At this time of postnatal development, permanent plastic changes in cholinergic and dopaminergic systems are produced by physiological motor activity. Exercised animals showed a significant reduction of 31% in the level of GAP-43/B-50 endogenous phosphorylation in the contralateral striatum respect to the ipsilateral side (P < 0.01), while control animals did not show asymmetric differences. Compared to controls, the contralateral striatum of exercised animals showed a 33% reduction in the incorporation of 32P-phosphate into GAP-43/B-50 30 minutes post-exercise (P < 0.01). This change in GAP-43/B-50 phosphorylation was correlated with the running speed developed by the animals (r:0.8986, P = 0.015). GAP-43/B-50 immunoblots revealed no changes in the amount of this protein in any group. Moreover, a significant variation of 25% (P < 0.05) in the PKC activity was seen between both exercised striata. Interhemispheric differences were not found in control animals. We conclude that endogenous phosphorylation of this protein is also altered by motor activity in the same period that permanent changes in striatal neuroreceptors are triggered after motor training.  相似文献   

2.
GAP-43 protein of nerve terminals (B-50, F1, F57, pp46, neuromodulin) is thought to be one of key proteins involved in the control of outgrowth of neurites, release of neuromediators, synapse plasticity, etc. GAP-43 is usually considered as a whole protein. Along with the intact protein, nerve cells also contain two large native fragments of GAP-43 deprived of four or of about forty N-terminal amino acid residues (GAP-43-2 and GAP-43-3, respectively). The full-length GAP-43 is predominant in the mature brain. However, the ratio of the full-length protein and its fragments can vary under different physiological conditions. Changes in the GAP-43 proteins (the full-length protein and its fragments) were studied during embryonal and postnatal development of rat brain. The GAP-43 proteins were found to be expressed not later than on the 12-13th day of embryogenesis. Then their contents increased, and, until the 10th day after birth, GAP-43-3 dominated rather than the full-length protein. It is suggested that during this period the activity of a specific protease, which cleaves the N-terminal peptide of about 40 residues from the full-length GAP-43 molecule, is increased. The cleavage occurs in the region responsible for the interaction of GAP-43 with calmodulin. In the full-length molecule, this region is responsible also for the recognition of Ser41 residue by protein kinase C during phosphorylation. Another functionally important region that determines, in particular, the attachment of GAP-43 to the plasma membrane is cleaved from the main part of the molecule together with the N-terminal peptide. Thus, the specific fragmentation of GAP-43 that depends on developmental stage should be considered as a controlled structural rearrangement fundamentally affecting the functions of this protein.  相似文献   

3.
Selective conservation of GAP-43 structure in vertebrate evolution   总被引:7,自引:0,他引:7  
M E LaBate  J H Skene 《Neuron》1989,3(3):299-310
GAP-43 (a.k.a. B-50, F1, pp46, or neuromodulin) is a major growth cone membrane protein whose expression is widely correlated with successful axon elongation, but whose function remains unknown. To distinguish the structural features of GAP-43 most relevant to its cellular functions, we have determined features of the protein that are most highly conserved in vertebrate evolution. Comparison of fish and mammalian GAP-43 distinguishes two domains of the protein. A strictly conserved amino-terminal domain contains the putative site for fatty acylation and membrane attachment, a calmodulin binding domain, and a proposed phosphorylation site. In the much larger carboxy-terminal domain, amino acid composition is strongly conserved without extensive sequence conservation. This amino acid composition predicts an extended, negatively charged rod conformation with some similarity to the side arms of neurofilaments. The results suggest that the biological roles of GAP-43 may depend on an ability to form a dynamic membrane-cytoskeleton-calmodulin complex.  相似文献   

