首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
It has been reported that the mammalian female could have a preconceptual influence on the sex of her offspring, and it has been hypothesized that this influence could go some way toward accounting for the reported lower fertility following insemination with sex-sorted sperm. To test whether in vitro matured oocytes are able to select X- or Y-bearing spermatozoa following in vitro fertilization (IVF), we fertilized in vitro 1788 oocytes with X-sorted semen, Y-sorted semen, a mix of X- and Y-sorted semen, and unsorted semen from the same bull, and cultured until Day 9. Fertility was assessed by recording cleavage rate at 48 h postinsemination (hpi) and blastocyst development until Day 9. Embryos were sexed at the two- to four-cell stage and the blastocyst stage. The proportion of zygotes cleaving at 48 hpi was not different between X- and Y-sorted groups and the mix of X- and Y-sorted semen group; however, all were significantly lower than the unsorted group (P < 0.001). Blastocyst yield on Day 6 was significantly higher (P < or = 0.01) in the control group compared with the rest of the groups. Cumulative blastocyst yields on Days 7, 8, and 9 were also significantly higher (P < or = 0.01) in the unsorted group compared with the sorted groups. The proportion of female and male two- to four-cell embryos obtained following IVF with X- and Y-sorted sperm was 88% and 89%, respectively and the sex ratio at the two- to four-cell stage was not different following IVF with unsorted or sorted/recombined sperm (56.9% males vs. 57% males, respectively). At the blastocyst stage, similar percentages were obtained. In conclusion, the differences in cleavage and blastocyst development using sorted versus unsorted sperm are not due to the oocyte preferentially selecting sperm of one sex over another, but are more likely due to spermatic damage caused by the sorting procedure.  相似文献   

2.
The aim of this study was to explore how some reproductive methodologies may affect the sex ratio. We first confirmed the association between the maturation stage of bovine oocytes at the time of in vitro fertilisation (IVF) and the sex ratio of in vitro-derived embryos. Secondly, we studied whether the time of insemination, prior to or after ovulation, could alter the sex ratio in sheep. In the first experiment, bovine oocytes were matured in vitro for 16 h; then oocytes were either fertilised in vitro immediately after extrusion of the first polar body or IVF was delayed for 8 h. The proportion of cleaving embryos and their development to the 8-cell stage was enhanced with delayed insemination. Moreover, delaying IVF produced a male-to-female sex ratio of 1.67:1.00, which was significantly different from the expected 1:1 ratio (p < 0.05), whereas more female embryos were produced when oocytes were fertilised in vitro immediately after polar body extrusion (sex ratio of 1.00:0.67; p < 0.05). In the second experiment, 380 ewes were inseminated at different times before or after ovulation, producing 537 lambs. Significant differences in the sex ratio were obtained when we compared the sex of the offspring of ewes inseminated during the 5 h preceding ovulation (more females) with those inseminated during the 5 h after ovulation (more males). Our results suggest that the differential ability of X- or Y-bearing spermatozoa to fertilise oocytes depending either on time of insemination or oocyte maturation state, may be due, at least partially, to 'intrinsic' differences in the physiological activity of X- or Y-bearing spermatozoa before fertilisation.  相似文献   

3.
4.
The present study examined the ability to establish pregnancies after transfer of pig embryos derived from in vitro fertilization (IVF) of in vitro matured (IVM) oocytes by X and Y chromosome-bearing spermatozoa sorted by flow cytometry. Cumulus-oocyte complexes (COC) were cultured in BSA-free NCSU-23 medium containing porcine follicular fluid (10%), cysteine (0.1 mg/mL), epidermal growth factor (10 ng/mL), LH (0.5 microgram/mL) and FSH (0.5 microgram/mL) for 22 h, then the oocytes were cultured without hormonal supplements for an additional 22 h. Boar semen was collected and prepared by flow cytometry sorting of X and Y chromosome bearing spermatozoa. After IVM, cumulus-free oocytes were co-incubated with sorted X or Y spermatozoa (2 x 10(4)/mL) for 6 to 7 h in modified Tris-buffered medium containing 2.5 mM caffeine and 0.4% BSA. After IVF, putative embryos were transferred to NCSU-23 medium containing 0.4% BSA for culture. A portion of the oocytes was fixed 12 h after IVF, the remainder were cultured up to 96 h. At 96 h after IVF, 8-cell to morula stage embryos (n = 30 to 35) from each gender were surgically transferred to the uterus of recipient gilts. Insemination of IVM pig oocytes with X- or Y-bearing sperm cells did not influence the rate of penetration (67 vs 80%), polyspermy (40 vs 53%), male pronuclear formation (95 vs 96%), or mean number of spermatozoa per oocyte (1.6 vs 1.6), respectively. Furthermore, no difference was observed between cleavage rates at 48 h after IVF (X, 49 vs Y, 45%). Transfer of embryos derived from X-bearing spermatozoa to 18 recipients resulted in 5 pregnancies and delivery of 23 females and 1 male piglet. Similarly, transfer of embryos derived from Y-bearing sperm cells to 10 recipients resulted in 3 pregnancies, with 9 male piglets delivered. The results show that X- and Y-bearing spermatozoa sorted using USDA sperm sexing technology can be successfully used in an IVM-IVF system to obtain piglets of a predetermined sex.  相似文献   