4.
The 43-kD growth-associated protein (GAP-43) is a major protein kinase C (PKC) substrate of axonal growth cones, developing nerve terminals, regenerating axons, and adult central nervous system areas associated with plasticity. It is a cytosolic protein associated with the cortical cytoskeleton and the plasmalemma. Membrane association of GAP-43 is mediated by palmitoylation at Cys3Cys4. In vitro and in vivo, phosphorylation by PKC exclusively involves Ser41 of mammalian GAP-43 (corresponding to Ser42 in the chick protein). To identify aspects of GAP-43 function, we analyzed the actions of wild-type, membrane- association, and phosphorylation-site mutants of GAP-43 in nonneuronal cell lines. The GAP-43 constructs were introduced in L6 and COS-7 cells by transient transfection. Like the endogenous protein in neurons and their growth cones, GAP-43 in nonneuronal cells associated with the cell periphery. GAP-43 accumulated in the pseudopods of spreading cells and appeared to interact with cortical actin-containing filaments. Spreading L6 cells expressing high levels of recombinant protein displayed a characteristic F-actin labeling pattern consisting of prominent radial arrays of peripheral actin filaments. GAP-43 had dramatic effects on local surface morphology. Characteristic features of GAP-43-expressing cells were irregular cell outlines with prominent and numerous filopodia. The effects of GAP-43 on cell morphology required association with the cell membrane, since GAP-43(Ala3Ala4), a mutant that failed to associate with the cell cortex, had no morphogenetic activity. Two GAP-43 phosphorylation mutants (Ser42 to Ala42 preventing and Ser42 to Asp42 mimicking phosphorylation by PKC) modulated the effects of GAP-43 in opposite ways. Cells expressing GAP- 43(Asp42) spread extensively and displayed large and irregular membranous extensions with little filopodia, whereas GAP-43(Ala42) produced small, poorly spreading cells with numerous short filopodia. Therefore, GAP-43 influences cell surface behavior and phosphorylation modulates its activity. The presence of GAP-43 in growing axons and developing nerve termini may affect the behavior of their actin- containing cortical cytoskeleton in a regulatable manner.  相似文献   

5.
In vivo, kinase C phosphorylation of the growth-associated protein GAP-43 is spatially and temproally associated with the proximity of growing axons to their targets. Here we have used dissociated dorsal root ganglia (DRG)s and an antibody specific for the phosphorylated form of GAP-43 to demonstrate that neurite regeneration in culture also begins in the absence of detectable levels of phosphorylated GAP-43. Since the β isoform of kinase C was found to be enriched in growth cones before stably phosphorylated GAP-43 was detected, it may normally be inactive during initial neurite outgrowth; however, premature phosphorylation of GAP-43 could be stimulated in newly dissociated DRGs by plating them on cultures in which phosphorylation had already been initiated; media conditioned by such cultures caused no response suggesting an effect of either cell-cell or cell-substrate contact. Increased GAP-43 phosphorylation correlated with a reduced extent of neurite outgrowth but not with the rate at which individual growth cones translocated so that motile growth cones contained very low levels of phosphorylated GAP-43, whereas stationary growth cones showed much more immunoreactivity. Downregulation of kinase C by phorbol ester prevented increased GAP-43 phosphorylation and led to growth cone collapse. Finally, phosphorylated GAP-43 was found to be differently distributed within growth cones. Increased immunoreactivity was frequently observed in the neck of the growth cone and was heterogeneously distributed in lamellae and filopodia. These results, which demonstrate the dynamic regulation of GAP-43 phosphorylation in individual growth cones, are discussed with reference to the association between changes in growth cone shape and the ability to translocate and change direction. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
We have identified the chicken equivalent of growth-associated protein GAP-43 in a detergent-resistant membrane skeleton from cultures of chick neurones and embryonic chick brain. Antisera to the membrane skeleton protein, the 3D5 antigen, precipitate the translation product of chick GAP-43 cDNA, and the 3D5 antigen is also detected by antisera against synthetic peptides from the known amino acid sequence of rat GAP-43. The chick protein and the rat GAP-43 are biochemically similar proteins that both serve as major targets of phosphorylation by endogenous protein kinase C. The detergent-resistant complex in which GAP-43 is found also contains actin (approximately 5% of the total protein) and a neurone-specific cell surface glycoprotein. We suggest that the membrane skeleton of neurones may be a primary site of action of GAP-43.  相似文献   

7.
Abstract: B-50 (GAP-43) is a presynaptic protein kinase C (PKC) substrate implicated in the molecular mechanism of noradrenaline release. To evaluate the importance of the PKC phosphorylation site and calmodulin-binding domain of B-50 in the regulation of neurotransmitter release, we introduced two monoclonal antibodies to B-50 into streptolysin O-permeated synaptosomes isolated from rat cerebral cortex. NM2 antibodies directed to the N-terminal residues 39–43 of rat B-50 dose-dependently inhibited Ca2+-induced radiolabeled and endogenous noradrenaline release from permeated synaptosomes. NM6 C-terminal-directed (residues 132–213) anti-B-50 antibodies were without effect in the same dose range. NM2 inhibited PKC-mediated B-50 phosphorylation at Ser41 in synaptosomal plasma membranes and permeated synaptosomes, inhibited 32P-B-50 dephosphorylation by endogenous synaptosomal phosphatases, and inhibited the binding of calmodulin to synaptosomal B-50 in the absence of Ca2+. Similar concentrations of NM6 did not affect B-50 phosphorylation or dephosphorylation or B-50/calmodulin binding. We conclude that the N-terminal residues 39–43 of the rat B-50 protein play an important role in the process of Ca2+-induced noradrenaline release, presumably by serving as a local calmodulin store that is regulated in a Ca2+- and phosphorylation-dependent fashion.  相似文献   

8.
The protein B-50 (F1, GAP-43) is a presynaptic-specific substrate of protein kinase C, functionally related to neurotransmitter release. An increase in phosphorylation of this protein has been proposed as a molecular mechanism underlying long-term potentiation (LTP). B-50 phosphorylation measured by quantitative immunoprecipitation in rat hippocampal slices incubated in the presence of radiolabeled inorganic phosphate was increased for at least 1 hr after the induction of LTP in the CA1 region. No significant changes in B-50 phosphorylation were observed in untetanized slices stimulated at low frequency. The direct demonstration of an increased phosphorylation of the protein B-50 during LTP is consistent with the hypothesis that presynaptic mechanisms contribute to maintenance of LTP.  相似文献   

9.
Activation of protein kinase C (PKC) is one of the biochemical pathways thought to be activated during activity-dependent synaptic plasticity in the brain, and long-term potentiation (LTP) and long-term depression (LTD) are two of the most extensively studied models of synaptic plasticity. Here we have examined changes in the in situ phosphorylation level of two major PKC substrates, myristoylated alanine-rich C kinase substrate (MARCKS) and growth-associated protein (GAP)-43/B-50, after pharmacological stimulation or induction of LTP or LTD in the CA1 field of the hippocampus. We find that direct PKC activation with phorbol esters, K+-induced depolarization, and activation of metabotropic glutamate receptors increase the in situ phosphorylation of both MARCKS and GAP-43/B-50. The induction of LTP increased the in situ phosphorylation of both MARCKS and GAP-43/B-50 at 10 min following high-frequency stimulation, but only GAP-43/B-50 phosphorylation remained elevated 60 min after LTP induction. Furthermore, blockade of LTP induction with the NMDA receptor antagonist D-2-amino-5-phosphonopentanoic acid prevented elevations in GAP-43/B-50 phosphorylation but did not prevent the elevation in MARCKS phosphorylation 10 min following LTP induction. The induction of LTD resulted in a reduction in GAP-43/B-50 phosphorylation but did not affect MARCKS phosphorylation. Together these findings show that activity-dependent synaptic plasticity elicits PKC-mediated phosphorylation of substrate proteins in a highly selective and coordinated manner and demonstrate the compartmentalization of PKC-substrate interactions. Key Words: Protein kinase C-Myristoylated alanine-rich C kinase substrate-Growth-associated protein-43-Long-term potentiation-Long-term depression-(RS)-alpha-Methyl-4-carboxyphenylglycine-D-2-Amino-5-ph osphonopentanoic acid-Glutamate.  相似文献   