5.
6.
Preselection of the gender of offspring is a subject that has held man's attention since the beginning of recorded history. Most scientific hypotheses for producing the desired sex of offspring address separation of X- and Y-bearing sperm, and most have had limited, if any success. Eight of these hypotheses and their experimental verifications are discussed here. Three hypotheses are based on physical characteristics of sperm, one on supposed differences in size and shape, another on differences in density, and a third on differences in surface charge. There has been no experimental verification of differences based on size and shape, and the results from attempts to verify separation of X- and Y-bearing sperm based on density have been mixed. Electrophoresis may provide a method for separating X-and Y-bearing sperm, but it is currently unproven and would be of little practical utility, since sperm motility is lost. A fourth hypothesis employs H-Y antigen to select preimplantation embryos. This method reliably produces female offspring, but does not permit the selection of male offspring and does not work on sperm. There are two applications of the theory that X- and Y-bearing sperm should be separable by flow fractionation. Flow fractionation using thermal convection, counter-streaming sedimentation, and galvanization is highly promoted by its originator but has not gained wide acceptance due to lack of independent confirmation. Flow fractionation by laminar flow is said to provide up to 80% enrichment of both X- and Y-bearing sperm; however, this method also has not been confirmed by other workers or tested in breeding trials. The sixth theory discussed is that of separation through Sephadex gel filtration. This method may provide enrichment of X-bearing sperm, but, again, other experimenters have not been able to adequately confirm the enrichment. The best-known approach to sperm separation is that employing albumin centrifugation, yet even with this method, not all researchers have been able to confirm a final fraction rich in Y sperm, and trials in animals have given contradictory results. The most reliable method for separating X- and Y-bearing sperm is use of flow cytometric and flow sorting techniques. These techniques routinely separate fractions with a purity greater than 80% and can be above 90%. Unfortunately, these methods do not always work for human samples. Furthermore, as with electrophoretic approaches, the methods identify and separate only chemically fixed sperm and provide limited biological applications. Generally accepted experimental laboratory procedures for verification of proportions of X- and Y-bearing sperm are lacking. Staining of sperm with the fluorochrome dye quinacrine will identify a structure known as the “F-body” in human sperm and sperm from a few primates. The dye does not work other mammalian sperm. Its validity as a measure of sperm genotype is the topic of debate. We have used two methods to verify claims of separation of sperm. flow cytometry, and in vitro fusion. One can use flow cytometry to test the efficiency of separation of sperm samples. We tested seven commercial methods for the separation of bovine sper, and none were found of result in enrichment. We also used in vitro fusion of human sperm to denuded hamster ova to test enrichment of Y-bearing sperm from the albumin separation process. out results demonstrated no Y-bearing-sperm enrichment from this process. Scientific problems impeding the success of separation seem to be under investigation with an ever-increasing rate. Hybridization probes for DNA sequences specific to the X or Y chromosome may be the next appropriate technology to test of the selection and separation of X- and Y-chromosome-bearing mammalian sperm.  相似文献   