10.
Abstract: The neuronal protein GAP-43 is concentrated at the growth cone membrane, where it is thought to amplify the signal transduction process. As a model for its neuronal effects, GAP-43 protein injection into Xenopus laevis oocytes strongly augments the calcium-sensitive chloride current evoked by the G protein-coupled receptor stimulation. We have now examined a series of GAP-43 mutants in this system and determined those regions of GAP-43 required for this increase in current flux. As expected, palmitoylation inhibits signal amplification in oocytes by blocking G protein activation. Unexpectedly, a second domain of GAP-43 (residues 35–50) containing a protein kinase C phosphorylation site at residue 41 is also necessary for augmentation of G protein-coupled signals in oocytes. This region is not required for activation of isolated Go but is necessary for GAP-43 binding to isolated calmodulin and to isolated protein kinase C. Substitution of Asp for Ser41 inactivates GAP-43 as a signal facilitator in oocytes. This mutation blocks GAP-43 binding to both protein kinase C and calmodulin. Thus, GAP-43 regulates an oocyte signaling cascade via coordinated, simultaneous G protein activation and interaction with either calmodulin or protein kinase C.  相似文献   

11.
To study the role of kinase C phosphorylation in the distribution and function of GAP-43 we have generated a panel of mAbs that distinguish between GAP-43 that has been phosphorylated by kinase C and forms that have not. One class of antibodies, typified by 2G12/C7, reacts with only the phosphorylated form of GAP-43; it recognizes the peptide IQAS(PO4)FR equivalent to residues 38-43 that includes the single kinase C phosphorylation site at serine. Another, exemplified by 10E8/E7, reacts with both phosphorylated and nonphosphorylated forms. We have used the antibodies to study the distribution of kinase C-phosphorylated GAP-43 during axonogenesis and in the adult nervous system. Two major findings emerge. First, there is a lag between the initiation of axon outgrowth and the phosphorylation of GAP-43 by kinase C. The extent of this lag period varies between the different structures studied. In some cases, e.g., the trigeminal nerve, our result suggest that kinase C phosphorylation may be correlated with proximity of the growing axon to its target. Second, kinase C-phosphorylated GAP-43 is always spatially restricted to the distal axon. It is never seen either proximally or in cell bodies, even those with high levels of GAP-43 protein. This result also implies that GAP-43 is axonally transported in the non-kinase C phosphorylated form. Thus, kinase C phosphorylation of GAP-43 is not required for axon outgrowth or growth cone function per se and may be more related to interactions of the growth cone with its environment.  相似文献   

12.
13.
Molecular Properties of the Growth-Associated Protein GAP-43 (B-50)   总被引:5,自引:3,他引:2  
The protein that has been identified in different contexts as growth-associated protein (GAP)-43, GAP-48, protein 4, B-50, F-1 gamma 5, and pp46, has been implicated in neural development, axonal regeneration, and the modulation of synaptic function. The present study investigated various properties of this protein (designated here as GAP/B-50), including its correct molecular weight and possible polymeric structure. GAP/B-50 was purified to greater than 90% homogeneity using an alkaline extraction procedure followed by a two-stage separation on a size-exclusion HPLC column. The equivalence of the purified protein to the B-50 phosphoprotein was confirmed by peptide digests, comigration, immunostaining, and amino acid composition. On a series of sodium dodecyl sulfate-polyacrylamide gels the apparent molecular weight of the protein was seen to vary inversely with the concentration of acrylamide in the gels. Using these data in the method of Ferguson, the molecular weight of GAP/B-50 was calculated to be 32.8 kilodaltons (kD), considerably lower than the previously reported values of 43-67 kD. The low molecular weight of the protein in the presence of detergent was confirmed by density centrifugation. In the absence of detergent, however, the protein was found to be part of a polymeric structure whose retention time by size-exclusion chromatography indicated a size of 124 kD; this property was also confirmed by density centrifugation under nondetergent conditions. These data suggest the possibility that the native form of GAP/B-50 in the presynaptic membrane may be a tetramer of four identical subunits.  相似文献   

14.
Low concentrations of capsaicin (CAP) stimulate and high concentrations of CAP can be toxic to the primary sensory neurons of the dorsal root ganglion (DRG). CAP induces the phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in DRG neurons. The effect of the activation of ERK1/2 by different concentrations of CAP on growth-associated protein 43 (GAP-43) expression and calcitonin gene-related peptide (CGRP) depletion in DRG neurons remains unknown. In the present study, organotypic embryonic 15-day-old rat DRG explants were used to determine the effect of different concentrations of CAP on GAP-43 expression and CGRP depletion. The results showed that, compared to unstimulated control cultures, GAP-43 and pERK1/2 protein levels increased at a low concentration (2 μmol/L) of CAP and decreased at a higher concentration (10 μmol/L). The number of CGRP-immunoreactive (IR) migrating neurons also decreased in CAP-treated cultures. The increase in GAP-43 levels and CGRP depletion could be blocked by the administration of ERK1/2 inhibitor PD98059. The results of the present study imply that CAP at different concentrations has different effects on GAP-43 expression and CGRP depletion. These effects were involved in the activation of ERK1/2 in organotypically cultured DRG neurons stimulated with CAP. These data may provide new insights for further development potential therapeutic applications of CAP with moderate dose on neurogenic inflammation.  相似文献   

15.
利用反转录PCR的方法,以甘油醛3磷酸脱氢酶(GAPDH)mRNA作为内源参照物,测定了记忆增强肽ZNC(C)PR及其类似物对大鼠海马和皮层中胆碱能神经分化因子(CNDF)mRNA表达的影响。ZNC(C)PR能显著地增强CNDFmRNA的表达,并在给药后18h达到高峰(海马3.02倍,皮层5.33倍,与对照组比较P<0.01)。ZNC(C)PR受体的激动剂NLPR也能诱导CNDFmRNA的表达,并比ZNC(C)PR活性更高。ZNC(C)PR受体的拮抗剂ZDC(C)PR能部分地阻断ZNC(C)PR的作用。精氨酸加压素(AVP)只有微弱的活性,而催产素(OXT)则没有活性。以上结果表明CNDF是ZNC(C)PR作用的靶基因之一,且这种作用是通过受体介导的。  相似文献   

16.
The biochemistry and functional neurochemistry of the synaptosomal plasma membrane phosphoprotein B-50 (GAP-43) are reviewed. The protein is putatively involved in seemingly diverse functions within the nervous system, including neuronal development and regeneration, synaptic plasticity, and formation of memory and other higher cognitive behaviors. There is a considerable amount of information concerning the spatial and temporal localization of B-50 (GAP-43) in adult, fetal, and regenerating nervous tissue but far less is known about the physical chemistry and biochemistry of the protein. Still less information is available about posttranslational modifications of B-50 (GAP-43) that may be the basis of neurochemical mechanisms that could subsequently permit a variety of physiological functions. Hence, consideration is given to several plausible roles for B-50 (GAP-43) in vivo, which are discussed in the context of the cellular localization of the protein, significant posttranslational enzymes, and regulatory proteins, including protein kinases, phosphoinositides, calmodulin, and proteases.  相似文献   

17.
Several lines of evidence indicate that protein kinase C (PKC) is involved in long-term potentiation (LTP) and in certain forms of learning. Recently, we found a learning-specific, time-dependent increase in [3H]phorbol dibutyrate binding to membrane-associated PKC in the hippocampus of rats subjected to an inhibitory avoidance task. Here we confirm and extend this observation, describing that a one trial inhibitory avoidance learning was associated with rapid and specific increases in B-50/GAP-43 phosphorylation in vitro and in PKC activity in hippocampal synaptosomal membranes. The increased phosphorylation of B-50/GAP-43 was seen at 30 min (+35% relative to naive or shocked control groups), but not at 10 or 60 min after training. This learning-associated increase in the phosphorylation of B-50/GAP-43 is mainly due to an increase in the activity of PKC. This is based on three different sets of data: 1) PKC activity increased by 24% in hippocampal synaptosomal membranes of rats sacrificed 30 min after training; 2) B-50/GAP-43 immunoblots revealed no changes in the amount of this protein among the different experimental groups; 3) phosphorylation assays, performed in the presence of bovine purified PKC or in the presence of the selective PKC inhibitor CGP 41231, exhibited no differences in B-50/GAP-43 phosphorylation between naive and trained animals. In conclusion, these results support the contention that hippocampal PKC participates in the early neural events of memory formation of an aversively-motivated learning task.  相似文献   