7.
Embryo metabolism is an indicator of viability and, therefore, efficiency of the culture medium. Currently, little is known regarding porcine embryo metabolism. The objective of our study was to evaluate glucose and pyruvate uptake and lactate production in porcine embryos cultured in two different media systems. Oocytes were matured and fertilized according to standard protocols. Embryos were allocated randomly into two culture treatments, NCSU23 medium or G1.2/G2.2 sequential culture media 6-8 h post-insemination (hpi). Embryo substrate utilization was measured at the two-cell (24-30 hpi), 8-cell (80 hpi), morula (120 hpi), and blastocyst (144 hpi) stages using ultramicrofluorimetry. Glucose uptake was higher (P < 0.05) in two-cell embryos cultured in G1.2 than in NCSU23 medium (4.54 +/- 0.71, 2.16 +/- 0.87 pmol/embryo/h, respectively). Embryos cultured in G1.2/G2.2 produced significantly more lactate than those in NCSU23 at the eight-cell stage (9.41 +/- 0.71, 4.42 +/- 0.95 pmol/embryo/hr, respectively) as well as the morula stage (11.03 +/- 2.31, 6.29 +/- 0.77 pmol/embryo/hr, respectively). Pyruvate uptake was higher (P < 0.05) in morula cultured in G1.2/G2.2 versus NCSU23 (22.59 +/- 3.92, 11.29 +/- 1.57 pmol/embryo/h, respectively). Lactate production was greater (P < 0.05) in blastocysts cultured in G1.2/G2.2 (38.13 +/- 15.94 pmol/embryo/h) than blastocysts cultured in NCSU23 (8.46 +/- 2.38 pmol/embryo/h). Pyruvate uptake was also greater in blastocysts cultured in G1.2/G2.2 (24.3 +/- 11.04) than those in NCSU23 (11.30 +/- 2.70). When cultured in NCSU23 medium, two- and eight-cell embryos utilized less glucose than morulae and blastocysts, and two-cell embryos produced less lactate than blastocysts (P < 0.05). In G1.2/G2.2 media, two-cells took up less pyruvate than morulae or blastocysts, while blastocysts produced more lactate and utilized more glucose than two-cell, eight-cell and morula stage embryos (P < 0.05). As in other species, glycolysis appears to be the primary metabolic pathway in post-compaction stage porcine embryos. Culture medium composition affects not only substrate uptake, but also metabolic pathways by which these substrates are utilized in porcine embryos at several developmental stages.  相似文献   

8.
Welch GR  Johnson LA 《Theriogenology》1999,52(8):1343-1352
Laboratory validation is essential in developing an effective method for separating X and Y sperm to preselect sex. Utilizing sexed sperm from a particular experiment to test fertility and achieve the subsequent phenotypic sex without knowing the likely outcome at conception is too costly for most applications. Further, research advances need to be built on an ongoing assessment with respect to the collection of data to continue progress towards achieving a successful outcome. The Beltsville Sperm Sexing Technology, which is based on the sorting of X- and Y-bearing sperm through the process of flow-cytometric sperm sorting, is also well suited for validation in the laboratory by "sort reanalysis" of the sperm X- and Y-bearing fractions for DNA content. Since the sexing technology is based on the use of Hoechst 33342, a permeant nuclear DNA stain for sorting X- and Y-bearing sperm, it also can be the marker for determining the proportions of X and Y populations by sort reanalysis. The process consists of using an aliquot of the sorted sperm and sonicating to obtain sperm nuclei. The uniformity of the nuclear staining is re-established through the addition of more Hoechst 33342. Separate analysis of each aliquot produces a histogram that is fitted to a double gaussian curve to determine proportions of X and Y populations. The relative breadths of the distributions of DNA of X- and Y-bearing sperm within a species affects interpretations of the histogram. Sort reanalysis is consistently repeatable with differences in X/Y DNA equal to or greater than 3.0%. This information on sex ratio of the sperm then provides the precise tool by which one can predict the outcome in terms of sex, from a particular sample of semen. Simple analysis of unsorted sperm to determine the proportions of X- and Y-bearing sperm based on DNA content is also an effective tool for validating sperm-sex ratio, whether it is in a sample assumed to be 50:50 or predicted to be something other than 50:50. This simple analysis provides for a check on the potential sex ratio of any sample of semen.  相似文献   

9.
Rorie RW 《Theriogenology》1999,52(8):1273-1280
For a number of years, the time of insemination or mating during estrus has been believed to influence the sex ratio of offspring, with early insemination resulting in more females and late insemination, more males. Possible mechanisms of altering the sex ratio include facilitating or inhibiting the transport of either X- or Y-chromosome-bearing sperm through the reproductive tract, preferential selection of sperm at fertilization, or sex-specific death of embryos after fertilization. In livestock species, there is evidence for preferential selection of X- or Y-bearing sperm, based on the maturational state of the oocyte at fertilization. In deer and sheep, early and late insemination appears to skew the sex ratio toward females and males, respectively. In cattle, conflicting reports on the effect of time of insemination on sex ratio make the premise less clear. Many of the published studies lack adequate observations for definitive conclusions and/or are based on infrequent observations of estrus, making it difficult to assess the effect of time of insemination on sex ratio. It is likely that any effect of time of insemination on sex ratio in cattle is relatively small. Evidence is accumulating that treatments used for synchronization of estrus or ovulation in cattle may influence the sex ratio.  相似文献   

10.
Various factors including the length of gamete interaction and embryo culture conditions are known to influence the rate of development and sex ratio of mammalian embryos produced in vitro. While the duration of gamete interaction deemed optimum would vary depending upon the species involved and the preferred sex in the outcome of in vitro procedures, the mechanisms favoring the selection of embryos of one sex over the other, or the exact time of post-fertilization stage at which a sex-related difference in growth rate is manifested, are not fully understood. In order to determine the optimum length of gamete co-incubation and the impact of male gamete 'aging' on the growth rate and sex ratio of bovine embryos, a series of experiments was carried out using in vitro matured (IVM) oocytes. In experiment 1, IVM oocytes were co-incubated with sperm from two different bulls for 6, 9, 12 and 18 h and the presumptive zygotes were cultured for approximately 7.5 days (178-180 h post-insemination (hpi)) prior to assessing the cleavage rate, blastocyst yield and the sex ratio of blastocysts in each co-incubation group. In experiment 2, the blastocysts obtained from different co-incubation groups were subjected to differential staining to determine the total cell number (TCN) and the proportion of cells allocated to the inner cell mass (ICM) in male and female embryos to test for sex-related differences in cell proliferation or in differentiation of the two embryonic cell lineages in the blastocysts. In experiment 3, IVM oocytes co-incubated for 6, 9, 12 and 18 h with sperm from a single bull, were cultured for 3 days (72 hpi) and the pre-morulae, categorized according to the specific stage of early development, were sexed to determine if a sex-dependent difference is detectable before the blastocyst stage. In experiment 4, IVM oocytes exposed to prolonged co-incubation (18 and 24 h) were compared with those co-incubated with "aged" (pre-incubated) sperm to determine if "aging sperm" is a factor affecting the growth rate and sex ratio of the out come. Our experiments showed that (1) the shortest period (6 h) allowed the highest proportion of cleaved oocytes to reach the blastocyst stage regardless of the semen donor, (2) males out number females (over 2 to 1) among blastocysts when co-incubation of gametes is reduced to 6 h, (3) the male blastocysts display higher total cell count, and (4) the faster growth rate of the male embryos does not affect the early differentiation and allocation of cells to the ICM. Furthermore, our results indicate that the disruption of the expected 1:1 ratio for male and female embryos in the short term co-incubation group is evident as early as the 4-cell stage and peaks at the 8-cell stage and that prolonged gamete interaction tends to reduce the blastocyst yield to even out the sex ratio. Absence of a significant effect on the yield and sex ratio of blastocysts in the prolonged co-incubation groups irrespective of the type of sperm (aged versus non-aged) used suggest that the preponderance of male embryos in short term gamete interaction group may be dependent upon the in vitro advantage of the Y-chromosome bearing sperm. This advantage, manifested in the precocious development during the pre-morulae stage is confined to a short duration that is neutralized when gamete interaction is allowed to proceed beyond 6h.  相似文献   

11.
A study was undertaken to determine: (1) the potential toxicity of a fluorogenic vital dye, fluorescein diacetate (FDA), on hamster and bovine pre-implantation embryos; and (2) whether a correlation exists between the fluorescence of an embryo and its ability to continue development.For the toxicity trial, hamster eight-cell embryos were randomly assigned to one of three groups (control, FDA+UV light or UV light only), and early bovine blastocysts to either a control or FDA+UV light group. Embryos were cultured for 24 h and scored for development to the blastocyst stage. Embryos of both species developed equally well in vitro regardless of whether or not they had been exposed to FDA and UV light. Treated and untreated control embryos from both species were transferred to synchronized recipients. Similar numbers of pregnancies resulted after transfer of treated and untreated embryos from both species.In the second experiment, the proportions of fluorescing embryos were compared using two groups of hamster eight-cell embryos: (1) freshly collected embryos; and (2) cultured embryos that failed to develop. Significantly more of the fresh eight-cell embryos fluoresced than did the cultured, undeveloped embryos. No false negative results were obtained (embryos that developed but failed to fluoresce). However, approximately half of the non-developing, cultured embryos showed varying degrees of fluorescence (false positive). Embryos showing “false positive” fluorescence may be viable, but incapable of further development due to deficiencies of the culture medium.The procedures used in the FDA viability assay were not detrimental to development of late cleavage stage mammalian embryos and thus seem suitable for rapid screening of manipulated embryos for potential damage. However, further work is needed to establish the significance of the false positive results encountered in this study.  相似文献   