18.
Phosphorylation of GAP-43 (neuromodulin) by protein kinase C (PKC) occurs at a single site, serine41. In vivo, phosphorylation is induced after initiation of axonogenesis and is confined to distal axons and growth cones. Within individual growth cones, phosphorylation is nonuniformly distributed. Here, we have used high-resolution video-enhanced microscopy of cultured dorsal root ganglia neurons together with immunocytochemistry with a monoclonal antibody that recognizes PKC-phosphorylated GAP-43 to correlate the distribution of phosphorylated GAP-43 with growth cone behavior. In “quiescent,” nontranslocating growth cones, phosphorylated GAP-43 was confined to the proximal neurite and the central organelle-rich region, and was low in organelle-poor lamellae. However, levels in lamellae were elevated when they became motile. Conversely, levels of phosphorylated GAP-43 were low in either lamellae that were actively retracting or in the central organelle-rich region and proximal neurite of growth cones that had totally collapsed. The results suggest a mechanism whereby phosphorylation of GAP-43 by PKC, potentially in response to extracellular signals, could direct the functional behavior of the growth cone. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 287–299, 1998  相似文献   

19.
Purified, nonubiquitinated growth-associated protein of 43 kDa (GAP-43) was attacked by purified reticulocyte 20S proteasome but not by the 26S proteasome. Cleavage yielded 12 N-terminally labelled GAP-43 fragments that could be resolved by SDS/PAGE. Inhibitor experiments suggested that proteasome beta1 activity yielded the resolved bands and that proteasomebeta5 activity generated nonresolvable fragments. Processive degradation, yielding only nonresolvable fragments, therefore did not occur. Most of the resolved fragments co-migrated with fragments formed in the reticulocyte lysate translation mixture used for GAP-43 synthesis, which suggested that the fragments were also produced in the translation mixture by the endogenous reticulocyte lysate proteasome. Consistent with this idea, the addition of proteasome inhibitors to translation mixtures blocked fragment production. Ubiquitinated GAP-43 appeared to be the source of the fragments in the presence of ATP, and nonubiquitinated GAP-43 the source in the absence of ATP. The results therefore suggest that the lack of processing seen with the 20S proteasome is not an artefact arising from the way in which the 20S proteasome was purified. In one purification protocol, the GAP-43 fragments formed in translation mixtures co-purified with full-length GAP-43. These fragments were digested to nonresolvable products upon addition of purified 20S proteasome. Addition of calmodulin or G-actin blocked the consumption of both full-length GAP-43 and the co-purified GAP-43 fragments. This showed that the resolved fragments can re-enter the proteasome and be cleaved to nonresolvable products, indicating that the lack of processivity is not a result of their resistance to further proteasome attack. The difficult step therefore appears to be the transfer of the large fragments within the proteasome from the beta1 to the beta5 activity for further attack.  相似文献   

20.
GAP-43 regulates NCAM-180-mediated neurite outgrowth   总被引:6,自引:0,他引:6  
The neural cell adhesion molecule (NCAM), and the growth-associated protein (GAP-43), play pivotal roles in neuronal development and plasticity and possess interdependent functions. However, the mechanisms underlying the functional association of GAP-43 and NCAM have not been elucidated. In this study we show that (over)expression of GAP-43 in PC12E2 cells and hippocampal neurons strongly potentiates neurite extension, both in the absence and in the presence of homophilic NCAM binding. This potentiation is crucially dependent on the membrane association of GAP-43. We demonstrate that phosphorylation of GAP-43 by protein kinase C (PKC) as well as by casein kinase II (CKII) is important for the NCAM-induced neurite outgrowth. Moreover, our results indicate that in the presence of GAP-43, NCAM-induced neurite outgrowth requires functional association of NCAM-180/spectrin/GAP-43, whereas in the absence of GAP-43, the NCAM-140/non-receptor tyrosine kinase (Fyn)-associated signaling pathway is pivotal. Thus, expression of GAP-43 presumably acts as a functional switch for NCAM-180-induced signaling. This suggests that under physiological conditions, spatial and/or temporal changes of the localization of GAP-43 and NCAM on the cell membrane may determine the predominant signaling mechanism triggered by homophilic NCAM binding: NCAM-180/spectrin-mediated modulation of the actin cytoskeleton, NCAM-140-mediated activation of Fyn, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号