12.
Previous studies indicate that sex-sorted sperm exhibit different physiology, including fertilizing capacity, from non-sorted sperm. However, differences between X- and Y-bearing sperm in their ability to undergo an acrosome reaction have never been investigated. This study determined the ability of non-sorted and sex-sorted sperm to undergo the acrosome reaction prior to and after cryopreservation. Sperm were treated with dilauroylphosphatidylcholine (PC12) to induce the acrosome reaction and the percentages of live-acrosome-reacted sperm and dead sperm were evaluated. The X- and Y-bearing sperm reacted similarly to the PC12 treatment, regardless of whether sperm were assessed prior to or after cryopreservation. Fresh control sperm exhibited lower percentages of live sperm (60%) than either X- or Y- sorted sperm (69-74%, P<0.05). Percentages of live control sperm were also lower after thawing (29-35%) than sex-sorted sperm (55-58%, P<0.05). Control and sex-sorted fresh sperm responded similarly to PC12 treatment. However, sex-sorted cryopreserved sperm exhibited higher percentages of live-acrosome-reacted sperm (23%) than control sperm (9%, P<0.05) after 40 min without PC12 treatment. In addition, cryopreserved control sperm treated with 79 microM PC12 exhibited higher percentages of live-acrosome-reacted sperm than sex-sorted sperm. In conclusion, X- and Y-bearing sperm responded similarly to PC12 treatment. In addition, fresh sexed and non-sorted sperm responded similarly to PC12 treatment. However, cryopreserved sex-sorted sperm underwent an acrosome reaction more rapidly in the absence of PC12 (over a 40 min period) than the non-sorted sperm. Therefore, sex-sorting induced changes in sperm membranes that accelerated the acrosome reaction process in sperm after cryopreservation.  相似文献   

13.
14.
Mammalian oocytes are thought to be neutral as for X- or Y-bearing sperm selection is concerned, and penetration of an oocyte by an X- or a Y-bearing sperm is considered a random event. This assumption is mainly based on a posteriori evidences of a nearly equal sex ratio at birth, but it has never been experimentally demonstrated. We have designed a simple experiment, which allowed the penetration of an oocyte by more than one sperm and the further sexing by PCR of each single pronucleus present within the ooplasm. For the first time, we provide experimental evidence that mammalian oocytes do not play a selecting role since a single oocyte may be simultaneously fertilised by both X- and Y-bearing sperm.  相似文献   

15.
Single blastomeres from eight-cell stage bovine embryos matured and fertilized in vitro were electrically fused with enucleated oocytes matured in vitro. In experiment 1, The percentage of these reconstituted embryos developed to the two- to eight-cell stage 48 hr after electrofusion was increased when both the eight-cell embryos and the enucleated oocytes were derived from oocytes cultured with granulosa cells (14% vs. 38%). In experiment 2, the relationship between activation of oocytes and developmental ability of reconstituted embryos was examined. Although both ethanol and electrical stimulation efficiently induced parthenogenetic activation of oocytes matured in vitro for 26–28 hr (ethanol, 89%; electrical stimulation, 73%), the ratio of the second polarbody extrusion differed (80% vs. 22%). Ethanol-treated enucleated oocytes, however, were not significantly different from the early cleavage of the reconstituted embryos 48 hr after electrofusion (nontreated, 38%; treated, 43%). In experiment 3, reconstituted embryos at the two- to eight-cell stage 48 hr after the electrofusion were cocultured with granulosa cells for 6–7 days. Of 69 embryos, one developed to a morula and three developed to blastocysts. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Oocytes and matched samples of follicular fluid (FF) were obtained from 70 follicles of five rhesus monkeys stimulated with either pregnant mare serum gonadotropin or human menopausal gonadotropin. Follicular aspiration was performed 30-32 h after human chorionic gonadotropin administration. The concentrations of estradiol (E2), progesterone (P), testosterone (T), and dihydrotestosterone (DHT) in FF were measured. Twenty-six percent of oocytes were classified as mature (M), 41% matured in vitro (Miv), 13% were dysmature, and 20% atretic. M oocytes were associated with significantly higher levels of P and a higher P:E2 ratio. There were no differences in hormone levels associated with fertilized and nonfertilized oocytes. Thirty-five embryos developed to the six- to eight-cell stage in vitro, of which 13 exhibited optimal cleavage rates. Significantly lower levels of E2 and higher P:E2 ratios were associated with the more rapidly cleaving embryos. Proportionally more embryos showing optimal cleavage rates developed from M compared to Miv oocytes, and only embryos derived from M oocytes developed to blastocysts in culture. Optimal cleavage rates to the six- to eight-cell stage in vitro, rather than fertilization rates, are a better indicator of (subsequent) developmental capacity, and, in this study, embryonic development was closely associated with the maturity of the oocyte at recovery.  相似文献   

17.
Offspring gender preselection has applications of considerable economic, health and ecological interest. In this study we analysed modifications of the percentages of spermatozoa bearing Y and X chromosomes when semen samples are submitted to a double swim-up technique as a possible method for producing embryos of known sex with in vitro fertilisation protocols. As an initial experiment to provide accurate evaluation of the method we determined the possible incidence of natural deviations in the primary sex ratio between bulls or ejaculates, analysing the percentage of Y-chromosome DNA bearing spermatozoa (%Y-CDBS) with a polymerase chain reaction (PCR) amplification of X- and Y-specific fragments. Ejaculates were tested by direct semiquantitative PCR sexing and by sexing blastocysts produced in vitro with these spermatozoa. Bulls and ejaculates did not have any effect on the %Y-CDBS or on the sex ratio of embryos produced in vitro using these ejaculates. However, our double swim-up sperm preparation method produced differences in %Y-CDBS in some of the sperm fractions, suggesting that there are intrinsic differences in capacitation of X- and Y-bearing spermatozoa that might be used to produce embryos of the desired sex with in vitro fertilisation.  相似文献   

18.
Enucleated zygotes were compared with enucleated two-cell embryos as recipients for donor nuclei from eight-cell embryos. Only one or two cleavage divisions were observed when eight-cell nuclei were transplanted to enucleated zygotes. Development of enucleated two-cell embryos containing a transplanted eight-cell nucleus was appreciably better with 51% (45/89) of the embryos forming blastocysts in vitro and 42% (25/60) initiating implantation. Of these, eleven implantation sites on Day 10 of gestation were examined histologically and two contained normally developing embryos. No development was observed beyond Day 12 of gestation. These observations indicate that a major transition occurs between the zygote and two-cell stage that results in the two-cell recipient being more compatible with the eight-cell nucleus than with the zygote.  相似文献   

19.
Semen samples from 34 men visiting the Lübeck infertility clinic were investigated using a two-color FISH method to determine the ratio of X- and Y-bearing sperm. The overall ratio was significantly shifted to a preponderance of X-containing sperm. A statistical comparison with seven reports from the literature which included 53 normal probands demonstrated in our patients a significant tendency of a preponderance of X-bearing sperm and significantly less Y-bearing sperm. Furthermore, the Lübeck sperm samples are remarkably more heterogeneous in respect to their variability of X- and Y-bearing spermatozoa than in the other mentioned studies with normal probands. These phenomena have to be evaluated in further studies on groups of infertile males showing similar infertility histories.  相似文献   

20.
Dominko T  First NL 《Theriogenology》1997,47(5):1041-1050
The effect of maturational state of bovine oocytes at the time of insemination on early embryo development and the sex ratio of developing embryos was evaluated. Early maturing oocytes were inseminated either immediately after the first polar body extrusion or insemination was delayed for 8 h. Most of the zygotes completed the first embryonic cell cycle and reached the 2-cell stage by 35 h after insemination regardless of the time of insemination. Delaying insemination enhanced the proportion of cleaving zygotes and significantly improved their development to the 8-cell stage. At the same time delaying insemination produced significantly higher proportions of male embryos. Cleavage and development to 8-cell stage was significantly impaired when oocytes were inseminated immediately after polar body formation. Sex ratio in these embryos did not differ from 1. These results suggest that oocytes developmental ability as well as capability to process X and Y-bearing spermatozoa may be acquired at specific times during maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号